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Abstract

Ion channels are involved in many physiological processes and are attractive targets for therapeutic intervention. Their
functional properties vary according to their subunit composition, which in turn varies in a developmental and tissue-
specific manner and as a consequence of pathophysiological events. Understanding this diversity requires functional
analysis of ion channel properties in large numbers of individual cells. Functional characterisation of ligand-gated channels
involves quantitating agonist and drug dose-response relationships using electrophysiological or fluorescence-based
techniques. Electrophysiology is limited by low throughput and high-throughput fluorescence-based functional evaluation
generally does not enable the characterization of the functional properties of each individual cell. Here we describe a
fluorescence-based assay that characterizes functional channel properties at single cell resolution in high throughput mode.
It is based on progressive receptor activation and iterative fluorescence imaging and delivers .100 dose-responses in a
single well of a 384-well plate, using a1-3 homomeric and ab heteromeric glycine receptor (GlyR) chloride channels as a
model system. We applied this assay with transiently transfected HEK293 cells co-expressing halide-sensitive yellow
fluorescent protein and different GlyR subunit combinations. Glycine EC50 values of different GlyR isoforms were highly
correlated with published electrophysiological data and confirm previously reported pharmacological profiles for the GlyR
inhibitors, picrotoxin, strychnine and lindane. We show that inter and intra well variability is low and that clustering of
functional phenotypes permits identification of drugs with subunit-specific pharmacological profiles. As this method
dramatically improves the efficiency with which ion channel populations can be characterized in the context of cellular
heterogeneity, it should facilitate systems-level analysis of ion channel properties in health and disease and the discovery of
therapeutics to reverse pathological alterations.
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Introduction

Ion channels are involved in most physiological and disease

processes [1–3] and are considered highly attractive drug targets

for therapeutic intervention [4–7]. Their biophysical and phar-

macological properties are determined by the combination of

subunits, which in the case of ligand-gated channels is often

heterogeneous. It can change during development, in a tissue-

specific manner or as a consequence of pathophysiological events

[8–12]. It is necessary to characterise the properties of ion

channels in the context of cellular heterogeneity as a prerequisite

to understanding their physiological and pathological roles, and to

understand the effects of drugs on them [13,14].

The biophysical and pharmacological properties of ligand-gated

ion channels are typically evaluated by analysing activation and

inhibition concentration-responses and derived measures, in

particular half-maximal activation or inhibition concentration

(EC50, IC50), hill coefficient (nH or slope) and dynamic range of

the response. While there are various technologies available that

allow concentration-response experimentation with ion channels,

such as flow cytometry [15,16], dynamic mass redistribution [17]

or radioactive, non-radioactive and spectroscopic measurements

the most commonly applied methods are patch clamp electro-

physiology and fluorescence-based functional imaging [7,18–20].

Patch-clamp electrophysiology is referred to as the gold

standard of ion channel evaluation as it yields data of unsurpassed

spatiotemporal resolution and allows analysis at the level of single

cells and even single channels [21,22]. Despite advances in the

field of high-throughput electrophysiology, patch-clamp electro-

physiology remains labour intensive, requires highly skilled staff

and only supports a small number of individual experiments,

hence is not readily applicable to large-scale systematic approaches

with heterogeneous cell samples and chemical or genetic libraries

[5,23].

Fluorescence-based evaluation of ion channels in live cell assays

is typically conducted on hundreds to thousands of individual cells

using multimode fluorescence reader of high sensitivity that are

fast but low in spatial resolution. This method, usually imple-
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mented and scaled to high-throughput format, yields robust signals

and enables establishment of screening assays with large dynamic

range [24] but is limited with regard to single cell-resolution, due

to the stochastic average being masked by bulk measurements

[25]. Consequently, this technology is inappropriate for functional

screening analysis of ion channels in the context of cellular

heterogeneity.

To bridge the gap between the limited throughput of patch-

clamp electrophysiology and the low resolution of conventional

fluorescence-based high-throughput screening techniques, we

aimed to establish a method that allows large-scale functional

analysis of ion channels at the level of single cells and in high-

throughput mode. To this end, we aimed to adapt a YFPI152L-

based protocol for functional analysis of glycine receptor chloride

channels (GlyRs) in recombinantly modified HEK293 cells.

YFPI152L, an engineered variant of YFP with greatly enhanced

anion sensitivity, is quenched by small anions and is thus suited to

reporting anionic influx into cells [26]. It has proved useful in

screening compounds against many chloride channel types

[18,24,27].

The GlyR, which is a member of the pentameric Cys-loop ion

channel receptor family, mediates inhibitory neurotransmission in

the central nervous system. Functional GlyRs are formed from a

total of five subunits (a1–a4, b) which assemble either as a
homomeric or ab heteromeric channels. Biochemical, biophysical,

pharmacological and genetic evidence suggest the majority of

glycinergic neurotransmission in adults is mediated by heteromeric

a1b GlyRs although homomeric GlyRs are also expressed in

different tissues at varying abundance [10]. However, ahomo-

meric GlyRs might be more prevalent than previously assumed

given that b subunit expression has recently been shown to be low

in the mouse neocortex, cerebellum and hippocampus [28].

Although GlyRs are not yet targeted by any clinically useful

drugs, they have recently emerged as potential therapeutic

candidates for neurological disorders including epilepsy [29–31],

peripheral inflammatory pain [32], spasticity and hyperekplexia

[33]. New drugs that specifically modulate (i.e., inhibit or

potentiate) different GlyR isoforms may thus be useful as both

therapeutic lead compounds and as pharmacological probes for

basic research. In addition GlyRs and other members of the Cys-

loop ion channel receptor family have been implicated as

neurotoxicity targets for solvents [34] and insecticides [35] and

are increasingly acknowledged in the context of cancer [3,36].

