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Modulation of nociception allows animals to optimize chances of survival by
adapting their behaviour in different contexts. In mammals, this is executed
by neurons from the brain and is referred to as the descending control of
nociception. Whether insects have such control, or the neural circuits allow-
ing it, has rarely been explored. Based on behavioural, neuroscientific and
molecular evidence, we argue that insects probably have descending con-
trols for nociception. Behavioural work shows that insects can modulate
nocifensive behaviour. Such modulation is at least in part controlled by
the central nervous system since the information mediating such prioritiza-
tion is processed by the brain. Central nervous system control of nociception
is further supported by neuroanatomical and neurobiological evidence
showing that the insect brain can facilitate or suppress nocifensive behav-
iour, and by molecular studies revealing pathways involved in the
inhibition of nocifensive behaviour both peripherally and centrally. Insects
lack the endogenous opioid peptides and their receptors that contribute to
mammalian descending nociception controls, so we discuss likely alternative
molecular mechanisms for the insect descending nociception controls. We
discuss what the existence of descending control of nociception in insects
may reveal about pain perception in insects and finally consider the ethical
implications of these novel findings.
1. Descending control of nociception
Nociception is the detection of potentially or actually damaging stimuli, which is
mediatedbyspecialized receptors: nociceptors [1].Nociceptioncanbeaccompanied
by the feeling of pain, which is a negative subjective experience generated by the
brain [2,3]. Nociception and/or pain can be inhibited or facilitated (modulated)
by descending neurons from the brain (including the brainstem in vertebrates)
called ‘the descending pain controls’ [4,5]. There are distinctive mechanisms
behind modulation of nociception and modulation of pain, and recent studies
have uncovered that certain contexts or stimuli can modulate pain report while
keeping nociceptive reflexes unchanged [6–8], and vice versa, where nociceptive
reflexes are modulated but pain report is unchanged [9]. Therefore, in animals
where the distinction of pain and nociception has not yet been explored experimen-
tally, it has been suggested we refer to descending control of pain as ‘descending
control of nociception’ [10]. We will adopt this terminology in this review.

The descending control of nociception has an important adaptive function,
allowing the adjustment of behaviour to different contexts to prioritize survival
[4]. For example, if an animal is injured during a fight, the dampening of their
nociceptive processing may increase the animal’s fighting performance by
ensuring they do not waste time or energy on responding to the injury. Like-
wise, when the animal has returned to safety, the descending controls can
facilitate nociceptive processing, encouraging the animal to protect the injured
location so that its healing is promoted. These arguments would make adaptive
sense in any animal. Surprisingly, however, in the most speciose animal class,
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the insects, that are already known to have descending path-
ways for non-nociceptive behaviours (e.g. locomotion [11,12]
and sexual behaviour [13,14]), such descending pain controls
have been little investigated [15,16].

Nociception, and nociceptive behaviour, are well docu-
mented in insects [17,18]. Further, insect nociceptive
processing can be modulated (e.g. [15,16]). For example, the
tobacco hornworm (Manduca sexta) shows a defensive
nociceptive behaviour in response to a noxious pinch, per-
forming a rapid bending response toward the pinch site
(figure 1), and this response can be sensitized by tissue
damage [19,20]. However, the specific mechanisms and path-
ways of modulation of nociception in insects have only been
partially uncovered, and it is not fully established whether
the modulation involves the brain. In this review, we suggest
that insects have descending modulation of nociception,
based on behavioural and anatomical evidence.
Figure 1. The defensive strike response and the nervous system of the tobacco
hornworm (the larva of the tobacco hawkmoth Manduca sexta). This caterpillar
shows a rapid bending response toward the site of the pinching stimulation on
the terminal segment of the abdomen (source of the stimulation). The success
of attackers such as birds that bite caterpillars can be reduced by the high
velocity and precise targeting of the strike. This defensive strike response is
faster and larger after repeated noxious stimulation and results in nociceptive
sensitization [19]. Adapted from [19]. (Online version in colour.)
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2. Modulation of nociceptive responses by neural
mechanisms outside the brain in insects

All insects exhibit nocifensive actions, a class of behaviours
that occur in response to noxious stimuli and have the pur-
pose of reducing exposure to the stimulus. An example of a
nocifensive behaviour in fruit flies (Drosophila melanogaster)
is the moving away from a floor heated to 46°C (e.g. [18]).
Nociceptive sensitization occurs when the intensity of
normal nocifensive behaviour is increased, or the threshold
for the induction of the nocifensive behaviour is lowered
[16]. In mammals, this sensitization can occur through mol-
ecular mechanisms at the site of damage [21] from
activation of facilitatory projection neurons in the rostral ven-
tral medulla [22], or in the dorsal horn in the spinal cord [23].
These mechanisms ultimately increase the nociceptive
neurons’ responsiveness to noxious stimuli.

