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Abstract 

Background:  It often takes more than 10 years and costs more than 1 billion dollars to develop a new drug for a par-
ticular disease and bring it to the market. Drug repositioning can significantly reduce costs and time in drug develop-
ment. Recently, computational drug repositioning attracted a considerable amount of attention among researchers, 
and a plethora of computational drug repositioning methods have been proposed. This methodology has widely 
been used in order to address various medical challenges, including cancer treatment. The most common cancers are 
lung and breast cancers. Thus, suggesting FDA-approved drugs via drug repositioning for breast cancer would help us 
to circumvent the approval process and subsequently save money as well as time.

Methods:  In this study, we propose a novel network-based method, named RepCOOL, for drug repositioning. Rep-
COOL integrates various heterogeneous biological networks to suggest new drug candidates for a given disease.

Results:  The proposed method showed a promising performance on benchmark datasets via rigorous cross-valida-
tion. The final drug repositioning model has been built based on a random forest classifier after examining various 
machine learning algorithms. Finally, in a case study, four FDA approved drugs were suggested for breast cancer stage 
II.

Conclusion:  Results show the potency of the proposed method in detecting true drug-disease relationships. 
RepCOOL suggested four new drugs for breast cancer stage II namely Doxorubicin, Paclitaxel, Trastuzumab, and 
Tamoxifen.

Keywords:  Drug repositioning, Drug-diseases interaction, Biological network, Network integration, Machine learning, 
Breast cancer
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Background
Drug research and development is a complicated, 
time-consuming, and incredibly expensive pro-
cess. Previous research reported that it often takes 
10–15  years and approximately 1–3 billion dollars to 
develop a new drug and place it on the market [1–3]. 

Although such a huge amount of time and money is 
expending in this industry, the number of new Food 
and Drug Administration (FDA)-approved drugs 
reported annually remains low. So, in consideration of 
these challenges, discovering a new use for an existing 
drug, known as drug repositioning or drug repurpos-
ing, has been proposed as a solution for such a prob-
lem. The goal of drug repositioning is to identify new 
indications for drugs currently available in the market. 
Using such approaches can reduce the overall cost of 
commercialization and also bridge the gap between 
drug discovery and availability. In comparison to the 
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traditional drug repositioning, which relies on clinical 
discoveries, computational drug repositioning meth-
ods can reduce the drug development timeline [4–6].

In recent years, different approaches are adopted 
for repurposing drugs, including network-based, text 
mining, machine learning, semantic inference-based 
methods. Recently, the network-based approach has 
attracted more attention and is widely used in com-
putational drug repositioning due to the capability 
of using ever-increasing large-scale biological data-
sets such as genetic, pharmacogenomics, clinical and 
chemical data [7–10].

Networks are widely used in biology to comprehend 
and analyze the various connections in biological sys-
tems like protein–protein, gene–gene, and drug–target 
interactions. In such networks, nodes are representa-
tive of biological entities such as genes and proteins, 
while edges represent interactions between these 
components [11]. A variety of relationships can be 
introduced in a particular network at the same time. 
Moreover, quantitative information (weights) can be 
assigned to edges and nodes as well. Network-based 
drug repositioning methods can be divided into three 
classes regarding their main sources of biological data: 
(1) gene regulatory networks, (2) metabolic networks, 
and (3) drug interaction networks. Furthermore, a 
fourth category can be added to the above-mentioned 
classes, known as integrated approaches in which their 
data are provided simultaneously from multiple data 
sources. In gene regulatory networks, information 
about molecular perturbations, which occur because 
of drug administration or disease, can be captured via 
expression data. Metabolic networks give a different 
perspective. Nodes and edges in metabolic networks 
are representatives of the compounds and the metabo-
lites. Drug–target interaction (DTI)-based prediction 
is one of the common repositioning methodologies. 
Indeed, many drugs frequently show additional targets 
than designed ones. For this reason, unintended novel 
usages can be shown through an effective and accurate 
prediction of drug targets. In addition to the previous 
strategies, there are other repositioning approaches 
based on several molecular networks. However, they 
show limited applicability [11–13].

