
Introduction

arly-life alterations in neural circuit formation
increasingly appear to underlie the risk for the emer-
gence of psychiatric disorders later in life.1,2 Rare
genomic alterations have been associated with an
increased risk for schizophrenia, and preferentially tar-
get a variety of neurodevelopmental pathways.3-5 Recent
data from whole-genome exon sequencing in the field of
schizophrenia have identified a large diversity of genetic
variants that may confer risk by acting during the early
stages of embryonic brain development.6 In addition to
genetic risks conferred during embryogenesis, early-life
stress has increasingly been shown to constitute an
important risk factor involved in the emergence of psy-
chiatric-related phenotypes.7-9 Given the complexity of
brain development and the compensatory adaptations
that occur after early-life insults, it is still difficult to link
specific cellular events involved in altered neural circuit
formation with psychiatric-relevant phenotypes emerg-
ing later in life. Among the molecular pathways involved
in determining early-life vulnerability to psychiatric phe-
notypes, the serotonin system is an important system to
consider for several reasons. First, large amounts of pre-
clinical data have revealed that early-life serotonin (5-
HT) regulates a variety of developmental processes
involved in neural circuit formation. We will specifically
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Risk for adult psychiatric disorders is partially deter-
mined by early-life alterations occurring during neural
circuit formation and maturation. In this perspective,
recent data show that the serotonin system regulates
key cellular processes involved in the construction of
cortical circuits. Translational data for rodents indicate
that early-life serotonin dysregulation leads to a wide
range of behavioral alterations, ranging from stress-
related phenotypes to social deficits. Studies in humans
have revealed that serotonin-related genetic variants
interact with early-life stress to regulate stress-induced
cortisol responsiveness and activate the neural circuits
involved in mood and anxiety disorders. Emerging data
demonstrate that early-life adversity induces epigenetic
modifications in serotonin-related genes. Finally, recent
findings reveal that selective serotonin reuptake
inhibitors can reinstate juvenile-like forms of neural
plasticity, thus allowing the erasure of long-lasting fear
memories. These approaches are providing new insights
on the biological mechanisms and clinical application of
antidepressants.       
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review the data regarding early-life serotonin control of
key cellular processes for normal circuit formation in the
mammalian neocortex. Second, studies conducted in
rodents exposed to selective serotonin reuptake
inhibitors (SSRIs) during brain development have
revealed that early-life serotonin dysregulation induces
a wide spectrum of psychiatric-relevant phenotypes.
Human exposure to SSRIs in utero impacts fetal physi-
ology, is associated with poor neonatal adaptation, and
increases the risk for autism spectrum disorders. Third,
genetic variants in serotonin-related genes interact with
different early-life stressors to modulate functional cir-
cuit responses to emotional stimuli, stress axis respon-
siveness, and risk for stress-related psychopathology.
These early-life interactions are among the best exam-
ples of gene-environment interactions in contemporary
psychiatry. Finally, recent data in the field supports the
novel hypothesis that serotonin plays an important role
in regulating developmental plasticity during critical
time periods of neural development, thereby opening up
possibilities for new therapeutic applications for antide-
pressants.

Source of serotonin during 
embryonic cortical development

Serotonin is detected at the onset of cortical develop-
ment as early as embryonic day E10.5 in the mouse.10

Initially, it was thought that serotonin originated from
the maternal blood because during early development
the fetal serotonergic raphe neurons have not been spec-
ified and are not functional yet. Therefore, it was sug-
gested that at this stage the placenta could take up sero-
tonin from the maternal blood and transfer it into the
fetal bloodstream where it could reach the developing
forebrain prior to the formation of the blood-brain bar-
rier.11,12 Recently, data has shown that the placenta plays
a key role in producing the serotonin that accumulates
in the embryonic forebrain during the early phases of
telencephalic development.10 Serotonin is synthesized

after tryptophan uptake in the placenta by using the
tryptophan hydroxylase 1 and aromatic amino acid
decarboxylase enzymes. As development continues, the
serotonergic raphe neurons are specified through the
action of specific transcriptional programs involving
PET1, a serotonin raphe neuron transcription factor, and
progressively acquire the molecular machinery to syn-
thesize and uptake serotonin.13 By day E15 or E16, sero-
tonergic raphe neurons have extended their axons into
the marginal zone and the subplate region of the devel-
oping cortex.14 At this stage, the fetus becomes progres-
sively autonomous in its ability to generate serotonin,
and during the last phase of embryonic development, the
raphe neurons, and not the placenta, are the main source
of serotonin. In addition to the placenta and central
raphe neurons, other sources of brain serotonin have
been suggested such as gut enterochromaffin cells, mast
cells, or platelets,15 but these sources are likely to play
only a minor role in the regulation of cortical develop-
ment.