In this article, we describe a fluorometric technique that allows

automated large-scale concentration-response experimentation

with GlyRs in the context of cellular heterogeneity to address

the issues encountered in the classical approaches described above.

We assessed the quality of the assay by correlating acquired EC50

values to functional characteristics obtained from patch-clamp

electrophysiology and evaluated its suitability for operation in

high-throughput mode. We further aimed to conduct a case study

with the insecticide lindane in pure and mixed cell populations to

assess the usability of the employed assaying technique for

clustering GlyR phenotype populations and for identification of

subunit-specific drugs in heterogeneous cell cultures.

Materials and Methods

Cell Culture
Experiments were performed on HEK293 cells cultured in

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with

10% fetal calf serum and 1% penicillin/streptomycin. Approxi-

mately 56105 cells suspended in 5 mL DMEM were.

plated into 60-mm culture dishes and were transfected when

approx. 80% confluent. YFP and GlyR chloride channel subunits

were transfected in 1:1 (YFP and a1-3 GlyR homomers) or 2:1:1

ratio (YFP, GlyR a1-3 homo and a1-3b GlyR heteromers) with a

total cDNA quantity of 1 mg. Cells were transfected using calcium

phosphate precipitation transfection technique, as described in

Sambrook et al. [37]. Transfection efficiency varies from 20 to

60%. We routinely achieve a correlation of 80 to 90% between

cells expressing YFP and cells expressing GlyRs. We have

published a detailed comparison of five transient transfection

methods employed routinely in the laboratory for this purpose

[27].

Molecular Constructs
The human a1, a2 and a3 GlyR plasmid DNAs were subcloned

into the pcDNA3.1 plasmid vector and the human b subunit

plasmid DNA was subcloned into pIRES2-EGFP plasmid vector.

The UniprotKB accession numbers for the DNAs are as follows

(with gene name in brackets): a1 (GLRA1): P23415, a2 (GLRA2):

P23416, a3 (GLRA3): O75311 and b(GLRB): P48167.

Cell Lines
Hek293 cells (CRL-1573TM) were purchased from The American

Type Culture Collection (ATCC).

Preparation of Cells for Experiments
Following termination of transfection, cells were trypsinized by

adding 0.7 mL of 0.25% trypsin–EDTA solution (Gibco BRL),

resuspended into DMEM, and 2.56103 cells, suspended in 40 mL

DMEM, were plated into each well of a transparent 384-well plate

for fluorescence imaging experiments. Cells were used in

experiments 24 h later. Individual wells typically contained

56103 cells at the time of the experiment. Approximately 1 h

prior to commencement of experiments culture media in 384-well

plates were removed by turning the plate upside-down onto a stack

of tissue and were left for approximately 30 sec until culture media

was entirely removed from the wells. The culture media was

replaced by 20 mL standard control solution, which contained (in

mM) NaCl 140, KCl 5, CaCl2 2, MgCl2 1, HEPES 10, and

glucose 10 (pH 7.4) using NaOH. The NaI test solution was

similar in composition to NaCl control solution except the NaCl

was replaced by equimolar NaI. For repeated receptor stimulation

with increasing agonist concentration NaI test solution was

supplemented with 30 mM glycine and serially diluted with NaI

test solution to obtain agonist solutions containing 0.1, 0.3, 1, 3,

10, 30, 100, 300, 1000, 3000, 10000 and 30000 mM final glycine

concentration. For drug screening experiments agonist solutions

were supplemented with strychnine (10, 30, 100 mM), picrotoxin

(10, 100 mM) and lindane (10, 100 mM) respectively. Drugs were

diluted from stocks in agonist solution according to desired final

concentrations. The final concentration of applied drugs was

adjusted for high-throughput drug screening that is typically

conducted at concentrations in the micromolar range [38,39].

Experiments were conducted at room temperature (19–22uC).

Pharmacological Reagents
Glycine, picrotoxin, lindane and strychnine were obtained from

Sigma-Aldrich Chemie GmbH (Steinheim, Germany). Picrotoxin

and strychnine were prepared as 100 mM stocks in dimethylsulph-

oxide (DMSO). Lindane was prepared as 30 mM stock in DMSO

and glycine was prepared as a 1 M stock in water. All stocks were

frozen at 220uC. From these stocks, solutions for experiments

were prepared on the day of recording.

Single-Cell Dose-Response Imaging
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Imaging Infrastructure
For imaging experiments we have designed an automated

fluorescence microscope (Olympus IX51 inverted microscope)

equipped with a motorized stage (Prior ProScan II, Prior Scientific

Instruments, Cambridge, UK), a CCD camera (CoolSNAP

monochrome cf/OL, Olympus) an LC PAL autosampler (CTC

Analytics, Zwingen, Switzerland) with 100-mL syringe and a 100-

W mercury arc lamp (HBO 103/2, Osram, Germany) for

illumination. A suite of LabView 2010 (National Instruments,

Ireland) software routines purpose written was used for hardware

control, image acquisition, data storage and image analysis [24].

Imaging Experiments
The 384-well plates were placed onto the motorized stage of our

in house-built imaging system and cells were imaged with a 106
objective (UPlanFLN, N.A. 0.30, Olympus,Tokyo, Japan). Illumi-

nation from a mercury arc lamp, passing through a YFP dichroic

mirror (86002V2 JP4 C76444, Olympus), was used to excite YFP

fluorescence. Fluorescence was imaged by a CCD and digitized to

disk onto a personal computer. The primary resolution of the

camera was 139261040 pixels, although images were binned

(262), resulting in a resolution of 6966520 pixels.