In this study, we have proposed a network-based 
method for drug repositioning. Our method, Rep-
COOL, integrates various heterogeneous biological 
networks to obtain new drug-disease associations. The 
proposed method showed satisfactory performance 
in detecting drug-disease associations via stringent 
assessment procedures. Eventually, four new drugs 
were suggested for breast cancer.

Method
Figure  1 shows an illustration of the proposed drug 
repositioning method. Detailed descriptions for each 
step are provided in the following subsections.

Data sources
We constructed nine different drug-disease associa-
tion networks using six primary networks constructed 
based on the publicly available database (Table  1). 
These six networks were categorized into four different 
groups according to their types of nodes: drug–gene 
interaction network (DRGN), disease-gene interaction 
network (DIGN), protein–protein interaction network 
(PPIN) and gene co-expression network (GCN).

Drug–gene interaction network
DrugBank [14] database was used to construct the 
DRGN network. DrugBank provides comprehensive 
information about approved and investigational drugs, 
including UMLS-mapped, approved indications. This 
network consists of 3509 interactions between 1497 
drugs and 673 genes.

Disease‑gene interaction network
We also used three databases for three different dis-
ease-gene interaction networks (Table  1): The Com-
parative Toxic genomics Database (CTD) [15], Online 
Mendelian Inheritance in Man (OMIM) [16] and Dis-
GeNET [17]. CTD contains manually curated infor-
mation about gene-disease relationships focusing on 
comprehending the effects of environmental chemicals 
on human health. It includes about 26 million gene-
disease associations (GDAs), between 47,740 genes 
and 3158 diseases. OMIM (Online Mendelian Inherit-
ance in Man) is a complete collection of human genes 
and genetic phenotypes that are updated on a daily 
basis. OMIM includes 6666 gene-phenotype associa-
tions between 6175 phenotypes and 4552 genes. The 
DisGeNET database integrates human gene-disease 
associations from various expert-curated databases and 
text-mining-derived associations including Mendelian, 
environmental and complex diseases [17]. This network 
includes 561,107 GDAs, between 17,068 genes and 
20,371 diseases, disorders, traits, and clinical or abnor-
mal human phenotypes.

Protein–protein interaction network
We extracted protein–protein interaction (PPI) informa-
tion from IntAct database [18]. IntAct provides a freely 
available database system and analysis tools for molecular 
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interaction data. This network has 16,523 proteins and 
143,738 protein–protein interactions.

Gene co‑expression network
We constructed a gene co-expression network (GCN) 
using the COXPRESdb database [19]. This database 

Fig. 1  Schematic flowchart of the proposed drug repositioning method

Table 1  Primary data sources for drug-disease network reconstruction

Network type Source database Network details URL address References

DRGN Drug bank No. of drugs: 1497
No. of genes: 673
No. of interactions: 3509

https​://www.drugb​ank.ca/ [14]

DIGN CTD No. of diseases: 3158
No. of genes: 47,740
No. of interactions: 26,047,815

http://ctdba​se.org/ [15]

DIGN OMIM No. of diseases: 4552
No. of genes: 6175
No. of interactions: 6666

https​://www.omim.org/ [16]

DIGN DisGeNET No. of diseases: 20,371
No. of genes: 17,068
No. of interactions: 561,107

http://www.disge​net.org/ [17]

PPIN Intact No. of proteins: 16,523
No. of interactions: 143,758

https​://www.ebi.ac.uk/intac​t/ [18]

GCN COXPRESdb No. of genes: 24,442
No. of interactions: 12,485

http://www.COXPR​ESdb.org/ [19]

https://www.drugbank.ca/
http://ctdbase.org/
https://www.omim.org/
http://www.disgenet.org/
https://www.ebi.ac.uk/intact/
http://www.COXPRESdb.org/
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measured the similarity of gene expression patterns 
during several conditions, such as disease state tissue 
types. COXPRESdb includes co-expression relation-
ships for multiple animal species and is freely available 
on http://coxpr​esdb.jp/. The obtained GCN includes 
12,485 interactions and 24,442 genes.

Reconstructing new drug‑disease networks via merging 
heterogeneous networks
We reconstructed nine new drug-disease networks 
using six primary networks. Figure  2 shows a sche-
matic view of these networks. These nine networks 
have more than 9,400,000 drug-disease associations 
in total. Table  2 shows more details about these new 
drug-disease networks. One drug-disease interaction 
may be generated more than once in each network 
merging. So, the number of occurrences of a drug-
disease interaction is considered as the weight of the 
interaction.