Insects are capable of nociceptive sensitization, although
the effect of descending control on this sensitization is
unknown. For example, in larvalManduca sexta, the defensive
strike response to a noxious stimulus is faster and greater after
repeated noxious stimulation [19] (figure 1). Similarly, in fruit
flies, injury of epidermal cells by ultraviolet light increases the
speed of the flies’withdrawal response from both sub-noxious
and noxiously heated thermal stimuli [24,25]. Some of the
molecular mechanisms underlying the sensitization of
nociception in insects have been revealed. Peripheral mechan-
isms involve some of the same molecules responsible for
human nociceptive sensitization. In fruit flies, like humans,
signalling molecules including Hedgehog, tachykinin and
tumour necrosis factor are involved in the sensitization of
the nociceptors [21,25,26]. Also similarly to humans, central
mechanisms have been suggested; e.g. in larval Manduca
sexta, sensitization of the defensive strike response is associ-
ated with a reduction in firing threshold of the central
connective nerve and can be blocked using N-methyl-D-
aspartate receptor and hyperpolarization-activated, cyclic
nucleotide-gated antagonists [20]. Further, in fruit flies, a
loss of GABA inhibition in the ventral nerve cord causes
nociceptive sensitization [24]. However, whether the brain is
involved in sensitization in these studies remains unknown.

Inhibition, as opposed to sensitization, of nociceptive
responses in insects has gained less attention. However, there
is behavioural evidence of reductions in normal nocifensive
behaviour in insects in certain situations. For instance, female
mantids will consume the male during copulation, and the
male appears to suppress his normal nocifensive behaviour
to allow this [27]. This is probably because the male has
fitness benefits from being consumed, as sacrificing his body
as nutrition for the female increases the number, size and survi-
vorship of the offspring [27]. Another example of inhibition of
nocifensive behaviour in insects is how, in some cases, insects
have been noted to act visibly ‘normal’ after injury, by continu-
ing to feedornot altering their behaviour [28]. This evidencehas
been suggested to indicate the absence of pain in insects [29,30];
however, it is more likely that it demonstrates that insects can
prioritize other behavioural needs and reduce the nocifensive
behaviour in certain contexts [31].

The mechanisms behind inhibition of nociceptive
responses are poorly understood in most insects. In fruit
flies, there are second-order interneurons in the ventral
nerve cord that are activated by nociceptors and integrate
different sensory stimuli [32], as well as triggering nocifen-
sive rolling behaviour in fruit fly larvae [33–35]. Two types
of these interneurons, Basin-4 and A08n, are involved in the
inhibition of nociceptive signalling in fruit fly larvae, via an
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Figure 2. Nocifensive response to noxious stimulus and possible molecular pathways for inhibition of nociception in larval Drosophila melanogaster. (a) Nocifensive
rolling: a corkscrew-like rolling response to noxious temperature that acts as a protective escape behaviour [17]. (b) Putative molecular pathway for inhibition of
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and SONs. (Online version in colour.)
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inhibitory feedback loop with serotoninergic neurons
(figure 2b) [34]. Basin-4 and A08n also activate neurons
expressing the neuropeptide leucokinin in the abdominal
ganglion of the fruit fly larva, which are required for
escape behaviour from noxious stimuli [33], and these neur-
ons express the serotonin receptor 5-HT1B [36]. This suggests
that serotonin may also be able to inhibit nociceptive proces-
sing via leucokinin neuron signalling. Another mechanism of
inhibition of nociception that has been uncovered is GABA-
ergic neurons, which inhibit the activity of these abdominal
ganglion leucokinin neurons [33]. These findings demon-
strate that inhibition of nociception in insects is possible via
molecular pathways (figure 2b). These peripheral and ventral
nerve cord pathways may contribute highly to modulation of
nociception in insects, but, on their own, they are unable to
explain how stimuli that are processed in the brain (e.g. appe-
titive stimuli) are able to inhibit nociception, and how this
inhibition could occur via descending controls from the brain.
3. Descending nociception controls in insects?
Modulation of nociception in insects has been demonstrated
behaviourally, and some of the molecular mechanisms under-
lying this have been identified (see above). In this section, we
explore whether the modulation of nociception in insects can
be activated by the brain, via descending controls. To explore
this possibility, it is useful to contemplate how this pathway
works in organisms better studied in this regard. In mam-
mals, nociceptors transmit the information to the dorsal
horn of the spinal cord, and the signal is then sent to the
brain via ascending projection neurons [37] (figure 3). The
periaqueductal gray in the midbrain receives nociceptive
inputs, as well as inputs from cortical brain areas involved
in pain processing, and transmits the signal to the rostral
ventromedial medulla (RVM) [38]. The RVM projects to the
dorsal horn and has distinct cell types which descend to
the spinal cord and can inhibit or facilitate nociception [38].

