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Abstract

Motivation: Perturbation experiments constitute the central means to study cellular networks.

Several confounding factors complicate computational modeling of signaling networks from this

data. First, the technique of RNA interference (RNAi), designed and commonly used to knock-down

specific genes, suffers from off-target effects. As a result, each experiment is a combinatorial per-

turbation of multiple genes. Second, the perturbations propagate along unknown connections in

the signaling network. Once the signal is blocked by perturbation, proteins downstream of the tar-

geted proteins also become inactivated. Finally, all perturbed network members, either directly tar-

geted by the experiment, or by propagation in the network, contribute to the observed effect, either

in a positive or negative manner. One of the key questions of computational inference of signaling

networks from such data are, how many and what combinations of perturbations are required to

uniquely and accurately infer the model?

Results: Here, we introduce an enhanced version of linear effects models (LEMs), which extends

the original by accounting for both negative and positive contributions of the perturbed network

proteins to the observed phenotype. We prove that the enhanced LEMs are identified from data

measured under perturbations of all single, pairs and triplets of network proteins. For small net-

works of up to five nodes, only perturbations of single and pairs of proteins are required for

identifiability. Extensive simulations demonstrate that enhanced LEMs achieve excellent accuracy

of parameter estimation and network structure learning, outperforming the previous version on

realistic data. LEMs applied to Bartonella henselae infection RNAi screening data identified known

interactions between eight nodes of the infection network, confirming high specificity of our model

and suggested one new interaction.

Availability and implementation: https://github.com/EwaSzczurek/LEM

Contact: szczurek@mimuw.edu.pl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Signaling networks consist of interconnected proteins that transmit

information inside the cell. External or internal stimuli trigger sig-

naling cascades, which are implemented by consecutive kinases

post-transcriptionally modifying one another, for example by phos-

phorylation. The signal is in this way transmitted down to the nu-

cleus, where the transcriptional machinery regulates adequate

functional response of the cell to the signal. Technological advances

such as gene silencing using RNA interference (RNAi) (Agrawal

et al., 2003), gene knock-out using CRISPR-Cas (Hsu et al., 2014)

or perturbations by the means of drug treatment (Molinelli et al.,

2013) allow experimental interventions on cellular networks and

measurement of their effects. For example, a small interfering RNA

(siRNA) perturbation screen in human cells was performed in a

study of pathogen infection (Ramo et al., 2014). The aim of the

study was to identify genes of the host that are involved in the net-

works that become activated when the cells are infected by patho-

gens. The measured phenotype was the level of infectivity by the

pathogen upon siRNA-mediated knock-down. The ultimate goal in

understanding cellular networks, however, is not only to recognize

the genes involved in the network, but also to (i) resolve its structure

of interconnections (network edges), and to (ii) understand the way

the network members contribute to the observed phenotype, for
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example how the individual kinases regulate the infectivity. Such

perturbation studies have the potential to address both these ques-

tions. Despite, however, the perturbation technology becoming ever

more advanced and increasingly better understood (Lisitskaya et al.,

2018; Mohr and Perrimon, 2012; Terns, 2018), computational in-

ference of signaling networks from perturbation data remains a

challenge.

The first problem faced by signaling network modeling is the so-

called perturbation-effect gap (Markowetz, 2010). Although the

interventions target the network (layer 1 in Fig. 1A), the resulting

states of the network nodes are not measured. The observed varia-

bles reside in the layer of the measured phenotype downstream

(layer 3 in Fig. 1A), only indirectly connected with the network via

the middle regulatory layer (layer 2 in Fig. 1A). Second, the network

nodes are not only targeted directly by the experiments, but also via

propagation in the network. Once a given network node is inacti-

vated by the experiment, the signal is blocked and the nodes down-

stream also become inactivated. Thus, perturbations propagate in

the network along its unknown edges, in the same way as the signal.

The third problem is the complexity of the hidden and unknown

regulatory layer. The measured phenotype is rarely an effect of a sin-

gle member of the network. Instead, it is a combination of contribu-

tions from all perturbed (directly or via propagation in the network)

nodes. These contributions may be positive and enlarge the meas-

ured phenotype, or negative and decrease it. Fourth, interventions

using common technique of siRNA-mediated knock-down, although

intended only to target single genes, the so-called on-targets, at the

same time perturb multiple other genes, the so-called off-targets

(Jackson et al., 2003). A given siRNA, it affects its off-target genes

using the microRNA pathway, binding by complementarity of its

seed region (positions 2–8) to the 30 untranslated regions of the tran-

scripts of the genes (Sigoillot and King, 2011). Consequently, the

measured phenotype is confounded by the combinatorial effects

from the off-targets and cannot be interpreted as the result of per-

turbing the on-target alone. Finally, there is the problem of model

identifiability from perturbation data. The key question here is, how

many and what combinations of perturbations are required to

uniquely and accurately infer the model?

Nested effects models (NEMs) (Fröhlich et al., 2008, 2009;

Markowetz et al., 2005, 2007; Tresch and Markowetz, 2008) and

their extensions (Anchang et al., 2009; Fröhlich et al., 2011; Pirkl

et al., 2016; Siebourg-Polster et al., 2015; Srivatsa et al., 2018)

specifically address the perturbation-effect gap problem. NEMs rep-

resent the network structure by directed graphs. The crucial assump-

tion behind NEMs is that perturbation effects show a nested subset

hierarchy, which reflects the hierarchy of nodes in the signaling net-

work. As a graphical model of signaling networks, probabilistically

inferred from the observed effects, NEMs constitute an attractive

approach for solving problem of learning network structures (layer

1 in Fig. 1A). These models, however, have a simplified representa-

tion of the regulatory layer (2 in Fig. 1A), and assume that each ef-

fect is regulated only by a single gene in the network. Other previous

computational approaches to signaling networks concentrated solely

on solving problem of elucidating the link between the network and

the observed effects (layer 2 in Fig. 1A) (Gat-Viks and Shamir, 2007;

Szczurek et al., 2009, 2011). These approaches assume they are

given a known network graph, and aim at either small refinements

to the given graph, or resolving the detailed mechanisms governing

the regulation of the downstream targets by the network

components.