Drug‑disease association prediction
Encoding drug‑disease networks as feature vectors
For each drug-disease pair, weights of its corresponding 
interaction in the reconstructed drug-disease networks 
were considered as features. Therefore, each drug-disease 
pair was encoded as a 9-dimensional feature vector. In 
addition, to prevent the occurrence of the duplication in 

Fig. 2  Schematic representation of reconstructing nine new drug-disease networks

Table 2  Reconstructed drug-disease networks

Networks Number of drug Number 
of disease

Drug-disease 
association

Net1 1337 5854 4,129,617

Net2 1333 8540 397,108

Net3 1191 10,858 741,819

Net4 1208 11,934 8,256,300

Net5 164 2240 82,407

Net6 239 2306 92,299

Net7 94 2200 151,267

Net8 21 1013 329

Net9 17 468 812

http://coxpresdb.jp/
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weighing the networks, the limitation of the initial data-
sets must be considered.

Machine learning methods
We used five different classifiers, including naïve Bayes 
(NB), random forest (RF), logistic regression (LR), deci-
sion tree (DT) and support vector machine (SVM). The 
implementations of these classifiers in Weka [20] soft-
ware package was used for drug-disease association 
prediction. Weka is a java-based machine learning work-
bench, developed for machine learning tasks. Also, we 
used tenfold cross-validation for evaluating the predicted 
drug-disease associations.

For evaluating the performance of RepCOOL, we 
adopted four different measures (Table  3). These meas-
ures are based on the following four basic terms: 

True positive (TP): the number of drug-disease asso-
ciations, which were correctly predicted.
True negative (TN): the number of drug-disease 
pairs, which were correctly predicted as non-associ-
ated.
False positive (FP): the number of unrelated drug-
disease pairs, which were incorrectly predicted as 
associations.
False negative (FN): the number of drug-disease 
associations, which were incorrectly predicted as 
non-associations.

We also used the area under the ROC curve (AUC) as 
another measure for assessing the proposed method.

Benchmark dataset
We used PREDICT [21], which is a well-known bench-
mark dataset in drug repositioning, to assess the strength 
of the proposed drug repositioning method. PREDICT 
dataset includes 1834 interactions between 526 FDA 
approved drugs and 314 diseases.

Cytotoxicity assay
Human cell line BT474 was cultured in recommended 
media in the presence of 10% fetal bovine serum (FBS) 
and penicillin–streptomycin antibiotics. Cell viability 
was characterized using a standard colorimetric MTT 

reduction assay. Briefly, 6000 cells were plated in each 
well of the 96-well plates with 100  µL medium, which 
includes 10% serum. After 24-h incubation, the cell 
was treated with several concentrations of tamoxifen 
(0–100  µM). After 48  h, the MTT (3-(4,5-dimethylth-
iazol-2-yl)-2,5-diphenyltetrazolium bromide) reagent 
(5  mg/mL in PBS) was added to each well, followed by 
incubation for 4 h at 37 °C with 5% CO2. After the incu-
bation, the MTT crystals in each well were solubilized in 
100 µL dimethyl sulfoxide (DMSO) incubation for 20 min 
at 25  °C, and the absorbance was read at 490  nm using 
a microplate spectrophotometer (µQuant, BioTek, USA).

Results and discussion
Performance evaluation of the proposed method
Figure 3 shows the performance of five classifiers on the 
PREDICT dataset in a tenfold cross-validation experi-
ment. As it was evident, the decision tree is the most 
sensitive classifier in detecting true drug-disease associa-
tions, but random forests have the best performance in 
terms of ROC. For all the classifiers, recall (sensitivity) is 
in a satisfactory range, which shows the ability to detect 
true drug-disease associations. However, precision is rel-
atively low for almost all classifiers, which can result from 
some true drug-disease associations that have not been 
discovered or reported yet.

Comparison with the other methods
Nearly all of the previously published studies only 
reported their AUC. As it has been shown in Fig. 4, the 
highest AUC of the five classifiers is 0.83, which outper-
forms HGBI [22], LDB [23], TL-HGB [24] and Drug Net 
[23] methods on PREDICT dataset.