The maximum image acquisition rate was 1.25 Hz. Solutions

containing agonist and drug were pipetted into a 384-well plate

and placed onto LC PAL sample holder platform. Liquid handling

was performed with the autosampler described above. Solutions

were applied to cells at a rate of 0.6 ml/min. The experimental

protocol involved imaging each well eleven times: once in 20 ml

control solution and ten times 5 sec after the injection of 10 ml NaI

agonist solution containing increasing concentrations of glycine

and, when used, constant drug concentrations.

Image Analysis
Images of fluorescent cells were segmented and quantitatively

analyzed using a modified version of DetecTIFFH software [40]. In

brief, images were segmented using an iterative size and intensity-

based thresholding algorithm and the fluorescence signal of

identified cells was calculated as the mean of all pixel values

within the area of a cell.

Calculation of Concentration-response Relationships
Individual concentration responses were constructed from

image series of the same cells exposed to increasing glycine

concentrations, resulting in 11-point dose responses for each of the

imaged cells. As only those cells near the centre of the well were

evaluated each image typically contained 100 to 500 fluorescent

cells revealing the same number of agonist concentration responses

for each tested well of a 384-well plate. Recorded single cell-

derived glycine concentration-response relationships were fitted

with the LabView VI nonlinear curve fit.vi. This VI uses the

Levenberg-Marquardt algorithm to determine the set of param-

eters that best fit the set of input data points (X, Y) as expressed by

the nonlinear function:

y~f x,að Þ

where a is the set of parameters. The curve model is defined by the

following equation:

F i½ �~f (( glycine½ �) i½ �,Fmax,Fmin,EC50,slope)

where F is the fluorescence value corresponding to a particular

glycine concentration, [glycine]; Fmin and Fmax are the fluores-

cence values at highest and lowest agonist concentration,

respectively; EC50 is the concentration that elicits half-maximal

activation; and slope is the incline of the sigmoidal curve at half-

maximal activation.

Data Filtering
To exclude data recorded from biologically irrelevant objects

calculated concentration response characteristics were filtered by

the following parameters:

1. Goodness of fit (R2, $0.9), to include curve fits that represent

the data points to a high degree.

2. Dynamic range of fluorescence change (DF, 20–100%), to

include cells co-expressing both, YFPI152L and GlyRs. The

dynamic range (% fluorescence change) is defined as

DF~ Ffinal=Finit

� �
{1

� �
|100

� �

where Fmin and Fmax are the fluorescence values at highest and

lowest agonist concentration, respectively.

3. Slope of the curve at half-maximal receptor activation (slope,

0.5–5), to include a wide range of physiologically relevant

values.

4. Half-maximal concentration of receptor activation (EC50, 0.3–

3000 mM), to allow for a large range of experiments with

different cell lines and drugs shifting the EC50 towards higher

agonist concentrations.

Filter ranges for enrichment of functional data were determined

empirically by biological relevance. If not stated otherwise,

averaged EC50 values are displayed as median +/2 SEM.

Clustering of Functional GlyR Phenotypes in
Heterogeneous Cell Cultures

Functional parameters (EC50, slope) of training and test sets

were annotated in Microsoft Excel. The model for phenotype

classification was computed by a 10-fold cross-validation of the

training set using J48 decision tree algorithm [41] available in

WEKA 3.6 software [42]. Predicted phenotypes were saved in

*.csv format and displayed with Origin 7G.

Whole-cell Patch-clamp Electrophysiology
Cells were transfected as described above and plated onto glass

coverslips in 3 cm culture dishes. Coverslips containing cells were

placed in a recording chamber on the stage of an inverted

fluorescent microscope and currents were recorded using the

whole-cell patch-clamp configuration. Cells were perfused by

extracellular solution containing (in mM): 140 NaCl, 5 KCl, 2

CaCl2, 1 MgCl2, 10 HEPES/NaOH and 10 glucose (pH 7.4

adjusted with NaOH). Patch pipettes were fabricated from

borosilicate hematocrit tubing (Hirschmann Laborgeraete, Eber-

stadt, Germany) and heat polished. Pipettes had a tip resistance of

1–2 MV when filled with the intracellular solution consisting of

(mM): 145 CsCl, 2 CaCl2, 2 MgCl2, 10 HEPES and 10 EGTA

(pH 7.4 adjusted with CsOH). After establishment of the whole-

cell recording configuration, cells were voltage clamped at

240 mV and membrane currents were recorded using an

Axopatch 1D and pClamp 10 software (Molecular Devices).

Currents were filtered at 500 Hz and digitized at 2 KHz.

Single-Cell Dose-Response Imaging
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Because asubunits can form functional receptors with or

without b subunits, it was necessary to confirm that the expressed

receptors incorporated b subunits. As the GlyR b subunit cDNA

was cloned into the pIRES2-EGFP plasmid vector, we used green

fluorescent protein fluorescence to identify cells transfected with

the GlyR b subunit. The successful incorporation of b subunits

into functional heteromeric GlyRs was also confirmed pharmaco-

logically by their characteristic reduction in lindane sensitivity as

described below.

Statistical Analysis
The statistical significance between two independent experi-

mental groups was determined by unpaired Student’s t-test, with

p,0.05 representing significance.

Results

We have established a fluorometric, YFPI152L-based screening

assay for massively parallel functional analysis of GlyRs in

individual cells, providing .100 glycine dose-responses in a single

experiment. The assaying approach is based on progressive

receptor activation by application of increasing agonist concen-

tration followed by imaging and quantitative analysis of cellular

YFP signal, including image segmentation and quantification,

curve fitting and rigorous filtering of parameters derived from

dose-responses to discriminate unreliable from physiologically

plausible data. The experimental workflow is shown in Fig. 1.