Recently, we have introduced linear effects models (LEMs), aiming

to address the above-mentioned problems (Szczurek and

Beerenwinkel, 2016). LEM is a model where layer 1 of the signaling

network is represented by a graph with nodes corresponding to the sig-

naling genes. Edges of that graph correspond to the way the perturb-

ation effects propagate in the network. For two nodes 1 and 2, an

edge (1, 2) indicates that perturbation of gene 1 affects also gene 2.

The downstream regulation layer 2 is modeled by a vector of model

parameters, with entries corresponding to individual contributions

to the observed effects. LEMs are inferred from the data, which is

the phenotype (layer 3) measured under the perturbation experi-

ments. With this formulation, LEMs aim both at learning the struc-

ture of interactions within the network and at deconvolution of the

contributions of its components to the observed perturbation effects.

The main drawback of the previously introduced model, however, is

the limited expressiveness of the allowed contribution values. The

model parameters are assumed to be strictly positive. As such, they

are interpreted as only the magnitudes (absolute values) of the con-

tributions to the measured effects. Thus, the original LEM cannot

model both positive and negative contributions, such as down- or

up-regulation of the measured phenotype.

Here, we extend the previously proposed LEM by allowing nega-

tive contributions for the network genes, which are now assumed to

take any real, nonzero values. This allows realistic modeling of the
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Fig. 1. Enhanced linear effects model. (A) Three layers of the system: (1) perturbed signaling network, (2) intermediate regulatory layer, (3) observed effects Y.

Genes (circles, here 1, 2, 3) are directly or indirectly (via propagation in the network) perturbed in experiments. Bold arrows indicate how perturbations propagate

within the network. Dashed arrows show the individual contributions of the genes to the observed perturbation effects Y. LEM assumes that Y is normally distrib-

uted around the mean equal to the weighted sum of individual gene effects (here b1, b2, b3), with weights set to perturbation states. The difference between the

enhanced LEM and the previous model is that the contributions do not have to be positive, and can take any real value but not zero. (B) Example means (y-axis)

for all possible perturbation experiments (x-axis), as expected in the enhanced LEM with network structure as in (A), for b1 ¼ �4; b2 ¼ 1 and b3 ¼ 2. Whiskers indi-

cate example error
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phenotype as a combination of up-and down-regulatory contribu-

tions from the perturbed genes. At the same time, this enhancement

of the model raises nontrivial question of model identifiability. For

the original LEMs we proved that a set of experiments perturbing

all single and all pairs of nodes is required for their identifiability

(Szczurek and Beerenwinkel, 2016). The main contribution of this

work is a proof that enhanced LEMs are identifiable from data

measured under experiments where single, double and triple genes

are perturbed. Moreover, we show that small enhanced LEMs, with

less than six nodes, are identifiable from the same set of experi-

ments, targeting only single and pairs of nodes, as the original

LEMs. In this manuscript, two inference approaches for the

enhanced LEMs are compared, namely Bayesian linear regression,

referred to as Bayesian approach, and its time-efficient approxima-

tion, referred to as the Bayesian Information Criterion (BIC) ap-

proach. We perform comprehensive simulations to demonstrate that

both approaches yield excellent accuracy of parameter estimation

and network structure recovery of the enhanced LEMs, and to track

the run times of the two approaches. Although the Bayesian ap-

proach performs slightly better in model inference, its run times are

much longer than of the BIC approach.

The curse of siRNA off-targets can be turned into a blessing with

the use of computational tools of microRNA target predictions such

as TargetScan (Lewis et al., 2005). Using these tools, we can identify

which genes are off-targeted by the siRNA, and treat both the known

on-target and the predicted off-targets as a set of genes that are com-

binatorially perturbed within the same experiment. Recently, Srivatsa

et al. (2018) demonstrated the applicability of the siRNA on- and off-

targets as combinatorial perturbations, allowing to learn signaling

networks using their pc-NEMs models. They did not, however, ac-

count for the fact that the set of network genes is only a subset of all

genes that are perturbed by the siRNA, and that the perturbation of

the remaining genes may also have their effect on the phenotype.

Importantly, Schmich et al. (2015) showed that a phenotype meas-

ured under siRNA screens can successfully be modeled as a linear

combination of contributions of the on- or off-targeted genes. Their

approach was applied to model the infectivity phenotype in the

siRNA screen of Ramo et al. (2014), demonstrating dramatically

increased correlation of the inferred gene contributions compared to

the confounded raw phenotypes between different siRNA libraries.

Their model, however, did not account for any possible network con-

nections between the perturbed genes, treating them as isolated nodes.

Since LEM can be thought of an extension of this simple model,

which accounts for the structure of the signaling network and the

way perturbations propagate along its edges, we reasoned that LEMs

can be particularly well suited to model signaling networks from com-

binatorial perturbations in siRNA screens. To this end, we correct the

phenotype for the contributions of perturbed genes which are not

part of the modeled network. Indeed, application of LEMs to infer-

ence of the Bartonella henselae (shortly B. henselae) infection network

from infection kinome screen (Ramo et al., 2014) demonstrates excel-

lent recovery of known interactions. In summary, the present work

introduces a more realistic and highly expressive model for learning

signaling networks and their regulation of downstream phenotypes,

and comes with proven identifiability constraints ensuring accurate

model inference.