Molecular targets of early-life serotonin

The presence of serotonin in the forebrain during the
very early stages of development is associated with the
dynamic developmental expression of different subtypes
of serotonin receptors and transporters in a variety of
neuronal cell types. At least 14 genes encode the differ-
ent serotonin receptors, and further functional diversity
is obtained through RNA editing and alternative splic-
ing of various 5-HT receptor subtypes.16 Although the
developmental pattern of each serotonin receptor sub-
type is not available, mapping the developmental embry-
onic expression of the 5-HT1 receptor subtype in mice
revealed that all members of the 5-HT1 subtype are
strongly, but transiently, expressed in the developing
thalamus.17 Embryonic expression of serotonin-related
genes can occur in neurons that cease to express these
genes later in adulthood. For example, the serotonin
transporter, SERT, is expressed during embryogenesis in
thalamic and cortical neurons that do not normally
express SERT in adulthood,18-20 and the expression of
SERT is observed as early as gestational week 8 in the
developing human cortex.21 Different subtypes of sero-
tonin receptors are specifically expressed in distinct neu-
ronal subtypes during cortical development. For exam-
ple, the ionotropic serotonin receptor (5-HT3A) is
expressed in Cajal-Retzius (CR) neurons and in a spe-
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SSRI selective serotonin reuptake inhibitor
5-HT serotonin
SERT serotonin transporter
MAOA monoamine oxidase A
CR Cajal-Retzius
HPA hypothalamic-pituitary axis
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cific subtype of cortical interneurons derived from cau-
dal ganglionic eminences that preferentially populate
the upper layers of the cortex.22 In humans, the develop-
mental expression pattern of serotonin-related genes
remains to be fully described. Mapping of the expression
levels of human 5-HT receptors in postmortem pre-
frontal cortex across postnatal life and in neonates
revealed distinct developmental expression patterns of
the different subclasses of serotonin receptors.23

Impact of early-life serotonin dysregulation
on cortical circuit formation

An important focus of animal research in the field is to
understand the impact of early-life serotonin on specific
cellular events that are involved in the construction of
neural circuits. In this section, we will review the key
findings that have emerged over recent years that sup-
port the view that early-life serotonin regulates differ-
ent cellular processes involved in cortical circuit forma-
tion. A seminal observation in the field was the
discovery that excess serotonin disrupts the normal
wiring of the rodent somatosensory cortex. In mice defi-
cient for either monoamine oxidase A (MAOA) or
SERT, it was shown that thalamocortical axons (TCAs)
fail to segregate normally and do not form normal bar-
rel-like structures.20,24 This process was found to be under
the control of the serotonin receptor 1B (5-HT1B) since
segregation and barrel formation were normal in
MAOA/5-HT1B receptor double knockout (KO)
mice.25,26 Abnormal TCA segregation was rescued in
MAOA KO mice by specifically decreasing serotonin
levels during the early postnatal days using a pharma-
cological approach.20 At earlier developmental steps,
when TCAs navigate to the cortex, serotonin was shown
to regulate their responsiveness to the guidance cue,
netrin-1, and this process required functional 5-HT1B
and 5HT1C receptors.27 Taken together, these data indi-
cate that serotonin regulates thalamocortical pathfind-
ing and wiring during the embryonic and early postna-
tal period.