New repurposed drugs for breast cancer
Information contained in RepoDB [25] was exploited to 
obtain a list of new repurposed drugs for breast cancer. 
RepoDB includes a gold standard set of drug reposition-
ing which failed or succeeded. The RepoDB dataset con-
tains 6677 approved, 2754 terminated, 483 suspended, 
and 648 withdrawn drug-disease interactions. With-
drawn and suspended drug-disease associations have an 
annotation phase between phase 0 and phase 3. There-
fore, these two types of drug-disease pairs have more 
potential to suggest a valid new drug repositioning rather 
than a random pair. Considering this fact, we trained the 
five classifiers using the approved and terminated data. 
Figure  5 shows the training performance of the classifi-
ers. Then, the best performing classifier, according to the 
approved and terminated data, was used to predict new 
drugs for breast cancer. The most sensitive classifier, ran-
dom forest (it detected 2283 true drug-disease interac-
tions out of 2292), was used to do this end.

Table 3  Measures for assessing prediction performance

Recall = TP
TP+FN

Positive correctly predicted

Precision =
TP

TP+FP
Positive predictive value

Accuracy = TP+TN

TP+TN+FP+FN
Correctly predicted

F −measure =
2×Presion×Sensitivity
Presion+Sensitivity

The harmonic mean of 
sensitivity and specificity
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Using this classifier, four new drugs have been repur-
posed for breast cancer stage II. Table 4 shows the chemi-
cal structures of the drugs and their descriptions.

Analyzing the structural similarity between the three new 
repurposed drugs and previously FDA‑approved drugs 
for breast cancer
We also carried out a structural similarity analysis among 
the repurposed drugs and 10 FDA-approved which were 
small molecule drugs for breast cancer including 5-FU, 

Abemaciclib (Verzeino), Taxotere (docetaxel), danazol, 
Pamidronate Disodium, Tamoxifen, Doxorubicin, Pacli-
taxel, Epirubicin, Capecitabine, Dutasteride, Olaparib, 
Afinitor. Also, Trastuzumab is a recombinant DNA-
derived humanized monoclonal antibody which was 
eliminated from our repurposed drugs due to its large 
structure (145,531.5 Da). Figure 6 shows the results of the 
structural similarity analysis. Structural similarity was 
computed based on 3014 structural features which were 
extracted using Dragon tool [26]. Figure 6a compares the 

Fig. 3  Performance of different classifiers in a tenfold cross validation procedure in PRIDICT dataset. Classifiers include support vector machine 
(SVM), decision tree (DT), linear regression (LR), naïve Bayes (NB) and random forest (RF)

Fig. 4  Performance comparison of RepCOOL with other methods in terms of AUC based on the obtained results in PREDICT dataset
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Fig. 5  Performance of different classifiers in a tenfold cross-validation procedure in repODB dataset. Classifiers include support vector machine 
(SVM), decision tree (DT), linear regression (LR), naïve Bayes (NB) and random forest (RF)

Table 4  Summary of function and structure of the repurposed drugs for breast cancer

a  According to National Institutes of Health (NIH) (https: 2019, June) and Drug bank (https 2019, June)

Rank Repurposed drugs Current usagesa Structure

1 Doxorubicin Treatment of leukemia, lymphoma, neuroblastoma, sarcoma, Wilms tumor, and cancers of the 
lung, breast, stomach, ovary, thyroid, and bladder

2 Paclitaxel Treatment of AIDS-related Kaposi sarcoma, advanced ovarian cancer, and certain types of 
breast cancer

3 Tamoxifen Treatment of the ovary, breast cancer, desmoid tumors and endometrial cancers
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structures of the drugs via a distance matrix, and Fig. 6b 
represents the correlation matrix of the structures com-
puted with Pearson correlation coefficient (PCC). Also, 
Fig.  6c depicts the dendrogram of 13 drugs based on 
the obtained distance matrix. According to this dendro-
gram, there are four distinct clusters: cluster1 = {Pacli-
taxel, Taxotere}, cluster2 = {Doxorubicin, Dutasteride, 

Epirubicin, Abemaciclib}, cluster3 = {Afinitor} and clus-
ter4 = {Pamidronate Disodium, Capecitabine, Tamoxifen, 
Olaparib, 5FU, Verzeino}. As results indicate, Pacli-
taxel, Doxorubicin and Tamoxifen have the most struc-
tural similarity with Taxotere (PCC = 100), Dutasteride, 
Epirubicin (PCC = 100) and Capecitabine (PCC = 98), 
respectively.

