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Interleukin-2 (IL-2) regulates key aspects of CD8T cell biology–signaling through distinct

pathways IL-2 triggers critical metabolic and transcriptional changes that lead to a

spectrum of physiological outcomes such as cell survival, proliferation, and effector

differentiation. In addition to driving effector differentiation, IL-2 signals are also critical for

formation of long-lived CD8T cell memory. This review discusses a model of rheostatic

control of CD8T cell effector and memory differentiation by IL-2, wherein the timing,

duration, dose, and source of IL-2 signals are considered in fine-tuning the balance of

key transcriptional regulators of cell fate.

Keywords: IL-2, CD8T cell memory, terminal effectors, autocrine, transcription factors, metabolism

INTRODUCTION

Interleukin-2 (IL-2)–the first cytokine to be identified and characterized more than three decades
ago—has emerged as a pleiotropic player in a variety of seemingly paradoxical immune functions.
Originally discovered for its immunoenhancing role of promoting T cell expansion during
mitogenic stimulation, IL-2 is also implicated in activation-induced cell death (AICD). Likewise,
IL-2 promotes a variety of effector (cytotoxic CD8, TH1) T cell responses, yet is indispensable for
the development, maintenance and function of regulatory T cells (Treg)—the very cells that serve
to suppress effector T cell responses. Further adding to the intrigue, even amongst the effector
subsets, IL-2 promotes CD8, TH1, and TH2 effector responses, but suppresses inflammatory TH17

responses, and also inhibits the differentiation of follicular helper T (TFH) cells required for B cell
germinal center reactions in secondary lymphoid organs. Collectively, these findings support the
thesis that IL-2 critically regulates the balance of immunostimulatory and immunosuppressive
forces during immune responses to foreign antigens as well as self-antigens during homeostasis.
While our understanding of the molecular, transcriptional, and metabolic regulation of CD4T cell
differentiation into TH1, TH2, TH17, TFH, and Treg subsets by IL-2 is abundant [see previous reviews
(1–5)], the IL-2-dependent gene regulatory networks that drive effector and memory CD8T cell
differentiation remain to be fully defined. In this review we will focus on IL-2 regulation of CD8T
cell responses; alongside a summary of current literature in the context of CD4 and CD8T cells,
we will also discuss how this niche area is poised for significant advances owing to newer tools
such as conditional ablation of IL-2 production and signaling in key subsets of immune cells in the
physiologically relevant setting of immunocompetent hosts.
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BALANCING PRIMARY AND SECONDARY
CD8T CELL IMMUNITY

CD8T Cell Responses to Acute Infections
A typical CD8T cell response to primary infection with acute
viral or intracellular bacterial pathogens is characterized by
three distinct phases—expansion, contraction, and memory.
Upon stimulation with cognate antigen in conjunction with
costimulatory and inflammatory ligands, naïve cells undergo
massive clonal expansion (up to 50,000-fold) and concomitant
effector differentiation to generate large numbers of cytotoxic
T lymphocytes (CTL), which serve to control the pathogen
by migrating to peripheral sites of infection and elaborating
cytotoxicity against infected target cells and producing effector
cytokines such as IFN-γ and TNF-α (6–11). It is now well-
established that the effector CTL pool broadly contains two
distinct subsets—(1) short-lived effector cells (SLECs), which are
fated to rapidly die after pathogen clearance, and (2) memory
precursor effector cells (MPECs) (12–16), which are imprinted
with antigen-independent survival capabilities for mediating
long-term protection against secondary challenge (17–19). Thus,
supporting the concept of memory programming, or imprinting
of cardinal memory properties during primary expansion (20–
23), several studies have now demonstrated that the balance of
MPECs and SLECs can be altered by manipulating the duration
of antigen, IL-2 and other inflammatory cytokine signals (14–
16, 24). In fact, as discussed later, the heterogeneity of the
memory CD8T cell pool is likely programmed by differential
signals accrued during the primary expansion phase. IL-2 signals
(paracrine or autocrine) in particular exert crucial roles in
effector and memory differentiation and function.