Assay Development
To determine the optimal timing conditions for generating

single cell-based concentration responses of GlyRs, we co-

transfected HEK293 cells with YFPI152L and a1 GlyR cDNA

and seeded the cells at defined density of 2.56105 cells in each well

of a 384-well plate. The next day, and approximately 1 h prior to

imaging, the culture medium was completely removed and was

replaced by 20 ml NaCl control solution. The 384-well plate was

placed onto the motorized stage of our in house-built imaging

system and cells were imaged once in control solution to record

cellular YFP fluorescence in unquenched state (see grey dot at time

zero in Fig. 2A). As YFPI152L is almost insensitive to chloride, its

fluorescence intensity is highest in NaCl solution allowing for

optimal focussing into the optical layer of cells. Subsequently, cells

were perfused with 10 ml NaI solution containing progressively

increasing concentrations (0.1–300 mM) of glycine and were

imaged after the addition of each new glycine concentration by

a series of 5 images recorded at 1.5 s intervals. Fig. 2A shows a

sample time-resolved single cell recording of fluorescence intensity

changes resulting from exposure to the increasing glycine

concentrations. Application of low glycine concentrations (0.1–

3 mM) resulted in fluorescence quench, followed by decreasing

fluorescence quench (grey dots) with a peak at 3 sec (3 mM) to

6 sec (0.1 mM) past receptor activation (red dots) indicating iodide

efflux upon receptor activation possibly due to the newly-created

outward anion electrochemical gradient enhancing iodide efflux

through other transport pathways. Application of higher glycine

concentrations (10–300 mM) resulted in fluorescence quench,

followed by increasing fluorescence quench, indicating iodide

Figure 1. Work flow of experiment and data analysis. HEK293 cells were transiently co-transfected with YFPI152L and GlyR cDNA (a).
Approximately 48 h later, cells were seeded into the wells of 384-well plates at defined density and are cultured for another 24 h (b). Functional
analysis of GlyRs is carried out by progressive receptor activation and iterative fluorescence imaging using an in house-built automated screening
device with integrated liquid-handling robotics (c). Recorded images are segmented and fluorescence dose-responses calculated (d) are fitted (e).
Finally, functional parameters measured in single cells, such as R2, DF, slope and EC50 are filtered to discriminate functional from non-functional data
(f).
doi:10.1371/journal.pone.0058479.g001
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influx via GlyRs into the cell. Red dots indicate time points

allowing for largest dynamic range of the concentration response.

We recorded fluorescence intensity changes immediately after

solution delivery (Fig. 2A, blue dots) for two reasons. First, it avoids

possible contamination of concentration-response relationships by

other transport pathways, and second, it dramatically speeds up

the rate of data acquisition compared to time points indicated by

red dots. Fluorescence dose-response data were fitted automati-

cally using a Levenberg-Marquardt algorithm provided by the

LabView VI nonlinear curve fit.vi. Fitting-derived parameters are

often biased by objects such as non-cellular fluorescent matter or

by cells that either do not express GlyRs or are washed away

during repetitive perfusion. We thus filtered the fitting-derived

parameters using four quality criteria: goodness of fit (R2),

dynamic range of fluorescence quench (DF), slope of the curve

at half-maximal receptor activation (slope, nH) and half-maximal

concentration of receptor activation (EC50). The settings for each

parameter are listed above in Methods. Fig. 2B shows filtering

statistics calculated from fluorescent objects recognized in 200

wells randomly selected from 10 independent experiments with 20

selected wells per experiment (n = 51469 objects, 5146.961823.8

objects/experiment, 257.3691.2 objects/well). The columns

display the mean number of objects (6 SD) that were accepted

per experiment after filtering by the parameters, EC50

(473161888; 9067%), slope (442261828; 8468%), R2

(417661999 78613%) and DF (36116876; 74614%), respec-

tively. When all four parameters were combined, approximately

half of all recognized objects were rejected (26146871 objects,

5167%). Fig. 2C represents normalized rejected (black, n = 95)

and accepted (grey, n = 186) concentration-response curves

calculated from fluorescence signals measured in a randomly

selected well (n = 281). The dot-plot in Fig. 2D shows the relation

of EC50 and slope values. This representation was used throughout

this study as it allowed clear visible discrimination of distinct

functional populations. Allowing for rejected objects, the number

of recorded concentration-responses per well is high. In average

131641 individual concentration-responses were generated in one

well adding up to ,10,000 concentration-responses per 384-well

plate with 60–80 wells per plate. To our knowledge, this level of

data acquisition from single cells has not previously been achieved

in a single experiment, i.e. from a 384-well plate.

Quality Control and Assay Validation
To determine whether this assay could discriminate among

different GlyR isoforms we transiently co-transfected HEK293

cells with halide-sensitive YFPI152L and either a1, a2 or a3 GlyR

cDNA. Fig. 3A displays single cell-derived EC50 and slope values

for a1, a2 and a3 GlyRs recorded in individual wells as described

above. Averaged EC50 values (in mM) are as follows: a1 (10.160.4,

n = 147), a2 (4962, n = 114) and a3 (186617, n = 212). Slope

values range between 0.47–1.92 (1.1960.03), 0.51–4.73

(2.9260.09) and 0.39–3.43 (0.9160.03) for a1, a2 and a3 GlyRs,

respectively. Averaged and normalized dose-responses from the

experiment depicted in panel A are shown in Fig. 2B.

To evaluate how our method compares to whole cell patch-

clamp electrophysiology, we correlated averaged EC50 values from

the data shown in Fig. 3A with values previously measured in our

lab (Fig. 3C). Regression analysis (dashed line) revealed excellent

correlation with data from whole-cell patch-clamp electrophysiol-

ogy (R2 = 0.99). Thus, our fluorescence-based method for physi-

ological profiling of GlyR subtypes compares well with patch-

clamp electrophysiology.