The assembly of cortical circuits relies on the proper
migration and laminar positioning of different subtypes
of inhibitory γ-aminobutyric acid (GABA)ergic neurons
and excitatory cortical neurons. Inhibitory GABAergic
interneurons are generated in the ganglionic eminences
of the ventral pallium and migrate tangentially toward
the developing cortex.28 In contrast, excitatory projection

neurons are generated in the ventricular zone of the dor-
sal pallium and migrate radially following an inside-out-
side pattern, where early pyramidal neurons first form
in the deep cortical layers and the late-born neurons
populate superficial layers.28 Alterations in the migration
and integration of GABAergic interneurons in cortical
circuits have emerged as key processes involved in the
susceptibility to psychiatric disorders.29,30 In addition to
genetic alterations, early-life stress affects the migration
of cortical interneurons.31 Recent work using time-lapse
imaging of cortical slices has revealed that excess sero-
tonin decreases the migration speed of cortical interneu-
rons as well as the velocity of the pyramidal neuron in
the superficial layer.32,33 Furthermore, the distribution of
both cortical interneurons and projection neurons was
altered in the somatosensory cortex of neonatal SERT
KO mice.32,33 Alterations in neuronal migration due to a
developmental excess of serotonin could contribute to
the subtle changes in the thickness of cortical layers
observed in different cortical regions of SERT KO
mice.34 In vitro studies combined with pharmacological
approaches using time-lapse imaging revealed that sero-
tonin receptor 6 (5-HT6R) is involved in regulating cor-
tical neuronal migration.32,33 Interestingly, proteomic
approaches indicate that 5-HT6R forms a complex with
a set of proteins involved in regulating developmental
processes such as the mTOR pathway,35 and 5-HT6R-
mediated mTOR signaling is affected in the medial
frontal cortex of mice exposed to postweaning social iso-
lation, a developmental model that induces schizophre-
nia-like phenotypes.35 The mTOR pathway has been
shown to be an important signaling hub involved in
autism spectrum disorders.36

Following their migration to specific cortical layers,
pyramidal neurons progressively develop a dendritic
arborization and receive synaptic inputs. Morphological
investigation of pyramidal neurons in the ventromedial
infralimbic prefrontal cortex of SERT KO mice has
revealed conflicting results with either decreased37 or
increased38 apical dendritic morphologies in SERT KO
mice. More studies are clearly necessary to understand
these dendritic structural changes, which have been
shown to be very sensitive to stress.39 Dendritic growth
of cortical neurons has been shown to be regulated by
serotonin fibers, creating synapses on CR cells.40

Genetically deleting the 5-HT3A receptor increases api-
cal dendritic arborization of upper layer pyramidal neu-
rons in the somatosensory cortex, whereas pharmaco-
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logically blocking SERT during pregnancy decreases
their dendritic complexity.40,41 In CR neurons lacking 5-
HT3A, serotonin is unable to stimulate the secretion of
reelin, a glycoprotein that helps regulate neuronal migra-
tion and inhibits the growth of apical dendrites.
Therefore, a reduction in reelin secretion has been pro-
posed to lead to an abnormal hypercomplexity of apical
dendrites.40

Alterations in the different cellular processes
involved in cortical circuit formation have mainly been
observed in either SERT KO or MAOA KO mouse
models, and induce a relative excess of serotonin.
Several mouse models of central serotonin depletion
have been investigated. Surprisingly, no major alter-
ations in cortical development were observed, although
behavioral alterations such as increased aggression were
reported,42-46 ie, TCA segregation in the mouse barrel
cortex was normal in serotonin-depleted mouse mod-
els.45 Serotonin depletion after tryptophan hydroxylase 2
(TPH2) deletion does not affect the specification of
serotonin raphe neurons,46 although abnormal growth of
serotonin raphe neurons in specific brain regions such
as the hippocampus and nucleus accumbens were
reported.47 Therefore, it is possible that subtle develop-
mental abnormalities remain to be discovered in sero-
tonin-depleted mouse models (ie, decreases in the den-
sity of GABAergic cortical interneuron populations
have been observed in TPH2 KO mice).48 Finally, it
should also be noted that during the early stages of
embryonic cortical development a lack of central sero-
tonin production by raphe neurons could be partially
compensated for by the placenta.