Fig. 6  Structural relationship between the repurposed (highlighted by rectangles) and FDA-approved drugs for the treatment of breast cancer. a 
Heat map of the merged repurposed and FDA-approved drugs based on the distance matrix. b Heat map of repurposed and FDA-approved drugs 
based on the correlation matrix. c Cluster dendrogram of repurposed and FDA-approved drugs based on the distance matrix. The highest and the 
lowest structural correlation are indicated in blue and red, respectively
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Cell toxicity
An MTT assay was performed to assess the effectiveness 
of Tamoxifen from the repurposed drugs in this study on 
the growth of BT474, the breast cancer stage II, HER2 
cell line. Based on the cell survival results, following the 
treatment with Tamoxifen in different concentrations, 
the inhibition effect on the cell growth increased with 
increasing amount of the drug in the culture medium. 
As it has been shown in Fig. 7, the half maximal inhibi-
tory concentration (IC50) of Tamoxifen was 32.13 µM on 
BT474 cells. It should be noted that the toxic effect of two 
drugs including, Doxorubicin and Paclitaxel has been 
proved on MCF-7, SKBR-3 and MCF-7 cell lines, respec-
tively, by other researchers [27–30]. Therefore, we can 
consider Tamoxifen and other repurposed molecules as 
effective drugs for breast cancer.

Conclusion
In this study, a network-based method has been 
employed for drug repositioning using heterogeneous 
biological and chemical information. Results show the 
strength of the proposed method for detecting true drug-
disease relationships. RepCOOL suggests four new drugs 
for breast cancer stage II including Doxorubicin, Pacli-
taxel, Trastuzumab and Tamoxifen. Structural analysis 
shows the high structural similarity of these four drugs to 
the current FDA-approved drugs for breast cancer stage 
II.

Abbreviations
FDA: Food and Drug Administration; DRGN: Drug–gene interaction network; 
DIGN: Disease-gene interaction network; PPIN: Protein–protein interac-
tion network; GCN: Gene co-expression network; CTD: Comparative Toxic 
genomics Database; OMIM: Online Mendelian Inheritance in Man; GDAs: 

Gene–disease associations; NB: Naïve Bayes; RF: Random forest; LR: Logistic 
regression; DT: Decision tree; SVM: Support vector machine; TP: True posi-
tive; TN: True negative; FP: False positive; FN: False negative; ROC: Receiver 
operator characteristics; AUC​: Area under the curve; PCC: Pearson correlation 
coefficient; MTT: Methyl thiazolyl tetrazolium; FBS: Fetal bovine serum; DMSO: 
Dimethyl sulfoxide; IC50: Half-maximal inhibitory concentration.

Acknowledgements
The authors would like to thank Mohammad Hossein Afsharinia for his help 
with preparing figures, and Saber Mohammadi and Sayeh Emadi for their help 
with the editing the manuscript. Also, we would like to thank Dr. Ahmad Mani 
for his help with structural similarity analysis. Last but not least, the authors 
would like to express their sincere gratitude to the anonymous reviewers for 
their critical review.

Authors’ contributions
JZ, SSA and RHS conceived the idea. GF and JZ did the analysis. JZ, RHS and 
SSA interpreted the results. GF and JZ wrote the manuscript. All authors read 
and approved the final manuscript.

Funding
No applicable.

Availability of data and materials
No applicable.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Bioinformatics and Computational Omics Lab (BioCOOL), Department of Bio-
physics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran. 
2 Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares 
University, Tehran, Iran. 3 Department of Biochemistry, Faculty of Biological 
Sciences, Tarbiat Modares University, Tehran, Iran. 

Received: 7 September 2019   Accepted: 21 September 2020

References
	1.	 Zeng X, Zhu S, Liu X, Zhou Y, Nussinov R, Cheng F. deepDR: a network-

based deep learning approach to in silico drug repositioning. Bioinfor-
matics. 2019;35(24):5191–8. https​://doi.org/10.1093/bioin​forma​tics/btz41​
8.