To assess inter-well reproducibility we recorded concentration-

response relations from 64 wells of a 384-well plate containing cells

co-expressing YFPI152L and a2b GlyR heteromers. Fig. 3D shows

a box-plot of glycine EC50 measured in single wells from a total of

6514 cells (102635 cells/well). The mean single well-derived EC50

values as indicated by black line in displayed boxes vary between

10 and 30 mM glycine. The overall low inter-well variability

indicates the assay is suited for high-throughput screening.

To test whether our assay is applicable to identification of drugs

that specifically modulate homomeric or heteromeric GlyRs, we

exposed cells co-expressing YFPI152L and a1 or a1b receptors to

strychnine or lindane while performing the glycine dose-response

protocol as described above. Fig. 3E shows averaged glycine EC50

values of HEK293 cells expressing a1 or a1b GlyRs measured in

single wells and exposed to control solution (a1:9.860.5, n = 197;

a1b: 7.862.3, n = 149) as well as to solution containing 10 mM

lindane or 30 mM strychnine, respectively. As expected for a

classical competitive antagonist that does not discriminate amongst

GlyR subtypes [43], strychnine dramatically increased the glycine

EC50 values of both receptors (a1:346626, n = 186; a1b 121615,

n = 205) (Fig. 3E). Lindane has previously been shown in

electrophysiological studies to inhibit a1 but not a1b GlyRs

[35]. Our fluorescence assay likewise demonstrates lindane

antagonism of a1 but not a1b GlyRs (a1:26.461.6, n = 156;

a1b 8.160.6, n = 128) (Fig. 3E) thus validating our assay for

identification and characterization of GlyR subtype-specific drugs.

Note that the strychnine sensitivity as determined here is lower

than has previously been determined by electrophysiology or

radioligand binding assays [10]. Because glycine accesses its

receptor site quickly and strychnine access its site slowly, in co-

application experiments as employed here, the YFP will be

quenched (signalling full activation) before strychnine has had time

to inhibit the receptors. Hence, super-saturating strychnine

concentrations are required to enable it to bind rapidly enough

to antagonise glycine activation.

Case Study: Mode of Action of Lindane at Heteromeric
a2b and a3bGlyRs

It has recently been reported that the neurotoxic insecticide

lindane (c-hexachlorocyclohexane) selectively inhibits homomeric

a1, a2 and a3 GlyRs but not heteromeric a1b channels [35]

rendering the molecule an excellent pharmacological tool for

identifying the presence of b subunits in functional GlyRs.

However, its effects on a2b and a3b GlyRs has not been

investigated. Cells expressing YFPI152L and a2, a2b, a3 or a3b
GlyRs were investigated in control NaI solution in the presence of

NaI solution plus 10 mM lindane. Fig. 4 shows dot-plots of EC50

and slope values obtained from glycine dose-response recordings

on a2 and a2b GlyRs (upper panels) and on a3 and a3b GlyRs

(lower panels) in both the absence and presence of 10 mM lindane.

Under control conditions average half-maximal a2 and a2b GlyR

activation was observed at 4762 (n = 114) and 3062 (n = 166) mM

glycine, respectively (Fig. 4C). Exposure to 10 mM lindane results

in inhibition of homo but not heteromeric receptors (a2:190615,

n = 106; a2b 3262.5, n = 155). Similar results were obtained with

cells expressing a3 homo and a3b heteromeric GlyRs (Fig. 4F).

Under control conditions median half-maximal a3 and a3b GlyR

activation was observed at 130617 (n = 212) and 46.864.0

(n = 122) mM glycine, respectively. Exposure to 10 mM lindane

results in inhibition of homo but not heteromeric receptors

(a3:337618, n = 138; a3b 5565, n = 106). These results confirm

lindane as a pharmacological tool for identifying the presence of b
subunits in functional GlyRs.

Single-Cell Dose-Response Imaging
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Effect of Lindane at a2b and a3bGlyRs Assessed by
Patch-clamp

The effects of lindane were also investigated on a2, a2b, a3 or

a3b GlyRs using the whole-cell patch-clamp technique. As shown

in the sample recordings in Fig. 5A, the effects of 100 mM lindane

were investigated on currents activated by EC50 glycine in each of

the four receptor types. Averaged results, presented in Fig. 5B,

indicate lindane potently inhibited a2 and a3 GlyRs but had no

significant effect on a2b and a3b GlyRs (% block, a2:9465, a2b:

2364, a3:9664, a3b: 1463). This validates the results obtained

using our novel fluorescence-based assay.

Functional Phenotyping of GlyRs in Heterogeneous Cell
Populations

For the sake of feasibility and throughput, conventional

fluorescence-based ion channel-targeted drug screening is typically

conducted in recombinant cell lines that express a single ion

channel. The same is true for screening approaches targeting a

specific ion channel subunit. Although multiplexing of various

readout measures, e.g. different fluorescence indicators, is often

applied this methodology is not applicable to parallel functional

analysis of multiple subunits of the same receptor as the identical

indicator is required for functional imaging of different subunits.