2 Enhanced linear effects models

A linear effects model (LEM) is defined by a triple M ¼ ðG; b; cÞ,
where G is a finite, transitively closed, directed acyclic graph (DAG)

with n nodes, b 2 fR n 0gn is a vector of nonzero real values, hence-

forth called admissible vectors, and c>0 is a real number called pre-

cision parameter. The graph G ¼ ðV;WÞ is defined by the set of

nodes V ¼ f1; . . . ; ng and a directed, and transitively closed set of

edges W. The assumption bg 6¼ 0, for all g 2 f1; . . . ng, and G being a

transitively closed DAG is motivated by model identifiability, as

shown below. We write a!Gb to indicate that there is an edge in G
from vertex a to vertex b, and we call this edge outgoing from a and

incoming to b. By a root in G we mean any node a with no incoming

edges. By a leaf in G we mean any node with no outgoing edges. The

graph G corresponds to a signaling network, with nodes interpreted

as genes and the edges representing the way perturbations of nodes

propagate within the network. For a node a of G we let VGa ¼
fag [ fb 2 V j a!Gbg to be the set of all nodes with edges in G out-

going from a, plus node a. Moreover for X � V, we let

VGX ¼ [a2X VGa . The interpretation of the set VGX is that if X is a set of

genes that are targeted directly by a given perturbation experiment,

then VGX consists of all genes that are perturbed directly or via propa-

gation in the network G.
LEMs are inferred from data Y 2 Rm measured under perturb-

ation experiments described by a m�n binary perturbation matrix

E. For an experiment e and a gene g, entry Ee;g ¼ 1 indicates that e

directly perturbs gene g, and Ee;g ¼ 0 otherwise. The perturbation

matrix E, specifying the experiments, and the network graph G, to-

gether determine a binary matrix SðE;GÞ, called a design matrix. We

drop the arguments when they are clear from the context. For a

given experiment e and gene g, entry Se;g ¼ 1 if gene g is perturbed

directly or via propagation along the network, and Se;g ¼ 0 other-

wise. Thus, for e 2 f1; . . . ;mg, if Xe denotes the set of genes that are

targeted as a result of performing the experiment e, then for every

g 2 f1; . . . ; ng

Se;g ¼ 1 if g 2 VGXe
;

0 otherwise:

�
(1)

The data Y quantify the perturbation effects, with Ye recording

the effect of experiment e. For example, Y could measure expression

of a certain gene regulated by the network. In contrast to the origin-

al LEM formulation (Szczurek and Beerenwinkel, 2016), the values

of Y are not restricted to the absolute magnitudes of effects, but cor-

respond to the actual values of these effects, which can be positive

or negative. Finally, an admissible vector of parameters

b ¼ ½b1; . . . ;bn�T , represents the individual contributions of the

members of the network to the observed perturbation effects. In

contrast to the original formulation of LEMs, the here proposed ver-

sion of the model allows that the contributions need not be only

positive, but also can take negative values. For the gene regulation

example, bg > 0 would indicate that the perturbation of a given

node g in the network contributes to activation of the regulated

gene. On the other hand, bg < 0 would indicate that perturbation

of g contributes to repression of the measured gene. Note, that this

should be interpreted as that g, when not perturbed, individually has

a positive contribution to regulation of the measured gene.

Moreover, it is important to distinguish the individual contribution

bg from the total effect of perturbing gene g, which is given by the

sum of its own contribution and the contributions from the nodes

downstream of g in the network, i.e.
P

a2VGg
ba. In particular, even

when the individual contribution bg is negative, the total effect of

perturbing g can be positive. Remaining assumptions are the same

as in the original LEM, namely, that Y is a random variable, normal-

ly distributed around a linear combination of the individual gene

contributions, with weights set to their perturbation states (Fig. 1B)
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Ye ¼
X

g

Se;gbg þ �e ¼ Sðe;�Þbþ �e; (2)

where �e stands for measurement error, � � Nð0; c�1IÞ, with c denot-

ing the precision parameter (inverse variance), and where Sðe;�Þ
denotes the eth row of matrix S. Equation (2) can be read as the lin-

ear regression equation with design matrix S and coefficients b.

With these assumptions, the log-likelihood function for the LEM

M ¼ ðG;b; cÞ and the data Y with perturbation matrix E is given by

(Szczurek and Beerenwinkel, 2016)

LðMÞ ¼ ln
�

pðYjS;b; cÞ
�
¼
Xm
e¼1

ln
�

f ðYejSðe;�Þb; c�1Þ
�
; (3)

where f(Ye|S(e,�)b, c�1) is the gaussian probability density function

with mean S(e,�)b and variance c�1.

For any two positive integers k � n, we consider a special per-

turbation matrix Eðk;nÞ that includes all possible experiments that

target directly at most k genes out of given n-element set of genes.

Hence Eðk;nÞ has m ¼
Pk

i¼1

n
i

� �
rows and n columns, and for each

i-element subset X of genes, Eðk;nÞ has a row with 1s in exactly posi-

tions that correspond to genes in X, and 0s in the remaining

positions.

In reality it may happen that the modelled biological network

contains a cycle. When we take a transitive closure of such a graph

G, the cycle turns into a clique. It follows that the design matrix S

has identical columns that correspond to the genes belonging to this

clique. Consequently, Theorem 3 stated below fails for graphs G
that contain such cliques, causing a problem with identifiability of

LEMs. Such genes belonging to the same clique behave in an identi-

cal way under all perturbation experiments. Therefore we collapse

the whole clique into a single node. This procedure eventually leads

to a DAG over a smaller set of nodes. The node that corresponds to

the collapsed clique represents a set of genes of the clique, rather

than a single gene.

2.1 Learning the network structure
We are given a m�n perturbation matrix E and a vector Y 2 Rm as

the observed data. To learn a LEM ðG;b; cÞ from observed data, we

need to infer the graph G, corresponding to the signaling network

structure, and the vector of contributions b. To search the graph

space we use the two procedures developed and described previously

(Szczurek and Beerenwinkel, 2016), and either exhaustively evaluate

all possible small graphs of up to five nodes, or greedily search for

DAGs that maximize the evaluation score by iteratively adding or

removing edges from currently considered graph. In the case when

adding an edge results in a cycle, the cycle is collapsed into a single

node and in the corresponding matrix S the columns for the nodes in

the cycle are replaced by a single column. This latter step is sound

since, by transitivity, all columns of S that correspond to nodes from

the cycle are equal to each other. The greedy search is initialized

from an empty graph with unconnected nodes, and an additional

number of initializations from randomly sampled initial graphs can

be set as a parameter by the user. For enhanced LEMs proposed

here, we propose two alternative procedures for evaluating the can-

didate graphs, referred to as Bayesian and Bayesian Information

Criterion approach, respectively.