	2.	 Luo H, Li M, Yang M, Wu F-X, Li Y, Wang J. Biomedical data and compu-
tational models for drug repositioning: a comprehensive review. Brief 
Bioinform. 2020. https​://doi.org/10.1093/bib/bbz17​6.

	3.	 Xue H, Li J, Xie H, Wang Y. Review of drug repositioning approaches and 
resources. Int J Biol Sci. 2018;14(10):1232.

	4.	 Sadeghi SS, Keyvanpour MR. An analytical review of computational drug 
repurposing. IEEE/ACM Trans Comput Biol Bioinform. 2019. https​://doi.
org/10.1109/TCBB.2019.29338​25.

	5.	 Karaman B, Sippl W. Computational drug repurposing: current trends. 
Curr Med Chem. 2019;26(28):5389–409.

	6.	 Romano JD, Tatonetti NP. Informatics and computational methods in 
natural product drug discovery: a review and perspectives. Front Genet. 
2019;10:368.

	7.	 Li J, Zheng S, Chen B, Butte AJ, Swamidass SJ, Lu Z. A survey of cur-
rent trends in computational drug repositioning. Brief Bioinform. 
2016;17(1):2–12.

	8.	 Ferrero E, Dunham I, Sanseau P. In silico prediction of novel therapeutic 
targets using gene–disease association data. J Transl Med. 2017;15(1):182.

[Tamoxifen], µM

C
el

l V
ia

bi
lit

y%

0 50 100
0

50

100

Fig. 7  The inhibitory effect of different concentrations of Tamoxifen 
on the growth of BT474 cells. The results were presented as a 
percentage relative to the control and graph was plotted using 
GraphPad Prism 6.01 software

https://doi.org/10.1093/bioinformatics/btz418
https://doi.org/10.1093/bioinformatics/btz418
https://doi.org/10.1093/bib/bbz176
https://doi.org/10.1109/TCBB.2019.2933825
https://doi.org/10.1109/TCBB.2019.2933825


Page 10 of 10Fahimian et al. J Transl Med          (2020) 18:375 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

	9.	 Bisgin H, Liu Z, Fang H, Kelly R, Xu X, Tong W. A phenome-guided 
drug repositioning through a latent variable model. BMC Bioinform. 
2014;15(1):267.

	10.	 Jiang H-J, You Z-H, Huang Y-A. Predicting drug–disease associations 
via sigmoid kernel-based convolutional neural networks. J Transl Med. 
2019;17(1):382.

	11.	 Lotfi Shahreza M, Ghadiri N, Mousavi SR, Varshosaz J, Green JR. A review 
of network-based approaches to drug repositioning. Brief Bioinform. 
2018;19(5):878–92.

	12.	 Alaimo S, Pulvirenti A. Network-based drug repositioning: approaches, 
resources, and research directions. In: Vanhaelen Q, editor. Computational 
methods for drug repurposing. Berlin: Springer; 2019. p. 97–113.

	13.	 Chen H-R, Sherr DH, Hu Z, DeLisi C. A network based approach to drug 
repositioning identifies plausible candidates for breast cancer and pros-
tate cancer. BMC Med Genomics. 2016;9(1):1–11.

	14.	 Wishart DS, et al. DrugBank: a comprehensive resource for in silico drug 
discovery and exploration. Nucleic Acids Res. 2006;34(suppl_1):D668–72.

	15.	 Mattingly CJ, Colby GT, Forrest JN, Boyer JL. The comparative toxicog-
enomics database (CTD). Environ Health Perspect. 2003;111(6):793.

	16.	 Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Men-
delian Inheritance in Man (OMIM), a knowledgebase of human genes 
and genetic disorders. Nucleic Acids Res. 2005;33(suppl_1):D514–7.

	17.	 Piñero J, et al. DisGeNET: a discovery platform for the dynamical explora-
tion of human diseases and their genes. Database. 2015. https​://doi.
org/10.1093/datab​ase/bav02​8.