Impact of early-life serotonin dysregulation
on psychiatric-relevant phenotypes

Rodent studies

A large number of studies in rodents have investigated
the behavioral consequences of blocking early-life SERT
during specific developmental periods by administering
SSRIs. Pharmacological blocking of SERT during the
prenatal period41,49 or the early postnatal period49-51 has
been shown to induce long-term anxiety-like and
depressive-like phenotypes. Long-term stress-related
behavioral effects of early-life antidepressant exposure
were specific for SSRIs because antidepressants specif-
ically blocking the norepinephrine transporter did not

induce similar anxiety-like behaviors.52 SERT KO mice53

and rats54 exhibited similar types of stress-related behav-
ioral phenotypes including increased hypothalamo-pitu-
itary-adrenal (HPA) reactivity to stressors and impaired
fear extinction.38,55,56 Blocking the 5-HT1A receptor dur-
ing the early postnatal period57 reversed the depression-
like phenotypes and sleep disturbances observed in
SERT KO mice, suggesting an important role for this
receptor in mediating the developmental effects of sero-
tonin. In addition to these findings, conditional deletion
of the 5-HT1A receptor during development but not
during adulthood induces anxiety-like behaviors. The
contribution of 5-HT1A presynaptic autoreceptors
located on serotonin raphe neurons versus postsynap-
ticheteroreceptors remains to be fully established in
these models.58

In addition to anxiety-like and depressive-like phe-
notypes, autism-related behavioral dimensions (eg,
reduced social interactions, increased self-grooming, and
impaired sensory-motor integration) have also been
reported in genetic and pharmacological rodent models
of early-life SERT blockade.54,59-61 A large body of
research has shown that early-life SERT deficiency leads
to the emergence of a broad spectrum of psychiatrically
relevant phenotypes that affect social, cognitive, and
emotional domains. 

Human studies

Pregnancy is associated with an increased risk for mood
and anxiety episodes. The fraction of pregnant women
that present the diagnostic criteria for major depression
ranges from 7% to 26%62,63 and about 40% of patients
with a history of major depression relapse during preg-
nancy.64 Given the deleterious effects of maternal
depression on fetal development, an increasing fraction
of woman (up to 13% of pregnant women in some stud-
ies) are treated with antidepressants during preg-
nancy.62,65 Unfortunately, SSRIs cross the placenta49,66 and
have been shown to impact the developing fetus.63,67

Ultrasonographic observations of fetuses throughout
gestation revealed that exposure to SSRIs altered the
emergence of quiet nonrapid eye movement sleep dur-
ing the last trimester and decreased the inhibitory motor
control during this sleep phase.68 Furthermore, exposure
to SSRIs reduced fetal middle cerebral artery blood flow
as well as fetal heart rate variability.69 Exposure to SSRIs
during pregnancy is associated with lower APGAR
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scores, with poor neonatal adjustment, increased risk for
neonatal respiratory distress, jaundice, feeding prob-
lems,62,70-74 delayed head growth,75 pulmonary hyperten-
sion, and preterm birth.70,75,76 Newborns exposed to SSRIs
during late gestation more frequently display symptoms
such as myoclonus, restlessness, tremor, hyperreflexia,
shivering, and rigidity.73 Neonatal symptoms were usu-
ally mild and disappeared within 2 weeks of age.77

Adverse neonatal outcomes were generally attributed
to a withdrawal or a toxicity effect from SSRI exposure.
However, a recent study indicates that infants exposed
to SSRIs during gestation, but for whom the drug was
stopped 14 days before delivery, still displayed an
increased risk for adverse neonatal outcomes, suggest-
ing that exposure to SSRIs during late gestation resulted
in more enduring effects.78 At later developmental time
points, gestational SSRI exposure was associated with
blunted pain reactivity,79 a slight delay in motor devel-
opment,71,74 and increased internalizing behaviors.80 More
worrisome findings come from two recent studies show-
ing that antidepressant exposure may increase the risk
for autism spectrum disorder81,82; however, it should be
noted that in retrospective studies that examined the
long-term effects of SSRI exposure it is often difficult to
control for the severity of maternal depression and asso-
ciated psychiatric comorbidities. Thus, some of the devel-
opmental consequences attributed to SSRI exposure
could be due to the effects of increased maternal stress
in the context of complex psychiatric psychopathology.