The Bayesian graph evaluation procedure is the same as pro-

posed for original LEMs. We score the graphs using marginal likeli-

hood for Bayesian linear regression (Bishop, 2006). We employ a

flat prior on all possible graphs, and assume that the precision

parameter c is a constant, while the prior distribution of the b
parameters, denoted pðbjbÞ, is a zero mean isotropic Gaussian with

precision b, b � Nð0; b�1IÞ. Assuming an empirical Bayes approxi-

mation, we take point estimates b̂; ĉ of the hyper parameters, and

for a candidate graph G as its evaluation score we compute the mar-

ginal likelihood function pðYjS; b̂; ĉÞ, which involves integrating

over only the parameters b. The point estimates are obtained by

maximizing the marginal likelihood in an iterative procedure

described previously (Szczurek and Beerenwinkel, 2016). The mar-

ginal likelihood used in the Bayesian approach allows comparing

models with different number of nodes.

For BIC evaluation, we use least squares to solve the linear re-

gression problem [Equation (2)] for a given candidate graph G.
Equivalently, we estimate the parameters b̂ and ĉ that maximize the

likelihood pðYjS;b; cÞ [Equation (3)]. Due to the fact that cycles are

collapsed into single nodes, we need to assure that the evaluation

score does not favor larger models, with a larger number of parame-

ters. Each candidate graph is thus scored using the negative BIC,

2ln
�

pðYjS; b̂; ĉÞ
�
� logðmÞk;

where m is the number of experiments and k is the number of nodes

after collapsing. Notably, the BIC score is an approximation of the

marginal likelihood used in the Bayesian approach (Bishop, 2006).

Since its computation requires evaluation of the likelihood only once,

it is more time efficient than the iterative procedure required to com-

pute the marginal likelihood. Both scores are maximized in the search.

2.2 Parameter inference
For the Bayesian approach, we estimate the contributions b as the

mean of their posterior distribution inferred using the Bayesian pro-

cedure described previously (Szczurek and Beerenwinkel, 2016). For

the BIC approach, we use the least squares estimates.

In the case when more than one effect is measured in the experi-

ment (e.g. expression changes of many genes), the evaluation pro-

cedure can easily be extended to deal with multidimensional data

Y ¼ fY1; . . . ;YDg by assuming independence of the parameters for

the D different phenotype vectors Yd 2 Y. Each Yd is assumed to be

generated from a shared network structure but with a different con-

tribution vector, following the procedure of Szczurek and

Beerenwinkel (2016).

2.3 Enhanced model identifiability
Before proving identifiability conditions for LEMs, we show several

important properties for pairs of DAGs ðG1;G2Þ over the same set V

of nodes. Given such a pair and a positive integer k, we consider a

system Rk
ðG1 ;G2Þ of equations of the form

X
x2V

G1
X

vx ¼
X

x2V
G2
X

ux;

where X � V ranges over all subsets with at most k elements. Here

variables vx and ux have indices x ranging over genes.

If the set V has n elements, then a solution of the system of equa-

tions Rk
ðG1 ;G2Þ is a pair of vectors v;u 2 Rn that satisfies these equa-

tions. A solution v, u is said to be admissible if for all a 2 V; va 6¼ 0

and ua 6¼ 0. Let k � 1. We say that two DAGs G1;G2 are k-distin-

guishable if the system Rk
ðG1 ;G2Þ has no admissible solutions.

The reason for considering systems of equations Rk
ðG1 ;G2Þ is the

following. Consider two DAGs G1 and G2 over the same n-element

set of vertices and a perturbation matrix E that addresses at most k

element sets of genes being directly targeted by perturbation

i608 J.Tiuryn and E.Szczurek

Deleted Text: -
Deleted Text:  
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: l
Deleted Text: , (shortly BIC)
Deleted Text: (equation 
Deleted Text: (equation 
Deleted Text: u
Deleted Text: ayesian Information Criterion
Deleted Text: -
Deleted Text: for example,


experiments. In the case when two vectors b; c 2 Rn form an admis-

sible solution of Rk
ðG1 ;G2Þ, we have that SðE;G1Þb ¼ SðE;G2Þc, and the

LEMs ðG1; b; cÞ and ðG2; c; cÞ would not be distinguished by the

given data. This follows from the fact that LEMs assume that Y is

normal distributed around the mean given by the product of the de-

sign matrix and the contribution vector, and in this case it would be

the same for the two different models. Thus, for a shared parameter

c, these two models would obtain identical likelihood (3).

For the sake of space, all proofs of the results presented here are

moved to Supplementary Material. We have the following immediate

observation which is used throughout the proof of the main result.

Proposition 1. For a subset X � V, let KGX ¼ \a2XVGa . For each k, the sys-

tem Rk
ðG1 ;G2Þ is equivalent to the system that consists of all equations of

the form

X
x2KG1

X

vx ¼
X

x2KG2
X

ux;

where X � V ranges over all subsets with at most k elements.

Example 1. In contrast to the situation when the contributions are strict-

ly positive (and all DAGs are then 2-distinguishable, as it was proved for

previous LEMs), when we relax this assumption, we have to consider

perturbation experiments that target at most three element sets of genes.

The following example justifies this claim and the following theorem

states it in general. Consider the two DAGs G1;G2 on a six element set of

vertices V ¼ f1; 2; 3; 4; 5; 6g depicted in Figure 2. The system R2
ðG1 ;G2Þ has

6þ 6
2

� �
¼ 21 equations, where each equation corresponds to one per-

turbation experiment and includes variables perturbed in this experiment

(directly or via propagation in the pathway graph) with coefficient 1.

Substituting the following values into these equations, it is easy to verify

that it is a solution of the system R2
ðG1 ;G2Þ:

v1 ¼ v2 ¼ v5 ¼ v6 ¼ u1 ¼ u2 ¼ u5 ¼ u6 ¼ 1;
and v3 ¼ v4 ¼ u3 ¼ u4 ¼ �1:

(4)

Since all these values are non-zero, it is an admissible solution. In order

to distinguish these two DAGs, we need to consider perturbations of

three genes. Here we have VG1

5 \ VG1

6 \ VG1

1 ¼ f1g, but

VG2

5 \ VG2

6 \ VG2

1 ¼1. Hence, by Proposition 1, we conclude that every

solution has to satisfy v1 ¼ 0: Therefore it is not admissible.