Regulation of Effector CD8T Cell
Responses by IL-2
Optimal T cell activation with cognate peptide-MHC-I and
costimulatory ligands result in IL-2 production and induction
of IL-2Rα (CD25) expression, which along with IL-2Rβ (CD122,
also used for IL-15 signaling), and IL-2Rγ (CD132, also referred
to as common γ-chain as it is shared by other cytokines
of the γ-chain family such as IL-4, 7, 9, 21) (5), forms the
high affinity heterotrimeric receptor for robust IL-2 signal
transduction and clonal expansion and effector differentiation
(2). Much of the early work on IL-2 regulation of T cell
responses relied on reductionist in vitro studies where amount
and duration of TCR and IL-2 stimulation can be tightly
controlled. These studies established a critical role for IL-2 as
a T cell growth factor in driving cell cycle progression and
expansion of CD8T cells following TCR stimulation (25). Similar
conclusions were reached following in vivo administration of
IL-2, which engendered enhanced effector and memory pools
of antigen-specific CD8T cells (26–29). While these studies
demonstrate that CD8T cell differentiation events are amenable
to manipulation by IL-2, physiological relevance of IL-2 in
shaping a developing CD8T cell response was uncovered
following the development of Il2 germline-deleted mice. Studies
in IL-2 knockout mice are confounded by Treg deficiency
and associated spontaneous lymphoproliferative disease (30,

31). Hence, irreconcilably disparate outcomes of reduced or
unaltered expansion and effector differentiation were reported
in the context of infections and peptide immunization in IL-
2 knockout mice (32–35). Nonetheless, bypassing pleiotropic
immune effects in straight IL-2 and IL-2Rα (CD25) knockout
mice, subsequent studies engaged the strategy of adoptively
transferring IL-2- or IL-2Rα-deficient TCR transgenic CD8T
cells into wild-type recipients. In these studies, enumeration of
antigen-specific CD8T cells in an otherwise wild-type milieu
using congenic differences without the need for restimulation,
clearly established a requirement for IL-2 signals in driving
optimal primary expansion of antigen-specific CD8T cells in
secondary lymphoid as well as non-lymphoid tissues (36, 37).
IL-2 promotes effector differentiation through STAT-5-mediated
Blimp-1-dependent induction of effector molecules (16, 38–
42). In this regard, proinflammatory cytokine signals such as
IL-12, IFN-γ, and type-1 interferons (IFN-α/β)—commonly
referred to as signal 3 for their role in promoting optimal clonal
expansion of effector CD8T cells—are believed to complement
IL-2, possibly non-redundantly (43, 44). Such collaboration,
particularly between IL-12 and IL-2 has been recently shown to
be important for optimal expression of transcription factors T-
bet and Blimp-1, which synergize to drive a terminal effector
differentiation program in CD8T cells (45).

Regulation of Memory CD8T Cell
Responses by IL-2
In addition to promoting CD8T cell expansion and effector
differentiation, IL-2 signals are also necessary for memory
responses. IL-2Rα upregulation early after TCR stimulation is
critical for formation of memory cells with robust secondary
expansion capability (46, 47). Subsequent correlations of the
duration of IL-2Rα expression with final memory outcome in
a physiologically relevant setting—where the natural course of
CD8T cell response was not disturbed—revealed that rapid
downregulation of IL-2Rα is equally important for memory
development (16). Fate-tracking analyses showed that following
an initial burst of IL-2 signals through IL-2Rα, curtailed
expression of IL-2Rα and diminished IL-2 signaling is associated
with memory fate, whereas prolonged expression of IL-2Rα and
stronger IL-2 signaling drives terminal effector differentiation
(16). Stronger IL-2 stimulation (100 U/ml) during in vitro
priming also drives terminal differentiation compared to weaker
signals (10 U/ml) (41). Similar findings have been reported in
the DC-peptide immunization models as well as during murine
infection with Lymphocytic choriomeningitis virus (LCMV),
Listeriamonocytogenes (LM), Vaccinia virus (VV), andVesicular
stomatitis virus (VSV) (16, 48). Moreover, constitutive activation
of STAT-5 (key signal transducer of common γ-chain cytokines)
also causes terminal differentiation (49). Consistent with the
pro-proliferative role of IL-2, terminally differentiated effector
CD8T cells (SLECs) that express IL-2Rα for longer duration
during an acute infection expand more than their memory-fated
counterparts (MPECs) that downregulate the expression of IL-
2Rα earlier (15, 16, 50–52). Together, these findings support
the notion that metered IL-2 signals are required for optimal
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protective immunity and present a model of rheostatic control
of CD8T cell fates by IL-2 during acute infections.