Serotonin and stressor controllability

Stress acts across different developmental time periods
and can have a profound impact on the functional mat-
uration of different sets of neural circuits.9 The physio-
logical response to stress involves the coordinated acti-
vation of a network of brain regions that controls
learning, memory, decision making, and emotional
responses, and includes the hippocampus, amygdala, and
prefrontal cortex.83 The complex activation of these
neural networks lead to autonomic and hormonal
responses such as the activation of the HPA axis and
cortisol secretion in the blood of humans and corticos-
terone secretion in rodents. Multiple mediators have
been shown to be involved in the stress response includ-
ing neuropeptides such as corticotropin-releasing hor-
mone, vasopressin, dynorphin, steroids, and
monoamines.83,84 Activation of the serotonin dorsal raphe

(DR) is strongly implicated in stressor controllability. It
has been shown that stress-induced activation of the DR
is dependent on the medial prefrontal cortex (mPFC),
which can detect whether a stressor is under the animal’s
control. When an organism is confronted by an uncon-
trollable stressor, the mPFC normally does not inhibit
the stress-induced activation of the DR, thus leading to
psychiatric-relevant behavioral sequelae.85 In addition,
the experience of actively controlling a stressor has been
shown to increase the animal’s resilience to subsequent
uncontrollable stressors. Interestingly, stress-induced
activation of the DR is a key event that impairs
resilience to subsequent stressors.86 The mechanisms
underlying these effects are beginning to be elucidated.
For example, a recent study has shown that the behav-
ioral consequences of stress-induced activation of the
DR is linked to a functional desensitization of the 5-
HT1A autoreceptors, thus leading to a state of serotonin
raphe hypersensitivity to subsequent stressors.87

Interaction between early-life stress 
and serotonin-related pathways

Rodent studies

Multiple lines of evidence from rodents (and primates)
support the view that early-life stress interacts with the
serotonin system. Studies in rodents have shown that pre-
natal stress affects the development of serotonin raphe
neurons as well as the long-term expression of serotonin
receptors in different brain structures (eg, hippocampus
and frontal cortex).88-91 Exposure to glucocorticoids dur-
ing the prenatal period modifies the developmental
expression and function of the SERT and serotonin
receptors in a dose-dependent manner.92,93 During the
early postnatal period, the impact of early-life stress on
developing pups is highly dependent on maternal care,
and normal maternal care is dependent on the serotonin
system. Female PET1 KO mice are serotonin-deficient
and present a phenotype characterized by a pattern of
severe maternal neglect, leading to the death of their
pups.94 In addition to these genetic factors, maternal care
is very sensitive to stress because mothers exposed to
unpredictable stressors during the postnatal period dis-
played altered patterns of maternal care.95 The offspring
of these stressed mothers displayed long-term alterations
in serotonin system reactivity as well as depressive-like
and anxiety-like behaviors.95 Mechanistic data suggest
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that low levels of maternal care leads to decreased sero-
tonin signaling in the hippocampus of developing pups,96

and has been linked to a decreased activation of the 5-
HT7 receptor, which leads to long-term molecular adap-
tations (eg, increased methylation of the glucocorticoid
receptor [GR], decreased expression of GR, and alter-
ations in the regulation of the HPA axis).97 Stress occur-
ring later in life such as during childhood and the peripu-
bertal period has also been shown to alter the function of
the serotonin system. In these models, peripubertal stress
was shown to decrease the activation of the serotonin
raphe neurons and the expression of serotonin-related
genes such as MAOA in the frontal cortex.98 In addition
to the effects of early-life stress on the expression of sero-
tonin-related pathways; early-life gene-environment
interactions have been investigated using heterozygous
SERT KO mice. Using these models, it has been shown
that prenatal stress or decreased maternal care leads to
increased depressive-like and anxiety-like behaviors as
well as social deficits in the offspring of stressed het-
erozygous SERT KO mice compared with the wild-type
controls.99-101 Finally, in rats, a single-nucleotide polymor-
phism in the SERT gene was found to interact with pre-
natal stressors to increase the HPA axis stress reactivity.102

Primate studies

In humans and nonhuman primates, a large amount of
research has investigated the interaction between early-
life stress and a genetic variant in the promoter region
of the SERT gene.103,104 The common short (s) allele vari-
ant in the regulatory region of the SERT gene was
shown to decrease the levels of SERT mRNA expres-
sion in vitro and to decrease serotonin reuptake.103,105