Theorem 1. For every n � 1, any pair of two different DAGs on the

same n-element set of vertices is 3-distinguishable.

The reader may find it interesting that the above example is the smallest

possible. Namely it can be proved that for all n � 5, all DAGs over n-

vertex set of genes are 2-distinguishable.

Theorem 2. For every 5 � n � 1, any pair of two different DAGs on the

same n-element set of vertices is 2-distinguishable.

We need the following result on uniqueness of solutions.

Theorem 3. For every k � 1, for every finite DAG G having n vertices,

and for every perturbation matrix Eðk;nÞ, the design matrix S ¼
SðEðk;nÞ;GÞ has rank n. Therefore, if m ¼

Pk
i¼1

n
i

� �
, then for every vec-

tor c 2 Rm, the system of equations Sx ¼ c has at most one solution.

We previously showed that the originally introduced LEMs, which as-

sume all contributions b are strictly positive, are identifiable from data

measured under experiments Eð2;�Þ, i.e. with perturbations of all single

and all pairs of nodes (Szczurek and Beerenwinkel, 2016).

We say that a LEM M is identifiable from data Y if any other LEM M0

over the same set of vertices has a different likelihood, i.e. we have M 6¼
M0 iff LðMÞ 6¼ LðM0Þ.

Theorem 4. Every LEM is identifiable from data Y measured under per-

turbation experiments Eð3;�Þ. LEMs over less than 6 vertices are identifi-

able from data measured under perturbation experiments Eð2;�Þ.

Moreover, for identifiability of LEMs it is necessary to assume that the

underlying graphs are transitively closed and acyclic.

3 Sensitivity of enhanced LEMs to noise and
experimental setup

We previously demonstrated on simulated data that only extreme

levels of noise and for few experimental repeats are an issue for par-

ameter estimation and graph structure learning of original LEMs

(Szczurek and Beerenwinkel, 2016). There, the data were simulated

according to the assumption that the individual contributions of the

perturbed genes to the measured phenotype are strictly positive.

Here, we perform similar simulations for enhanced LEMs, but simu-

lating much more realistic, both positive and negative contributions.

The aim of this experiment is to show first, that despite the signifi-

cantly enlarged space for allowed parameter b values, the enhanced

LEMs can also be accurately inferred from data. Second, to compare

the performance of the two alternative approaches to parameter esti-

mation and graph scoring, Bayesian and BIC (Sections 2.1 and 2.2).

Finally, to motivate the new approach by demonstrating dramatical-

ly decreased performance of previous LEMs when both positive and

negative contributions are allowed.

To this end, we generated two test datasets. First, we generated

all 28 possible network structures G and their corresponding contri-

bution vectors b for LEMs over a set of three nodes {1, 2, 3}. These

networks include also graphs where there is a cycle involving two

nodes, and they are thus clumped into one node. Consequently, the

data simulated in this dataset allows testing whether structure learn-

ing in LEMs has the ability to detect cycles and to return graphs

with correctly collapsed nodes. To assess the variability of param-

eter estimates due to different values of b, for each graph we simu-

lated 50 different random b vectors. Each entry bg was drawn from

the Gamma distribution Cð10; 9Þ (with parameters shape equal 10

and rate equal 9), and multiplied by –1 or 1, each with probability

0.5. This assured that the simulated b contributions can be both

positive and negative, with most values close to 1 or �1 and not 0.

For all simulated models, we simulated five versions of the pheno-

type data vectors Y, each with a different level of noise

[r ¼
ffiffiffiffiffiffiffi
c�1
p

2 f0:01; 0:05;0:1;0:25; 0:5g, where r denotes standard

1 2

3 4

5 6

G1 

5 6

3 4

1 2

G2 

Fig. 2. An example pair of two DAGs that are not 2-distinguishable. The DAGs

G1 and G2 are transitive closures of the shown graphs (the transitive edges

are not drawn for clarity)
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deviation of error terms in Equation (2)], for five different experi-

mental setups, where the number of times each experiment was

repeated was equal 1; 2; 3;4 or 5. Note that simulating multidimen-

sional Y ¼ fY1; . . . ;YDg would not change the results of parameter

estimation, as different parameters are estimated for each Yd 2 Y.

The performance of structure learning is expected to increase, since

the different Yd are assumed to be generated from the same structure

and increasing D would increase the power of structure learning.

Hence, one-dimensional vector Y can be considered the worst case

scenario for structure learning. For the first dataset, we simulated

experiments Eð2;3Þ (with all possible experiments targeting up to two

from the three nodes in the graph), which by Theorem 4 allows

model identifiability in this case. This dataset was used to evaluate

the two enhanced LEM approaches and the previous LEMs per-

formance when model learning is performed using exhaustive

search, where all possible model structures can be evaluated.

Second, we simulated graphs and their contribution vectors for

sets of 10 nodes f1; . . . ; 10g. The graphs were sampled at random

using the network generation function from the nem R package as

follows: for each node, the number k of outgoing edges between 0

and the total number of nodes (here, 10) was chosen according to a

power law distribution with parameter c ¼ 2:5. We then selected k

nodes having at most 10 ingoing edges and connected the node to

them. Finally the graph was transitively closed. For each graph, we

simulated 50 corresponding b vectors with entries from the same

6Cð10; 9Þ distribution as in the first dataset. For such simulated

models, one-dimensional data Y was simulated using the same pro-

cedure as for the first dataset, with five different noise levels and five

different numbers of experimental repeats. Here, however, we simu-

lated experiments Eð3;10Þ (with all possible experiments targeting dir-

ectly up to three from the set of 10 nodes in the graph). By Theorem

4, this assured model identifiability from the data. The second data-

set was used to assess the performance of learning larger models,

which in LEM is performed using the heuristic of greedy search over

the large space of possible graphs (exhaustive search is computation-

ally intractable for graphs with 10 nodes). Greedy search was per-

formed with three random initializations in addition to the

initialization from an empty graph.