All memory cells that survive after clearance of a primary
infection are not created equal. Protective CD8T cell immunity,
as we understand it today, consists of collaborative defense
against secondary challenge through concerted actions by a
complex mixture of memory cells with distinct phenotypes,
location, migratory properties, polyfunctionality, antigen-
independent longevity, and potential for mounting rapid and
robust clonal expansion and effector functions upon secondary
challenge (44). As is expected from a spectrum of effector
CTLs—that develop in response to varying doses and durations
of antigen perceived in a variety of immune contexts, such as
dose and duration of cytokines (e.g., IL-2, IFN-I, IL-12, IL-21,
TGFβ, etc.), costimulatory signals, CD4T cell interactions—a
veritable spectrum of memory cells exist in a host after antigen
clearance. At the risk of oversimplifying the CD8T cell memory
complexity, one can arguably categorize memory cells broadly
into two major subsets—lymphoid or central memory (TCM),
and non-lymphoid memory, which is further distinguished
into tissue-resident memory (TRM), and migratory memory.
Defined by their location, central memory cells largely recirculate
through secondary lymphoid organs; tissue-resident memory
(TRM) cells—true to their name—set up permanent residence at
front-lines of pathogen exposure; whereas migratory memory
cells comprise a heterogeneous population that is capable
of recirculation to peripheral tissues, and may be further
distinguished by intravascular staining methodology into the
CX3CR1hi effector memory subset (TEM) which does not enter
extravascular space, and the less differentiated CX3CR1int

memory subset capable of migration into extravascular spaces
(53, 54). TRM cells serve effectively as the first line of defense
against infections by virtue of their key properties of location
at barrier sites and rapid elaboration of effector functions
(cytotoxicity against infected target cells and effector cytokine
production). Consistent with their ability to recirculate through
peripheral tissues, TEM cells retain higher expression of effector
molecules, and are believed to aid TRM cells in protecting against
secondary challenge along with the extravascular migratory
memory cells. In contrast, TCM cells largely downregulate their
effector program after antigen clearance, but are capable of
rapid upregulation of the effector program upon antigenic
rechallenge, also have superior polyfunctionality (ability to
coproduce multiple cytokines such as IL-2, IFN-γ, and TNF-α),
and expand more vigorously to aid the TRM and migratory cells
during secondary challenge.

Developmentally, fate-tracking experiments show that
effector CD8T cells that rapidly downregulate IL-2Rα largely
give rise to central memory and effector memory cells. In
comparison, effector CTLs, with prolonged IL-2Rα expression,
largely give rise to terminal effector and effector memory fates;
and curtailed stimulation of these cells by adoptive transfer
into infection-controlled recipients (removal of antigen, IL-2,
and all other infection-related signals) results in less terminal
differentiation, as evidenced by increased proportions of effector
memory cells compared to short-lived effector cells. These
observations are consistent with a role for increasing IL-2

in driving effector CD8T cells progressively toward terminal
differentiation. It is believed that TRM cells arise from relatively
less differentiated memory precursors, which first seed the
peripheral sites such as skin and small intestines (55, 56). In situ,
the precursors receivemicroenvironment-specific developmental
cues that drive the expression of unique chemokine receptors,
integrins, and transcription factors for TRM cell tissue residency
and local protection (56–61). Within the tissue, the transforming
growth factor β (TGF-β) exerts a critical role in directing the
TRM differentiation program in concert with other tissue-specific
signals (55, 56, 62, 63). While CD8 TRM cells capable of IL-2
production have been recently reported in skin and liver
(64, 65), and IL-2 signals have been shown to be important
for maintenance of allergic TH2-type cells in the lungs (66),
murine studies directed at understanding whether early IL-2
signals are necessary for TRM seeding of tissue sites, whether
prolonged IL-2 signals compromise TRM cells, and how TGF-β
signals and other tissue-specific factors work in conjunction
with IL-2 signals (synergistically or antagonistically) to drive
the differentiation, maintenance, and recall function of TRM

cells within the local sites remains to be fully explored. Likewise,
whether similar rules of progressive terminal differentiation with
increasing IL-2 signals are also active in situations of chronic
antigen stimulation—as occurs during persistent viral infections
and cancers—remains to be defined.