Behavioural evidence suggesting the brain is involved in
modulation of nociception exists in the American cockroach
(Periplaneta americana), where the threshold required for noci-
fensive escape behaviour is increased after being stung in the
suboesophageal ganglion in the brain by the parasitic jewel
wasp (Ampulex compressa) [39–41]. This indicates that the
insect brain can modulate nocifensive behaviour. Further
support comes from the observation that nocifensive behav-
iour can be inhibited by stimuli processed in the brain, or
by memories of such stimuli. For example, the taste of
sugar processed in the fruit fly brain [42], and attraction to
an odour that was previously associated with sugar sup-
presses normal avoidance of noxious stimuli in fruit flies
[43]. Further, in bumblebees, the attraction to a sugar solution
also suppresses normal avoidance of a noxious stimulus, but
this can change depending on the context, specifically
whether there is more concentrated sugar solution available
elsewhere [44]. Since olfaction and gustation are processed
in the insect brain, the effect of these on nociceptive behav-
iour should be mediated by descending neurons. Similarly,
the processing of food-deprivation in the brain reduces the
nocifensive jump response to noxious heat in fruit flies [45];
this apparently relies on the brain, as the same reduction is
not observed in decapitated flies (although basic nociception
is maintained) [45]. Taken together, behavioural evidence
suggests that the insect brain can exert descending control
over nociceptive processing.

Anatomical evidence also supports the existence of insect
descending nociception controls. Studies have identified
neurons that descend from the brain to the nerve cord and
are involved in insect nociception. For example, in Drosophila
larvae, axons descend from the brain to the Basin and Goro
neurons, which mediate the nocifensive rolling response (a
corkscrew-like roll in response to noxious stimuli [17,35])
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(figure 2). In adult Drosophila, some neurons that connect
the brain and ventral nerve cord express the protein
‘Straightjacket’, a calcium channel that mediates nociceptive
hypersensitivity [24,46].
4. Characteristics of the putative insect
descending nociception controls

Given the evidence discussed above, it is plausible that
insects have descending nociception controls to modulate
their nocifensive behaviour in certain contexts. Here, we dis-
cuss the putative chemical and anatomical characteristics of
these controls. In mammals, many neurotransmitters and
neuropeptides are involved in descending modulation of
nociception, some having facilitatory roles, some inhibitory,
and some both [47]. Opioid peptides are important for inhibi-
tory descending modulation [38], so it has been suggested
that insects’ descending controls might also involve opioid
signalling [48]. However, genomic studies have determined
that insects do not have genes that code for opioid receptors
or peptides [49–52]. Thus, it is more likely that another neuro-
peptide or neurotransmitter functions as the signalling
molecule for the putative insect descending nociception
controls. GABA is involved in mammalian descending
modulation of nociception [53], and in fruit flies, it was
found that a GABA agonist reduces nocifensive behaviour
[54]. Another possibility is neuropeptide F, the insect homo-
log of the mammalian neuropeptide Y, that is involved in
descending modulation of nociception [55]. Neuropeptide F
suppresses nocifensive behaviour in fruit fly larvae through
action on the nociceptor TRPA [56,57], however, this effect
does not appear to generalize to honeybees [58]. Further,
the peptide hormone cholecystokinin is involved in descend-
ing facilitation of nociception in mammals [59], and its insect
orthologue Drosulfakinin is involved in stress-induced
avoidance behaviours, but its effects on nociception and
modulation of nociception in insects are unknown [60]. The
neuropeptide somatostatin is also involved in modulation
of nociception in mammals [61], and its insect orthologue,
allatostatin-C, mediates modulation of nociception in insects
[62]. Another candidate is leucokinin, a neuropeptide with
many functions in insects, including the modulation of noci-
fensive behaviour (figure 4) [33,63]. There are leucokinin
neurons that descend from the suboesophageal ganglia to
the ventral nerve cord [33,64]. Importantly, these neurons
are able to suppress nocifensive behaviour [33,45,63]. Specifi-
cally, they are required for the reduction of nocifensive
behaviour in hungry fruit flies [45]. This is interesting
because, as mentioned earlier, the jewel wasp modulates the
American cockroach’s nocifensive behaviour by stinging in
the suboesophageal ganglia [39–41]. Since taste is also rep-
resented in the suboesophageal ganglia in insects [42,65,66],
integration of competing stimuli may occur here. Leucokinin
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neurons may, therefore, project from the suboesophageal
ganglion to modulate nociceptive behaviour according to cer-
tain contexts or stimuli. It is important to consider, however,
that leucokinin is heavily involved in feeding regulation in
insects [63], so this pathway may only explain modulation
of nociception by hunger, and not other possible modulating
stimuli such as stress. It is also worth noting that neurons in
the fan-shaped body are likely involved in this pathway, as
they are required for nociceptive avoidance [67], but how
these neurons connect to other areas, neuron types and the
nerve cord to elicit avoidance is unknown so far.