Figure 3 summarizes performance of the Bayesian approach of

enhanced LEMs to parameter estimation and network structure

learning on both datasets (using exhaustive and greedy structure

learning). When simulated LEMs with three nodes and reasonable

noise levels (r < 0:25) are inferred, the correlation between the esti-

mated and true b values is concentrated at 1 for almost all simulated

models, with just a few outliers with lower correlation. Larger noise

does not change the distribution of obtained correlations, but only

results in a larger number of outliers. Increasing the number of

repeated experiments reduces the number of outliers with low cor-

relation for all levels of noise (Fig. 3A). Both sensitivity (fraction of

edges present in the simulated network graph that are correctly iden-

tified as such; Fig. 3B) and specificity (fraction of absent edges that

are correctly identified as such; Fig. 3C) of exhaustive search are al-

most perfect already for one experimental repeat; with just a few

outliers for extreme noise levels. Again, the number of outliers with

lower sensitivity and specificity values decreases with more experi-

mental repeats. For large noise, sensitivity is a bit lower and is more

affected by repeat number than specificity. Compared to these

results, for simulated LEMs with 10 nodes and graph inference using

greedy search, the distribution of correlation between true to esti-

mated b values over simulations has more outliers with low correl-

ation. Still, the median of this distribution, even for very large noise

and low number of repeats, is close to 1 (Fig. 3D). Similarly, the dis-

tributions of sensitivity (Fig. 3E) and specificity (Fig. 3F) have more

outliers with lower values, but the medians remain close to 1.

Compared to the Bayesian approach, the BIC approach shows

similarly excellent performance of parameter estimation, as well as

sensitivity and specificity of graph learning, for both datasets

(Supplementary Fig. S2). Only a very detailed comparison would re-

veal that the distribution of sensitivity values for the exhaustive search

across three node graphs extends toward slightly lower values and has

more outliers with low values in the case of the BIC approach. The dif-

ference between the Bayesian and the BIC approaches, however,

becomes more apparent when fraction of perfectly learned simulated

graphs is compared, and becomes very important when the run time is

considered (Fig. 4). We define a graph to be learned perfectly, when

the set of inferred edges is identical to the set in the simulated graph.

Compared to the BIC approach, using exhaustive search on small

graphs, a larger fraction of graphs is learned perfectly with the

Bayesian approach (Fig. 4A and B). The advantage of the Bayesian ap-

proach is especially prominent for low numbers of experimental
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Fig. 3. Accurate parameter estimation and network structure learning for

enhanced LEMs using the Bayesian approach. (A–C) Performance for three-

node LEMs and exhaustive search in graph space. (A) Box plots summarizing

distribution (showing 25th, 50th and 75th percentiles: horizontal bars, and 1.5

interquartile ranges: vertical line ends) of the correlation between the true b

values used to simulate the data and the estimated values (y-axis) for increas-

ing number of experimental repeats (x-axis) and for increasing noise (colors).

The estimated b values are very close to the true ones for almost all simula-

tions, with only a few outliers. Both sensitivity (B) and specificity (C) of true

edge recovery are close to 1 for almost all simulated graphs, and are lowered

only for extreme noise values and for few experimental repeats. (D–F) The

same performance analysis as for 3-node LEMs in (A–C) but for 10-node

LEMs using greedy search in graph space. For larger graphs and greedy

search, the performance of parameter estimation decreases only slightly,

with median correlation remaining close to 1. Compared to exhaustive

search, the sensitivity and specificity of edge recovery in graphs is also only

slightly lowered, and has more outliers. The median values of both sensitivity

and specificity are close to 1
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repeats. The difference between the approaches is not apparent when

greedy search over larger graphs is performed (Fig. 4D and E). In this

case for both approaches and all experimental setups the fraction of

perfectly learned graphs is decreased compared to exhaustive search

over small graphs. Still, very high sensitivity and specificity results

visualized in Figure 3 demonstrate that the identified graphs are close

to the true simulated graphs, also for greedy search. Thus, overall, the

differences in performance between the Bayesian and the BIC

approaches are due to the BIC approach more often missing or insert-

ing only a small number of edges.

The run time comparison, on the other hand, shows a huge advan-

tage of the BIC approach (Fig. 4G and H). To compare the run times,

we simulated data for and inferred 50 random LEMs with 3 nodes,

and 50 random LEMs with 10 nodes. The median CPU time used for

exhaustive search over the small models with the Bayesian approach is

1.5 CPU seconds and is 15.4 times longer than the median time

(0.0985 s) used when the BIC approach is applied (Fig. 4G). For

greedy search (with one initialization from empty graph) and the

Bayesian approach, the median CPU time is 28.612s and is 6.4 times

longer than the median 4.466s of CPU time needed for the BIC ap-

proach (Fig. 4H). In summary, the two approaches perform similarly

well in terms of parameter estimation and structure learning, with

slight advantage of the Bayesian approach, but their run times largely

differ, with the advantage of the BIC approach.

Finally, we assessed the performance of previous LEMs

(Szczurek and Beerenwinkel, 2016) using exhaustive search over 3-

node graphs and greedy search over 10-node graphs, on the two

simulated datasets, respectively (Supplementary Fig. S3).

Importantly, both datasets were generated allowing both positive

and negative values of the parameters corresponding to the gene

contributions to the phenotype, which is against the assumptions of

the previous version of LEMs. Previous LEMs assumed that these

values are strictly positive and that they can be interpreted as

absolute magnitudes of the contributions instead of their actual val-

ues. Consequently, given the simulated data vectors Y, which con-

tained both positive and negative entries, we first transformed them

into their absolute values jYj prior to application of previous LEMs.

Compared to excellent results of enhanced LEMs on this data, the

previous LEMs perform poorly (Supplementary Fig. S3). As can be

expected, with wrong assumption about the parameter values, par-

ameter estimation using previous LEMs fails, with median correl-

ation between the true and the estimated contribution values equal 0

(Supplementary Fig. S3A and D). The performance of structure

learning is also poorer than that of the enhanced LEMs, with the

greedy search performing worse than exhaustive search. When ex-

haustive search over three-node graphs is applied, median sensitiv-

ities are close to 1 for lower values of noise (r � 0:1;Supplementary

Fig. S3B). The specificity, however, is considerably lower than

obtained by enhanced LEMs, regardless of noise and experimental

repeat values (Supplementary Fig. S3C). The fraction of three-node

graphs learned perfect by previous LEMs from this data is much

lower than obtained when enhanced LEMs were applied (Fig. 4C).