Using functional imaging in healthy subjects, multiple
studies have found that s allele carriers display increased
amygdala responses to emotional stimuli.106 The absence
of a correlation between SERT genotypes and positron
emission tomography (PET) binding in the amygdala of
adults suggests that developmental mechanisms are
likely to mediate the effects of SERT variants on brain
function.107 From this perspective, it is interesting to note
that the impact of the s allele appears to be already
detectable in children who display increased activation
of limbic neural networks after viewing sad film
excerpts.108 Furthermore, SERT gene variants have been
shown to modulate HPA responsiveness as early as
birth. Newborn babies carrying the s allele carriers dis-

play increased stress-induced cortisol secretion when
compared with long (l) allele carriers.109 Modulation of
stress-induced release of cortisol was observed in chil-
dren carrying the s allele and exposed to a social stres-
sor.110 In line with these findings,  recent meta-analysis
also supported the modulatory role of SERT genotypes
on HPA axis regulation.111 A mechanistic link between
SERT genotypes and early-life stress could possibly
involve glucocorticoids. In vitro studies have shown that
glucocorticoids regulate the expression of SERT and
that the modulatory effects of glucocorticoid-induced
SERT expression are decreased in s allele carriers.112 At
a behavioral level, interactions between SERT geno-
types and early-life stress have been shown to occur dur-
ing early development. For example, high levels of
maternal anxiety during pregnancy interact with the s
allele genotype to increase levels of negative emotion-
ality in infants.113 During the perinatal period, the qual-
ity of attachment between the mother and her baby
plays a critical role in controlling the development of
emotional regulation in the baby. In conditions of inse-
cure attachment, toddlers carrying the s allele were
found to develop poor self-regulation capacities, a mea-
sure indicative of the child’s ability to deliberately con-
trol his or her affect and behavior.114 In conditions of low
maternal responsiveness infants carrying the s allele dis-
played decreased levels of attachment to their mothers.115

Maternal care is also modulated by SERT genotypes.
Mothers carrying the s allele display increased maternal
sensitivity associated with higher scores on their per-
ceived attachment to their baby,116 supporting the view
that the s allele genotype may be linked to increased
sensitivity and vigilance to external stimuli and that dur-
ing development s allele carriers could be more sensitive
to the deleterious effects of early-life adversity. Indeed,
a meta-analysis reported a significant interaction
between childhood maltreatment and the s allele geno-
type, which can increase the risk for depression later in
life,117 although negative results have been reported.118

Discrepancies in the field could be linked to the timing
of the gene-environment interaction and the outcome
measure. A recent study indicates that the s allele mod-
erates the risk for persistent depressive episodes, but not
for single episodes.119 Finally, supportive evidence for
interactions between the s allele genotype and early-life
stress comes from studies on macaques using a maternal
separation design. In these experimental models, mon-
keys were separated from their mothers at birth and
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peer-reared for 6 months. Peer-reared macaques carry-
ing the s allele exhibited more aggressive and fearful
phenotypes as well as higher levels of HPA stress reac-
tivity and alcohol consumption compared with l allele
carriers.104,120,121

In addition to SERT, increasing numbers of genetic
variants have been shown to interact with early-life
stressors and modulate the risk for stress-related psy-
chopathology, including the corticotrophin receptor 1,
GR, and FKBP5, a co-chaperone of the GR.122 Among
serotonin-related genes, studies have shown that the low
activity allele of the MAOA gene interacts with early-
life stress to increase risk for aggressive and impulsive
phenotypes.123,124 Among serotonin receptors, a functional
variant in the regulatory region of the 5-HT3A receptor
gene, has been shown to interact with childhood adver-
sity to increase the risk for depressive symptoms,
increase emotion-induced heart rate, and modify elec-
troencephalogram activation patterns and brain struc-
tures involved in emotional processing.125,126 Interestingly,
5-HT3 receptor variants were initially associated with
bipolar disorder, a finding that has been recently repli-
cated in genome-wide association studies.127,128

Epigenetic modulation of serotonin-related
genes by early-life stress

Rodent and human studies indicate that early-life adver-
sity helps program responsiveness to stressors by induc-
ing long-term epigenetic modifications in several genes
regulating the HPA axis such as the NR3C1 gene coding
for GR.122 The best studied epigenetic marker, with
regards to early-life adversity, is DNA methylation of
cytosine-guanine dinucleotides. In rodents, prenatal
stress129 as well as low maternal care130,131 has been shown
to increase methylation in the NR3C1 promoter region,
thereby leading to decreased expression and function of
GR in the hippocampus. In humans, increased NR3C1
methylation in blood cells, cord cells, or in hippocampal
postmortem tissue have been observed in individuals
exposed to prenatal adversity132,133 or high levels of child-
hood maltreatment.134-136 In addition, increased NR3C1
methylation was linked to increased stress-induced cor-
tisol reactivity in humans132 and rodents.130,131