AUTOCRINE AND PARACRINE
PROGRAMMING OF T CELL FATES

During thymic development, T cell-derived IL-2 is critical for
development of Treg cells. (67). During homeostasis, IL-2 is
largely produced by CD25int and CD25lo CD4T cells (activated
by self-peptide and foreign peptide MHC-II complexes on DCs)
(68), the regulatory TR1 subset in peyer’s patches that also
produces IL-10 and IFN-γ (69), and to some extent by NK,
NKT, and CD8T cells [evaluated by mRNA (68)]. Recent studies,
involving IL-2 ablation in defined immune cells, have shown
that T cell-derived IL-2 is critical for maintaining numbers and
regulatory function of Treg cells in most secondary lymphoid
organs, with the exception of mesenteric lymph nodes where DC-
derived IL-2 was also observed to be important (67). During
an immune response, activated CD4T cells produce copious
amounts of IL-2 (2), with other IL-2 producers being CD8T cells
(70), DCs (71), NKT cells (72), and mast cells (73). There is
evidence that IL-2 may be transpresented by CD25 expressing
DCs (74) to deliver high affinity IL-2 signals to CD8T cells
that lack CD25 expression and only express the intermediate
affinity β/γ IL-2 receptor heterodimer—analogously to IL-15
transpresentation—thus, suggesting that IL-2 may be delivered
in a context-specific manner in vivo depending on the nature and
activation status of antigen-presenting DCs.

With highest levels in secondary lymphoid organs, IL-2
is believed to act in an autocrine or paracrine manner to
support effector and memory CD8T cell differentiation. We
have previously shown that memory-fated effector CD8T cells
selectively retain the ability for robust IL-2 production in
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response to antigenic stimulation compared to their terminally
differentiated effector counterparts (8, 15, 16, 44). Likewise,
polyfunctionality—the capacity for potent IL-2 production along
with other effector cytokines such as IFN-γ and TNF-α in
response to antigenic restimulation –is a hallmark property of
lymphoid central memory CD8T cells. Querying the functional
relevance of autocrine IL-2 production by memory-fated CD8T
cells, studies involving ablation of Il2 in a fraction of antigen-
specific CD8T cells during attenuated LM immunization (75)
as well as acute LCMV infection (unpublished observations),
demonstrate that the IL-2 needed for development of robust
memory CD8T cells capable of optimal secondary expansion is
largely autochthonous. Since CD4T cells are the major producers
of IL-2, it was long presumed that IL-2 serves as the mode of
CD4 help for development of protective memory CD8T cells
capable of robust secondary expansion. Thus, largely dismissing
CD4T cell-derived paracrine IL-2 as a mode of help, it is now
proposed that CD4T cells license DCs through the CD40-CD40L
axis to induce memory-fated CD8T cells to produce IL-2 (75).
Autocrine IL-2 production through CD27 signals has also been
shown to sustain survival of antigen-specific CD8T cells in
virus-infected non-lymphoid tissues (76, 77).

We further employed novel conditional IL-2 gene-deleted
mice (78) to investigate whether autocrine IL-2 signals are
specifically required during the programming phase of primary
responses, or during secondary expansion (unpublished
observations). Ablation of Il2 in memory CD8T cell immediately
prior to rechallenge did not result in compromised secondary
expansion, but ablation prior to primary infection resulted in
defective recall responses. These data suggest that autocrine
IL-2 signals during primary CD8T cell expansion are required
to institute a program of optimal secondary expansion. In the
context of CD4 help to CD8T cells, these instructive autocrine
IL-2 signals are believed to in part promote the expression
of a transcriptional corepressor, Nab2 for blocking TRAIL-
mediated apoptosis during secondary expansion (79, 80). Defects
in protective CD8T cell immunity associated with IL-2Rα