Other than the molecules discussed above, serotonin,
noradrenaline (or octopamine in insects), neurotensin,
tachykinins and glutamate are involved in mammalian des-
cending modulation [68–72] but, in insects, either appear to
have different or no effects on modulation of nociception
[20,73–77]. There is probably more than one molecule
involved in the putative insect descending controls of noci-
ception, and some of them may be different from the
molecules we have mentioned here.
5. The significance of insect descending
nociception controls

The presence of descending nociception controls in insects is
important and interesting for many areas of insect and
human neuroscience. The descending control of nociception
in humans can also affect pain perception, so it is conceivable
that a form of pain perception exists in insects, and can be
similarly modulated. This is certainly the accepted argument
for mammals such as mice, where a reduction in nociceptive
behaviour is accepted as equalling a reduction in pain (e.g.
[78]). In insects, however, this argument is not widely
acknowledged. This, perhaps, is because insect behaviour
has often been viewed as governed largely by instinct, a
view which is no longer tenable given what we now know
about advanced cognition and emotion-like states in insects
[79]. Nonetheless, insect behaviour toward injuries has been
likened to robots [80] and various scholars have denied the
existence of pain in insects [28,30,80].

The presence of descending controls makes it at least
plausible that insects have painful experiences. Mammalian
researchers quantify pain through measuring non-reflexive,
complex and long-lasting changes to the animal’s natural
behaviour, which are likely mediated by descending controls
[81]. For example, in rodents, reduced feeding [82], locomotion
[82] and burrowing [83] behaviours are used as pain indi-
cators. Thus, the examples of insects performing these
kinds of behaviours, such as the ones discussed earlier, may
support the idea of pain in insects. For example, insects
show reduced attraction to appetitive stimuli if they have to
also experience nociceptive stimuli [43,44]. Further, recent
evidence demonstrating sentience-linked cognitive abilities
in some insects supports this idea, as well as studies indicating
pain perception in other invertebrates (e.g. [84–86]).



royalsocietypublishing.org/journa

6
This is important morally, as insects are often subjected to
potentially painful stimuli in research and farming [87]. The
possibility of pain sensations in insects is also an important
consideration for modelling human pain disorders. The
fruit fly Drosophila melanogaster is currently used as a model
organism for human pain research, because of similarities
in the genetics and behavioural responses to human nocicep-
tion [88]. The abnormal and persistent pain states in humans
seem to occur due to dysfunction of descending pain controls
[38], so, if insects have descending nociception controls, they
could potentially be viable models for human pain disorders.
l/rspb
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6. Conclusion
We have argued that insects have descending nociception
controls similar to what is observed in vertebrates, based on
behavioural, molecular and anatomical evidence. Behaviour-
ally, changes to the insect brain can change their nocifensive
behaviour, whether this change is physical manipulation
(e.g. [36]) or the processing of motivational stimuli [43,45].
At a molecular level, insects have molecular pathways that
can inhibit nocifensive behaviour, peripherally and centrally.
Anatomically, insects have descending neuronal projections
from the brain to the ventral nerve cord, where nocifensive
behaviour is executed. Future research should aim to further
characterise modulation of nocifensive behaviour, and
whether this is associated with pain in insects, to clarify
whether we should be affording ethical protection to insects
in potentially harm-inducing settings, such as farming and
research. Further, elucidation of the neuronal and molecular
pathways of descending control of nociception in insects
may lead to the use of insects as a model organism for
human pain conditions involving dysfunction of descending
control.
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