Hence, when a large number of individual subunits are to be

analysed, each isoform requires individual evaluation in serial

Figure 2. Development of the assay for single cell-based functional imaging. A. Determination of optimal assay conditions. HEK293 cells
YFPI152L and a1 GlyRs were seeded into 384-well plates. The culture medium was replaced by 20 ml control NaCl solution and cells were imaged once
to record cellular fluorescence in unquenched state (grey dot at 0 mM glycine). This step was conducted to optimise auto-focussing and detection of
fluorescent objects in recorded fluomicrographs. Cells were perfused with NaI solution containing indicated lycine concentrations, whereupon a
series of 5 images was recorded every 1.5 s. The lowest and highest fluorescence intensity, recorded in the first and fourth/fifth image is colored blue
and red, respectively, with the intensities in intermediate images colored grey. B. Data filtering. Images of fluorescent cells always contained a
substantial amount of debris (e.g. dead cells, cells expressing YFPI152L but not GlyRs or cells detaching during perfusion). To discriminate functionally
relevant fluorescence signals from artefactual data, dose responses were filtered after automatic curve fitting. The histogram shows the average
number (mean 6 SD) of objects per image, averaged from 10 experiments, with 20 randomly selected wells per experiment before (black, cells &
debris) and after filtering (striped, mainly cells) using either of the parameters EC50, slope (nH), R2 and DF as described in Methods. To achieve a
maximal number of unbiased concentration responses all four parameters were combined for filtering (grey), resulting in approx. 50% of data points
considered acceptable. C. Representation of normalized concentration-responses measured in a single well after filtering. In this example a total of
186 (grey) and 95 (black) cells were accepted and rejected, respectively. D. Scatter plot of EC50 and slope values derived from curves shown in panel
C. ***P,0.0001 relative to untreated control, unpaired t-test.
doi:10.1371/journal.pone.0058479.g002
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mode that is time and cost intensive. To demonstrate the versatility

of our assaying technique for parallel functional analysis of

multiple GlyR subunits in heterogeneous cell cultures we applied

the assay with pure and mixed recombinant cell lines and the

GlyR inhibitors strychnine, picrotoxin and lindane. HEK293 cells

were transiently co-transfected with halide-sensitive YFPI152L as

well as with a2 and a2b glycine receptor chloride channel cDNA

and were seeded into 64 wells (868 wells) of a 384-well plate in the

following pattern. A mixture of a2 and a2b GlyR expressing cells

(1:1 ratio) was seeded into columns 1–5 and 8. Columns 6 and 7

were supplemented with cells expressing a2 and a2b GlyRs,

respectively. The agonist solutions were supplemented with

strychnine, picrotoxin and lindane, each at 10 and 100 mM

concentration and cells were used for functional screening as

shown in Fig. 1. Fig. 6A shows a color map of median glycine

EC50 (in mM) with cold and warm colors representing low and

high values, respectively. The color coding indicates inhibition of

a2 homomeric GlyRs by all drugs as well as a2b heteromeric

GlyRs by strychnine but no inhibition of a2b heteromeric GlyRs

by picrotoxin and lindane, validating previous data obtained using

the assay as well as from the literature [43]. A dot-plot of glycine

EC50 and slope values measured in presence of 10 and 100 mM

lindane in pure (a2, blue; a2b, orange) and mixed (a2+a2b, green,

1:1 ratio) cell populations from the experiment in A is shown in

Fig. 6B. For clustering of functional GlyR phenotypes in pure and

heterogeneous cultures we used the functional profiles of lindane-

exposed cells expressing a2 and a2b GlyRs and trained a classifier

using a set of 402 cells with 136 cells for class a2 and 267 cells for

class a2b A 10-fold cross-validation on the training set revealed

97.8% (a2:132 [97.8%)]; a2b: 3 [2.2%] cells) and 91% (a2:24

[8.9%]; a2b: 243 [91.1%] cells) accuracy for a2 and a2b GlyR

expressing cells, respectively. Cluster analysis using the model from

cross-validation revealed 53 (57.6%) and 39 (42.3%) cells classified

a2 and a2b, respectively. The bars in the histogram in Fig. 6C

represent the percentage of cells assigned to either of the two

classes and reflect the initial 1:1 mixing ratio. The proportion of

cells classified a2 in populations enclosing a2b GlyR is overall

higher compared to the fraction of cells predicted a2b in cultures

Figure 3. Quality control and proof-of-principle of the screening assay. A. Dot plot of glycine EC50 and slope values obtained from dose-
response experiments with cells expressing a1, a2 and a3 GlyRs conducted in individual wells. B. Averaged and normalized concentration-responses
from the experiment depicted in A. C. Comparison of EC50 values from the experiment shown in panels A and B to data from whole-cell patch-clamp
electrophysiology (Islam and Lynch, 2011). D. Box-plot of glycine EC50 in a2b GlyRs measured in 64 wells of a 384-well plate demonstrating the
stability and usability of the assay for operation in high-throughput mode. Boxes and whiskers display the 25–75% and 5–95% data ranges,
respectively, of all accepted values in each well. E. Drug-effects of 10 mM lindane (grey) and 30 mM strychnine (light grey) on a1 and a1b GlyRs,
validating our assay for identification and characterization of chemicals modulating GlyRs. ***P,0.0001 relative to untreated control, unpaired t-test.
doi:10.1371/journal.pone.0058479.g003
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expressing a2 GlyR. These data suggest heterogeneous expression

of a2 and a2b GlyRs in cell cultures transfected with a2 and b
GlyR cDNA but were not further evaluated. Our results extend

the applicability of the assay to functional phenotyping of GlyRs in

heterogeneous cell cultures for identification of subtype-specific

drugs and verify its suitability as a versatile platform for cell-based

ion channel-targeted drug screening.

Discussion

Large-scale analysis of ion channel function and systematic

screening for subunit-specific drugs is hampered by the limitations

of conventional assaying techniques. Despite available automated

platforms, high-resolution patch-clamp electrophysiology is still

limited in throughput compared to, e.g. fluorometric approaches

that allow experimentation in high-throughput mode but that are

low in resolution. For the sake of feasibility, throughput and cost

reasons, large-scale functional analysis and ion channel-targeted

drug screening are initially conducted in high-throughput mode

using fluorometric approaches and identified candidates are

subsequently analysed in more detail in secondary assays using

either fluorescence-based or electrophysiological techniques. The

initial benefit is often compromised by subsequent time-consuming

and cost-intensive re-screens for confirmation of candidates and

detailed characterization. To address this issue, we have developed

an assay for functional profiling of ligand-gated ion channels, in

particular GlyRs in single cells that is cost-effective, reliable and

that is advantageous for several reasons. First, this assay is high-

throughput compatible, thus allowing for efficient and thorough

screening. Second, the approach makes use of little and cost-

effective reagents, circumventing the need for expensive plastic

ware and reagents, such as loadable fluorescence indicators. Third,

this assay reveals a high number of single cell derived dose-

responses and associated characteristics, such as EC50, slope (nH)

and dynamic range of concentration response that allow large-

scale analysis of ion channel function and systematic screening for

subunit-specific drugs in pure and heterogeneous cell cultures.