Compared to these results, when greedy search over 10-node net-

works is performed, sensitivity drops drastically (Supplementary

Fig. S3E), while specificity increases (Supplementary Fig. S3F), indi-

cating that for previous LEMs the greedy search identifies structures

with too few edges. Consequently, the fraction of structures learned

perfect drops down to zero (Fig. 4F). These results indicate very

clearly the need for introduction of enhanced LEMs when more real-

istic data are to be modeled accurately.

4 Application to infection network inference from
siRNA screening data

To demonstrate the performance of enhanced LEMs on real data,

we utilized on- and off-targets of siRNA interventions as

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5

# repeated experiments

sigma 0.01 0.05 0.1 0.25 0.5

M
L

B
ay

es

0

10

20

30

40

50

60

C
P

U
 s

ec

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5

# repeated experiments

p

sigma 0.01 0.05 0.1 0.25 0.5

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5

# repeated experiments

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5

# repeated experiments

sigma 0.01 0.05 0.1 0.25 0.5

A B G Bayesian approach BIC approach 
G

re
ed

y 
se

ar
ch

 
Ex

ha
us

tiv
e 

se
ar

ch
 

C 

sigma 0.01 0.05 0.1 0.25 0.5

 
 

M
L

B
ay

es

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

C
P

U
 s

ec

Previous LEM 

 

BI
C

 
BI

C
 

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5

# repeated experiments

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5

# repeated experiments

HD E F

Fig. 4. Comparison of the Bayesian and the BIC approaches of enhanced LEMs, and the previous LEMs. Fraction of simulated three-node graphs that were recov-

ered perfectly (with no missing and no added edges) using exhaustive search and the Bayesian (A) approach of enhanced LEMs is larger than when the BIC ap-

proach (B) was applied, especially for low number of experimental repeats (x-axis) and large noise (marked with colors). Fraction of simulated 10-node graphs

that were recovered perfectly using greedy search and the Bayesian (D) approach is similar to the fraction when the BIC approach (E) was applied. The fraction of

both 3-node graphs (C) and the 10-node graphs (F) that were perfectly recovered from the same data using previous LEMs is significantly lower than for the

enhanced LEMs. Both the run time in CPU sec (y-axis) of 3-node model inference using exhaustive search across 50 simulations (G) and the run time of 10-node

enhanced LEM inference using greedy search (H) is much larger for the Bayesian approach, compared to the BIC approach
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combinatorial perturbations. We analyzed siRNA kinome screen by

Ramo et al. (2014) carried out in the HeLa ATCC-CCL-2 cell line

using Qiagen (Human Kinase siRNA Set V4.1) reagents, with four

different siRNAs per on-target gene. The measured phenotype was

infectivity of the cells with the pathogen B. henselae, corresponding

to a rate of infection per well, derived from image features collected

under the experiments (Ramo et al., 2014). Before modeling, we

removed readouts from control and bad quality wells and filtered

out siRNAs which target essential genes (cell killers). Next, the data

were normalized using the B-scoring algorithm (Brideau et al.,

2003) in order to remove systematic within-plate effects. At the final

preprocessing step, the data were Z-scored to eliminate experimen-

tally introduced cross-plate biases. Prediction of off-targets of the

siRNAs on all genes was performed using TargetScan (Lewis et al.,

2005).

In any siRNA experiment, the measured phenotype can be

assumed to be a combination of contributions of all perturbed genes,

i.e. also all remaining genes outside of the network. Therefore to be

able to apply LEMs to infer a signaling network of interest (here the

infection network), the phenotype needs to be corrected by remov-

ing the contributions from the remaining genes. To this end, we used

the Lasso (Tibshirani, 1994) to estimate contributions of all genes to

the phenotype measured in all experiments, assuming the genes were

independent (not connected in any network). Since only the infec-

tion network was stimulated in the study (Ramo et al., 2014), this

assumption is valid for all remaining genes outside of the infection

network. Next, the phenotype was corrected by subtracting the esti-

mated contributions of those remaining genes which were perturbed

in each experiment. Formally, this procedure is motivated in

Supplementary Material. We next constructed the experiments ma-

trix to contain only eight columns, corresponding to the same eight

genes in the B. henselae infection network studied by Srivatsa et al.

(2018), and 44 000 rows, corresponding to such siRNAs that either

on- or off-targeted any of the eight genes. Note our approach to con-

stricting the experiments matrix is different from Srivatsa et al.

(2018), who used only data from 35 experiments corresponding to

siRNAs on-targeting the genes in the network, and is intended to in-

crease the power of our analysis. Finally, we applied enhanced

LEMs using greedy search with 100 random initializations (in add-

ition to the initialization from an empty graph) using Bayesian and

BIC approaches to infer interactions in the infection network from

the corrected phenotype (Fig. 5A and B). Using the Bayesian ap-

proach, the algorithm identified a network containing a cycle involv-

ing CDC42, RAC1, and TLN1, with the connection between

CDC42 and RAC1 known to be involved in the regulation of actin

cytoskeleton (Verma and Ihler, 2002) (Fig. 5A). Transitive closure

results in a clique connecting all of these genes together, which is

collapsed into a single node. Out of eight identified internode inter-

actions, seven found support in the literature. Interactions between

Paxillin (PXN) and talin1 (TLN1) and between Paxillin (PXN) and

vinculin (VCL) were assigned high evidence scores in the curated

network of integrin anhesome (Horton et al., 2015). Interaction be-

tween focal adhesion kinase (FAK) and Cdc42 were determined to

play a role in the context of cellular motility by several studies (Ito

et al., 1982; Zhang et al., 2004; Zhao and Guan, 2011). Src-

dependent activation of Rac1 was studied in the context of glioma

tumorigenesis (Feng et al., 2011). The recovered interaction between

FAK and integrin b1 (ITGB1) is known to be active in adhesion sig-

naling (Huveneers and Danen, 2009). The identified network con-

tains also the established interaction FAK– Src (Mitra et al., 2005).