	18.	 Kerrien S, et al. The IntAct molecular interaction database in 2012. Nucleic 
Acids Res. 2011;40(D1):D841–6.

	19.	 Obayashi T, Hayashi S, Shibaoka M, Saeki M, Ohta H, Kinoshita K. COX-
PRESdb: a database of coexpressed gene networks in mammals. Nucleic 
Acids Res. 2007;36(suppl_1):D77–82.

	20.	 Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The 
WEKA data mining software: an update. ACM SIGKDD Explor Newsl. 
2009;11(1):10–8.

	21.	 Gottlieb A, Stein GY, Ruppin E, Sharan R. PREDICT: a method for inferring 
novel drug indications with application to personalized medicine. Mol 
Syst Biol. 2011;7(496):496. https​://doi.org/10.1038/msb.2011.26.

	22.	 Wang W, Yang S, Li J. Drug target predictions based on heterogeneous 
graph inference. In: Biocomputing 2013. World Scientific; 2013. pp. 53–64.

	23.	 Martínez V, Navarro C, Cano C, Fajardo W, Blanco A. DrugNet: network-
based drug–disease prioritization by integrating heterogeneous data. 
Artif Intell Med. 2015;63(1):41–9.

	24.	 Wang W, Yang S, Zhang X, Li J. Drug repositioning by integrating target 
information through a heterogeneous network model. Bioinformatics. 
2014;30(20):2923–30.

	25.	 Brown AS, Patel CJ. A standard database for drug repositioning. Sci Data. 
2017;4:170029.

	26.	 Mauri A, Consonni V, Pavan M, Todeschini R. Dragon software: an easy 
approach to molecular descriptor calculations. Match. 2006;56(2):237–48.

	27.	 Jenie RI, et al. The cytotoxic and antimigratory activity of brazilin-doxoru-
bicin on MCF-7/HER2 cells. Adv Pharm Bull. 2018;8(3):507–16. https​://doi.
org/10.15171​/apb.2018.059.

	28.	 Nurhayati IP, Khumaira A, Pradani G, Ilmawati N, Meiyanto E, Hermawan A. 
Cytotoxic and antimetastatic activity of hesperetin and doxorubicin com-
bination toward Her2 expressing breast cancer cells. Asian Pac J Cancer 
Prev. 2020;21:1259–67. https​://doi.org/10.31557​/apjcp​.2020.21.5.1259.

	29.	 Zajdel A, Wilczok A, Jelonek K, Musiał-kulik M, Fory A. Cytotoxic effect of 
paclitaxel and lapatinib co-delivered in polylactide-co-poly (ethylene 
glycol) micelles on HER-2-negative breast cancer cells. Pharmaceutics. 
2019. https​://doi.org/10.3390/pharm​aceut​ics11​04016​9.

	30.	 Peng J, et al. Biomaterials Herceptin-conjugated paclitaxel loaded PCL-
PEG worm-like nanocrystal micelles for the combinatorial treatment of 
HER2-positive breast cancer. Biomaterials. 2019;222(August):119420. https​
://doi.org/10.1016/j.bioma​teria​ls.2019.11942​0.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1093/database/bav028
https://doi.org/10.1093/database/bav028
https://doi.org/10.1038/msb.2011.26
https://doi.org/10.15171/apb.2018.059
https://doi.org/10.15171/apb.2018.059
https://doi.org/10.31557/apjcp.2020.21.5.1259
https://doi.org/10.3390/pharmaceutics11040169
https://doi.org/10.1016/j.biomaterials.2019.119420
https://doi.org/10.1016/j.biomaterials.2019.119420

	RepCOOL: computational drug repositioning via integrating heterogeneous biological networks
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Background
	Method
	Data sources
	Drug–gene interaction network
	Disease-gene interaction network
	Protein–protein interaction network
	Gene co-expression network

	Reconstructing new drug-disease networks via merging heterogeneous networks
	Drug-disease association prediction
	Encoding drug-disease networks as feature vectors
	Machine learning methods
	Benchmark dataset
	Cytotoxicity assay


	Results and discussion
	Performance evaluation of the proposed method
	Comparison with the other methods
	New repurposed drugs for breast cancer
	Analyzing the structural similarity between the three new repurposed drugs and previously FDA-approved drugs for breast cancer
	Cell toxicity

	Conclusion
	Acknowledgements
	References