We applied the assay with homomeric a1, a2 and a3 GlyRs and

observed excellent correlation to EC50 values from patch-clamp

electrophysiology, the gold standard in ion channel research,

demonstrating the high level of accuracy of the assay and its

suitability for assessing functional characteristics in single cells.

Figure 4. Effects of the lindane on a2, a3, a2b and a3b GlyRs as determined by fluorescence assay. A, B, D, E. Dot plots of glycine EC50

and slope values in absence (black) and presence (grey) of 10 mM lindane measured in single cells expressing a2 and a2b (A–B) and a3 and a3b (D–E)
GlyR. C, F. Histogram of median glycine EC50 (6SD) calculated from data shown in panels A, B (C) and D,E (F). These results provide evidence for
lindane as a pharmacological tool for identifying the presence of b subunits in a2b and a3b heteromeric GlyRs. ***P,0.0001 relative to untreated
control, unpaired t-test.
doi:10.1371/journal.pone.0058479.g004
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Despite the fact that a large proportion (,50%) of all raw data

generated using the assay were rejected there are still .100

individual dose-responses measured in a single experiment, i.e.

well of a 384-well plate. At given conditions imaging of a single

agonist concentration, including liquid-handling and image

acquisition requires approx. 22 s per well. A complete imaging

cycle for generating an eight to ten-point concentration-response,

including auto-focus procedure and acquisition of control image

adds up to a cumulative duration of 3.6–4.3 min per well allowing

for screening analysis of 60–80 wells per 384-well plate. In this

configuration up to 10,000 dose-responses are measured per 384-

well plate resulting in ,30,000 dose-responses per day with three

384-well plates per day. Measurement of a single dose response

using the conventional fluorescence-based approach and our in

Figure 5. Effects of the lindane on a2, a3, a2b and a3b GlyRs as determined by patch-clamp. A. Examples of currents activated by EC50

glycine concentrations in HEK293 cells expressing the indicated GlyR subunits. Examples of the effects of 100 mM lindane on each GlyR isoform are
also shown. B. Mean percentage (6 SD) of EC50 glycine current blocked by 100 mM lindane. All results were averaged from 4–7 cells. ***p,0.0001
analysed by unpaired t-test.
doi:10.1371/journal.pone.0058479.g005

Figure 6. Clustering functional GlyR phenotypes in pure and heterogeneous cell populations. A. Color map of mean glycine EC50 (mM) in
presence and absence of the drugs strychnine, picrotoxin and lindane, as indicated. Warm and cold colors represent low and high EC50 values
indicating no effect and inhibition, respectively. The black rectangle highlights experiments shown in B and C. B. Dot plot of glycine EC50 and slope
values measured in presence of 10 and 100 mM lindane in pooled pure (a2, blue; a2b, orange) and mixed (a2+a2bgreen, 1:1 ratio) cell populations
from the experiment in A. Values measured in pure populations were used for training a J48 decision tree classification algorithm. C. Functional
phenotyping of lindane-exposed GlyRs in pure (a2, blue; a2b, orange) and mixed (a2+a2b green) cell populations. Cells were classified according to
their descriptors with a training set of 402 cells distributed in 2 classes: a2 (black), a2b (grey). Bars represent the percentage of cells assigned to either
of the two classes and reflect the initial 1:1 mixing ratio (green).
doi:10.1371/journal.pone.0058479.g006
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house-built imaging system takes about 15 min suggesting an

approx. 500-fold increased throughput for the novel assaying

technique presumably outranging any other existing technique for

assessing physiological properties of ion channels and highlighting

the advantage of our approach over conventional fluorescence-

based and electrophysiological methods.

We evaluated the quality of the assay to assess its suitability for

high-throughput screening and observed robust operation and

small inter-well variation implying its usability for high-throughput

screening. Despite these results we were not able to use the full

potential of the assay, e.g. for screening analysis of a complete 384-

well plate due to limitations of our custom-designed hardware

restricting the throughput to approx. 80 wells of a 384-well

multititer plate. All experiments were conducted in extracellular

solution at room temperature. Under these conditions and from

our experience cells can be used in experiments for four to five

hours limiting the time window for functional imaging. Imple-

mentation of infrastructure controlling environmental conditions,

such as temperature and atmosphere allowing for long-term life-

cell imaging would help to increase throughput and efficiency of

the assay. Furthermore, iterative and sequential delivery of assay

reagents using our in house-built imaging system is time-

consuming and limits the applicability of the assay to non-

desensitizing ion channels. Implementation of, e.g. microfluidic

devices permitting rapid solution exchange [20,44–46] or usage of

caged agonists and flash-photolysis [47,48] enabling concentration

changes with fast kinetics could shorten cumulative imaging time,

thus increasing throughput and extending the applicability of the

assay to other types of ion channels.