ablation are rescued by a strong bolus of exogenous IL-2 during
primary expansion (47), further supporting the idea that IL-2
exerts an early instructive role. Whether secondary expansion
defect associated with lack of autochthonous IL-2 maybe
similarly rescued by excessive paracrine IL-2 signals remains
unknown. Alternatively, it is possible that there are fundamental
differences (quantitative and/or qualitative) between autocrine
and paracrine IL-2 signals. In the case of CD4T cells, autocrine
IL-2 production in response to cognate antigen and CD70 signals
during late stages of influenza A virus infection has been shown
to be critical for upregulation of IL-7Rα (CD127) and survival
into memory phase (81). More recently, TFH and TH1 fates have
been linked to autocrine and paracrine IL-2 signals, respectively,
with different gene expression programs being triggered for
lineage determination in IL-2-producing and non-producing
CD4T cells (82). While CD8T cells that receive differential
strength or duration of IL-2 signals have expectedly unique gene
expression programs, it remains to be defined how autocrine and
paracrine IL-2 signals impact CD8T cell gene regulation and
metabolism.

FINE-TUNING THE REGULATORS OF T
CELL FATES

Transcriptional and Metabolic Regulation
of CD8T Cell Differentiation
IL-2 couples T cell expansion and effector differentiation through
induction of multiple downstream signaling cascades. Expression
of pro-differentiation transcription factors, Blimp-1 (16, 38, 40–
42) and Id-2 (83), is largely mediated through STAT-5 activation
in response to IL-2 stimulation (2) (Figure 1). Reciprocal
suppression by IL-2 of transcriptional factors that promote T
cell memory such as Bcl-6 (41, 84–88) (which also represses
Blimp-1 expression) is believed to further fix the terminal effector
differentiation program (45). IL-2 is believed to regulate the
expression of Bcl-6 through activation of Akt, which serves to
control the activity of Foxo family transcription factors (89),
Activation of Akt also alters the expression of proteins involved
in CD8T cell trafficking such as CD62L, CCR7, and S1P1, so
as to promote their migration to peripheral sites of infection
and inflammation (90–92). In addition to activation of STAT-
5 and Akt, which largely promote effector differentiation, IL-
2 links effector differentiation with clonal expansion through
activation of MAPK signaling and T cell activation, cell cycle
progression and survival programs (89). Sustained expression of
cMYC through IL-2 drives proliferation by upregulating cyclins
and anti-apoptotic molecule B-cell lymphoma 2 (Bcl-2), and by
downregulating p21 (93, 94). In addition to cell cycle regulators,
Myc also controls key metabolic aspects of T cell activation and
proliferation (95). Myc promotes glycolysis and glutaminolysis
through upregulation of key enzymatic and transporter proteins
(96, 97). In this regard, mTOR also serves as a primary hub
to integrate environmental cues from growth factors such as
nutrients and IL-2 to promote glycolysis (94, 98, 99), oxidative
phosphorylation and anabolic processes such as protein, lipid,
and nucleotide biosynthesis necessary to sustain proliferation
(96, 97). How effector and memory CD8T cell fates are defined
in vivo through differential metabolic programming by varying
IL-2 strength or duration remains to be elucidated.

A Model for Rheostatic Control of T Cell
Fates by IL-2
With diverse outcomes of memory and terminal effector
differentiation in CD8T cells that receive short/weak as opposed
to prolonged/strong IL-2 signals (as described earlier), it remains
to be determined whether rheostatic control of transcriptional
and metabolic regulation occurs. It is plausible that curtailed
or weak IL-2 signals drive lower levels of STAT-5, Akt and
mTOR activity, thus resulting in lesser proliferation, effector
differentiation and trafficking to peripheral sites of infection.
In contrast, strong and prolonged IL-2 signals may drive
stronger STAT-5, Akt, mTOR andMAPK activity, thus leading to
augmented proliferation, effector differentiation and migration
to peripheral sites of infection, where the microenvironmental
niches further reinforce the terminal differentiation programs
through induction of receptors for inflammatory cytokines such
as IL-12 (100), and inhibition of IL-7 (101) receptor levels.
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FIGURE 1 | Regulation of key intracellular signaling, transcriptional, and metabolic mediators of terminal effector vs. long-lived polyfunctional memory CD8T cell fates

are presented in the context of differential levels of IL-2 signals.