In addition to the previously established interactions, our model

contains a novel one, VCL ! ITGB1, constituting a novel hypoth-

esis about the mechanisms of B. henselae infection.

Enhanced LEMs using the BIC approach identified a network

that is similar to the network found using the Bayesian approach,

but more cyclic (Fig. 5B). The network has two disjoint cycles,

which were collapsed into two unconnected clique nodes due to

transitive closure. One cycle contains ITGB1 and FAK, which are

known to interact in adhesion signaling (Huveneers and Danen,

2009). An edge between FAK and ITGB1 was also found using the

Bayesian approach. The second cycle contains all remaining genes of

the B. henselae infection pathway. This cycle contains the smaller

cycle containing CDC42, RAC1 and TLN1, suggested also by the

Bayesian approach. In addition, BIC placed in this cycle also VCL

and PXN, which are known to interact with each other. Finally, the

previous LEM model applied to the same data found a structure also

containing two cycles, but containing different subsets of genes. To

be able to apply previous LEMs, we transformed the infectivity

phenotype Y, which had both negative and positive values, to its ab-

solute value jYj. Since the Bayesian approach had a slightly better

performance in our simulation study (Section 3), and much better

performance than previous LEMs, we consider the model found
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Fig. 5. Structure and parameters of the B. henselae infection network inferred using LEMs from the siRNA screen data of Ramo et al. (2014). Nodes are labeled

with gene names of the network members. The nodes labeled by several gene names represent cliques involving these genes. The color of bold edges indicates

support found in the literature. The dashed edges represent the individual contributions of the network nodes to the infectivity phenotype, and are labeled by

their values, scaled by 103. (A) Enhanced LEM model learned from this data using the Bayesian approach. (B) Enhanced LEM model learned using the BIC ap-

proach. (C) Previous LEM model learned from this data
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using the Bayesian approach (Fig. 5A) most likely to be the closest

to the true biological network.

In contrast to other effects models, LEM infers the contributions

each signaling node has to the measured phenotype upon its perturb-

ation. Additionally, in contrast to the previous LEMs, the enhanced

LEMs account for the positive or negative direction of these contri-

butions. In application to the B. henselae network, using both the

Bayesian and the BIC approaches, the enhanced LEMs estimated the

individual contributions of FAK and ITGB1 to infectivity are strong-

ly negative and most significant among the genes in this network.

This indicates that FAK and ITGB1 play the most important roles

for successful infection by the pathogen, in agreement with previous

findings (Truttmann et al., 2011).

5 Discussion and conclusions

This paper contributes two main results. First, it introduces an import-

ant extension to the previously proposed LEMs. By allowing both

negative and positive contributions of the network members to the

measured phenotype, model assumptions are much closer to reality

than in the original model formulation. The enhanced model expresses

how network members jointly regulate the downstream effects, where

some of the members may up- and others may down-regulate these

effects. Thus, using the enhanced LEMs, we can now both learn the

graph representing the network structure, and a more involved repre-

sentation of the regulatory layer than before. Second, the paper brings

a proof of identifiability of enhanced LEMs from combinatorial

experiments where single, pairs, and triplets of network nodes are per-

formed. For small enhanced LEMs, with up to five nodes, we show

identifiability with perturbations of only up to two nodes.

We meant here that the comparison of the way the regulatory

layer is modeled in NEMs (Markowetz et al., 2005), original LEMs

(Szczurek and Beerenwinkel, 2016) and the here introduced

enhanced LEMs reveals that the models become increasingly expres-

sive. The binary information of whether a certain effect is regulated

by a certain single network gene or not, modeled in NEMs, was

replaced by modeling the effects as linear combinations of positive

contributions from all network genes in LEMs, with which the cur-

rent model can be any real values but not zero. Increase in expres-

siveness, however, clearly comes with a price of larger data required

for model learning. While NEMs are inferred from only perturba-

tions of all single network nodes, LEMs already require combinator-

ial perturbation data of single and double nodes. Enhanced LEMs

with more than five nodes need not only single and double, but also

triple perturbations. We anticipate that such combinatorial experi-

ments will become increasingly available. Technological advances in

automated RNAi screening (Lambeth et al., 2010) make such com-

binatorial experimental regimes more and more efficient. As our

and others (Srivatsa et al., 2018), examples of successful inference of

interactions in the B. henselae infection network from siRNA screen-

ing data suggest, also the off-target perturbations can be utilized as a

rich source of combinatorial interventions on signaling networks.

This approach, however, depends on the ability to accurately predict

the off-targets, which can be very challenging. Currently, our model

does not account for false positive and false negative predictions.

Finally, it considers only binary perturbation states and is not ap-

plicable to pooled siRNA reagents. Taking account of the prediction

errors as well as strength of the perturbations would be a valuable

extension of the approach.

Although enhanced, the LEMs introduced in this paper still have

several limitations. First, LEM assumes that all network members

have nonzero contribution to the observed downstream phenotypes,

which is biologically less likely especially for the kinases high up in

the signaling cascade, or the signaling receptors, corresponding to

the roots of the network graph. Second, LEM is applicable only to

small networks. Efficiency of the greedy model search procedure

could be improved by maintenance of tabu lists and avoiding recent-

ly visited neighbors, as well as storage of only the minimum neces-

sary information about the neighbors. Third, the requirement of

combinatorial perturbations being available for all triplets of genes

in the network is a limiting factor in the applicability of LEM to

larger networks. One way to deal with this problem is to explore the

equivalence classes of LEMs, which could be obtained when fewer

combinations of perturbations would be available, and allow the

method to return more than one equally scoring network. Another

way, as proposed in this work, is to take advantage of the combina-

torial perturbations resulting from multiple off-targets of siRNAs.

Still, even with these limitations, the enhanced LEMs do bring sig-

nificantly improved expressiveness of the model in comparison not

only to the original LEM, but also to other methods. With the

proved identifiability requirements, it is clear which experiments

need to be done to be able to reliably, and, as we show in simula-

tions and in application to infection network recovery from siRNA

screening data, accurately infer both network structure and the regu-

latory layer from the phenotypes measured downstream.
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