We applied the assay in small-scale screening experiments with

the drugs strychnine, picrotoxin and lindane and confirmed

previously reported pharmacological profiles. Both picrotoxin and

lindane have been reported to potently inhibit homomeric a2

GlyRs at the concentrations employed here [49,35]. However, the

color map in Fig. 6 A indicates overall less block of homomeric a2

GlyRs by picrotoxin compared to lindane. The two drugs produce

inhibition by different mechanisms. Picrotoxin inhibitory potency

is reduced as glycine concentration is increased [50]. In contrast,

lindane inhibitory potency is not affected by glycine concentration

[35]. In Fig. 6 we measured glycine EC50 values in the presence of

fixed concentrations of each drug. As glycine should not easily be

able to overcome non-competitive lindane inhibition, an extremely

high glycine EC50 will be observed in the presence of lindane. In

contrast, glycine should be more easily able to overcome

picrotoxin inhibition, a more modest glycine EC50 increase is

expected in the presence of picrotoxin. Our findings on the toxicity

profiles of lindane at a2b and a3b GlyRs were validated by patch-

clamp electrophysiology. These results demonstrate the accuracy

of the assaying technique and its applicability to ion channel-

targeted drug screening. Despite the fact that we applied the assay

with drugs inhibiting GlyR it is equally applicable for identification

of channel activators and potentiators.

To demonstrate the versatility of the method as a general

platform for drug screening in heterogeneous cell cultures we

applied our assay with lindane-exposed pure and mixed cell

populations. The initial 1:1 mixing ratio was reflected by cluster

analysis. Remarkably, the proportion of cells classified a2 in

populations including a2b GlyR was overall higher compared to

the fraction of cells predicted a2b in cultures expressing a2 GlyR.

These data suggest heterogeneous expression of a2 and a2b GlyRs

in cell cultures transfected with a2 and b GlyR cDNA and validate

observations from electrophysiology. When b containing GlyR are

to be analysed by whole-cell patch-clamping is always necessary to

confirm that the expressed receptors incorporated b subunits, e.g.

by using a fluorescent protein cloned into the b subunit-encoding

plasmid vector. While the assaying technique was initially applied

for identification of subunit-specific drugs in mixed cell popula-

tions it provided additional information on heterogeneous GlyR

expression, extending its applicability to functional analysis, that

could be used e.g. for optimizing the expression of ion channels in

recombinant systems or for creating comprehensive, large-scale

and even time-resolved functional expression profiles of ion

channels in cultures of primary or stem cells that are typically

assessed in small-scale approaches using conventional methods.

Single-endpoint or time-resolved expression profiles could be

integrated with data from ‘omics’ approaches and help to gain a

systems-level understanding of human physiology in maintenance

and disease.

In the present example the heterogeneous culture was

established from a known and small number of subpopulations

and the applied analytical strategy using EC50 and slope values for

prediction of classes has proven to be sufficient for clustering

functional phenotypes. When more complex heterogeneous cell

cultures, that consist of an unknown number of subpopulations, or

mixed cell populations created from multiple cell lines are to be

screened, more sophisticated analytical methods can be employed

for interpretation of screening results. In this case additional single

cell-derived functional characteristics, such as the dynamic range

of the concentration response or even non-functional, e.g.

morphological descriptors could be included for multiparametric

analysis [51–53].

Our method uses a single indicator for functional characterisa-

tion allowing additional fluorescence or luminescence-based

indicators to be implemented for multiplexing, e.g. for parallel

analysis of further ion channels, to assess the activity of signalling

pathways or for mapping cellular morphology to functional

phenotypes. The combination of different assaying methods in

the same experiment adds a level of efficiency by reducing sample

supply, reducing cell culture and assay consumable requirements

and eliminating redundant steps for sample preparation, plate

replication, and assay execution.

In summary, our experimental and analytical method improves

the classical fluorescence-based and electrophysiological assaying

approaches for dose-response experimentation in terms of time,

data content and cost. Based on our observations it is tempting to

state that fluorometric functional imaging at the level of single cells

enables accelerated characterisation of ion channels and ion

channel-targeted drug screening compared to the classical

approaches and eliminates the need for additional re-testing using

independent assays. It is important to mention that the applica-

bility of the described method depends on the ion channels to be

evaluated and targeted, on the individual experimental setup, the

available instrumental infrastructure and the biological question to

be assessed. While this work focuses on functional profiling of

GlyRs and GlyR-targeted drug screening, our method could also

be adapted for other ion channels and strategies, such as RNAi or

combined small molecule and RNAi screening, for single-endpoint

or time-resolved functional expression analysis or for approaches

using overexpression libraries. Altogether, this work contributes to

furthering the applicability of cell-based high-throughput func-

tional screening and provides a means for large-scale character-

isation of ion channels in the context of cellular heterogeneity

promoting a systems-level understanding of human physiology in

homeostasis and disease.
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17. Schröder R, Schmidt J, Blättermann S, Peters L, Janssen N et al. (2011).

Applying label-free dynamic mass redistribution technology to frame signaling of

G protein-coupled receptors noninvasively in living cells. Nat Protoc. 6(11):

1748–60.

18. Gilbert DF, Islam R, Lynagh T, Lynch JW, Webb TI (2009) High Throughput

Techniques for Discovering New Glycine Receptor Modulators and their

Binding Sites. Front Mol Neurosci. 2: 17.

19. Terstappen GC, Roncarati R, Dunlop J, Peri R (2010) Screening technologies

for ion channel drug discovery. Future Med Chem. 2(5): 715–30.

20. Spencer CI, Li N, Chen Q, Johnson J, Nevill T et al. (2012) Ion channel

pharmacology under flow: automation via well-plate microfluidics. Assay Drug

Dev Technol. 10(4): 313–24.

21. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane

of denervated frog muscle fibres. Nature. 260(5554): 799–802.

22. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-

clamp techniques for high-resolution current recording from cells and cell-free

membrane patches. Pflugers Arch. 391(2): 85–100.

23. Stoelzle S, Obergrussberger A, Brüggemann A, Haarmann C, George M et al.
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