Notably, a role for Tregs has been implicated in regulating the
amount of IL-2 signals to memory-fated CD8T cells by acting
as IL-2 sinks (102) during CD8T cell expansion. During later
stages in the absence of antigen (when IL-2 is limiting) also,
Tregs continue to curtail T cell stimulation and proliferation to
maintain memory CD8T cell quiescence through CTLA-4 (103)
and IL-10 (104) inhibitory mechanisms and possibly through
IL-2 restriction (105). IL-2 is also bound to the extracellular
matrix through heparan sulfate moieties (106) to presumably
increase local concentrations, thus supporting the notion that
strong and prolonged IL-2 signals can be achieved in vivo.
Effectually, quantal differences in IL-2 signals may lead to
differences in signaling thresholds that ultimately result in
terminal effector gene expression patterns driven by Blimp-1,
T-bet, Id-2, and cMyc, or in memory lineage gene expression
patterns characterized by augmented Bcl-6, Eomesodermin and
Id-3. Indeed, analogous rheostatic control of CD4T cell fates
by differential levels of IL-2 signaling has been reported in the
balance of TH1 and TFH fate determination (107, 108) through
reciprocal regulation of T-bet and Bcl-6 by mTORC1-dependent
control of the glycolysis gene expression program (109).

CONCLUDING REMARKS

Tightly coupled to antigen and costimulation, IL-2 signals follow
close suit in T cell activation. In addition to driving expansion
and effector differentiation, IL-2 regulates long-term memory
outcome as well. Hence, it has been proposed as vaccine adjuvant
(110) to augment the size of the memory pool. However, given
its rheostatic regulation of terminal effector and memory fates
(Figure 1), careful investigation into the dose and duration of
IL-2 in a context specific manner is warranted to fine-tune the
balance of terminal effector and memory lineages. Hence, based
on the clinical need, timely and curtailed IL-2 signals might
be exploited to augment memory outcome during vaccination.
Alternatively—owing to its ability to induce proliferation and
effector differentiation–strong and sustained IL-2 signals might
be employed for immunotherapeutic interventions against
cancers and chronic infections that rely on activation of a large

pool of antigen-specific CD8T cells. In this quest, IL-2 has
gained particular recognition in treating melanomas and renal
cell carcinomas (111) by augmenting the tumor-reactive CD8T
cell pool. In the case of gene-modified T cell immunotherapies
also—for e.g., when patient T cells are bioengineered to express
chimeric antigen receptors or TCRs directed against select
tumor antigens–IL-2 is critical for expansion of CAR T cells
to sufficient numbers for therapeutic benefit (112). Even in
the case of PD-1 checkpoint blockade immunotherapy, IL-2
supplementation has offered combinatorial success with PD-
1 blockade in boosting quantitative and functional aspects of
exhausted CD8T cells for enhanced viral control (113). Needless
to say, the pleiotropic effects of IL-2 have posed significant
hurdles such as off-target side effects of IL-2 administration—
e.g., vascular leak syndrome due to activation of endothelial cells,
or induction of immune regulation by Tregs. To minimize side
effects, novel IL-2 muteins and immune complexes have been
developed to selectively target IL-2 to either effector or regulatory
T cells (5, 111, 114–116). By enhancing IL-2 binding to the β/γ
heterodimer typically expressed on effector CD8T cells, and thus
directing IL-2 away from Tregs—which typically express high
levels of IL-2Rα–these immune complexes and muteins provide
a means to avoid concomitant induction of Treg suppression
observed in case of rIL-2 administration that is counteractive
to the desired outcome of effector differentiation. We envisage
that detailed molecular dissection of the signal transduction and
transcriptional networks downstream of IL-2 signaling vis a vis
biological outcomes in individual immune cell-types will guide
innovative immunomodulatory strategies designed for distinct
clinical mandates. Along this concept, manipulations of the Bcl-
6-Blimp-1 and CD27-CD70 axes are being considered with the
goal of uncoupling effector differentiation effects of IL-2 from
expansion effects (89). Beyond the binary terminal effector or
memory outcomes conceived thus far, it is enticing to speculate
whether rheostatic regulation of MPEC and SLEC differentiation
states by controlling IL-2 signals might be exploited to balance
the immediate therapeutic benefits and long-term protective
outcomes during adoptive T cell therapy and therapeutic cancer
vaccines.
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