To date, few studies have explored the impact of
early-life stress on the methylation status of serotonin-
related genes. In humans, methylation in the promoter
region of SERT decreases its expression and this effect

is dependent on the genotype of the serotonin trans-
porter gene-linked polymorphic region (5-HTTLPR).137

The methylation status of SERT was increased in
females compared with males138 and was associated with
increased scores for unresolved loss and trauma, a risk
factor for psychopathology, in s allele carriers.139

Furthermore, an association between increased SERT
methylation and depressive scores was observed in indi-
viduals carrying the s allele.140 In a monozygotic twin
sample, bullying victimization during childhood was
found to be associated with increased SERT methyla-
tion and a blunted cortisol response to stress.141 Increased
SERT methylation was also associated with childhood
sexual abuse and to an increased risk for antisocial
behavior in women.142 Relevant to human studies,
macaque models of early-life stress indicate that
increased SERT methylation is associated with lower
SERT expression in the peripheral blood and increased
behavioral stress reactivity in infants subjected to early
maternal separation143 or in adults exposed during
infancy to early-life stress.144 Emerging data suggests that
the methylation pattern of other serotonin-related genes
could be associated with psychiatric disorders and
related to expression levels in the brain. For example,
peripheral white blood cell methylation of the MAOA
promoter has been associated with changes in brain
MAOA levels as measured by in vivo PET imaging.145

The MAOA promoter methylation was decreased in
females with depression or panic disorder compared
with controls.146,147 Finally, among serotonin receptors,
increased 5-HT3A receptor methylation in the promoter
region was associated with alcohol exposure in humans148

and mice.149 More studies are necessary to determine the
impact of early-life stress on these novel serotonin-
related epigenetic targets.

Serotonin and the reinstatement of 
juvenile forms of plasticity

Early-life experiences permanently shape neural circuit
wiring and function during critical time periods of devel-
opment.150 In mammals, monocular deprivation during
the juvenile critical time period leads to permanent
changes in the wiring of the visual cortex, which leads to
amblyopia in the deprived eye. Chronic administration
of the SSRI fluoxetine in adulthood has been shown to
reinstate a form of critical time period plasticity in the
visual cortex.151 Reinstatement of this type of juvenile-
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like plasticity promoted the recovery of visual function
in amblyopic animals that had been visually deprived
during the juvenile period.151 Positive effects of fluoxe-
tine on the recovery of visual function were blocked by
cortical administration of diazepam, indicating that
increased cortical excitation is necessary to mediate the
rejuvenating effects of fluoxetine. The mechanisms that
underlie these effects were dependent on 5-HT1A
receptor-dependent serotonin and brain-derived neu-
rotrophic factor signaling and were involved in down-
stream epigenetic changes.152 Environmental enrichment
in adulthood has also been shown to reactivate juvenile-
like plasticity in the visual cortex. Rejuvenating effects
of environmental enrichment on visual plasticity were
also dependent on the activation of serotonin signaling
pathways.153

In other systems, a critical time period for fear mem-
ory erasure was described in juvenile mice.154 During this
critical time period, which occurs before postnatal day
16 in mice, extinction training followed by an initial
phase of fear conditioning led to a permanent erasure of
the fear memory.154 The closure of this juvenile plasticity
period depends on increased formation of perineuronal
nets surrounding a specific subtype of parvalbumin-
expressing interneurons in the basolateral amygdala.
Following the closure of this critical time period, fear
conditioning induces an enduring memory that cannot
be erased through extinction training.154 Recent data
indicates that the combined administration of fluoxetine
with extinction learning has the ability to reactivate crit-
ical period-like plasticity in the basolateral amygdala by
decreasing the percentage of parvalbumin-expressing
interneurons surrounded by perineuronal nets.155

Reinstatement of this critical time period-like plastic-
ity in the basolateral amygdala of adult animals led to an
erasure of the fear memory similarly to what is observed
in juvenile animals.155 These data provide novel biologi-
cal insights to clinical studies supporting the view that
the combination of behavioral therapy with antidepres-
sants has synergistic effects in promoting functional
recovery in mood and anxiety disorders.156

Since SSRIs and serotonin appear to modulate criti-
cal time period-like plasticity in mice, it is possible that
exposure to SSRIs during early stages of human devel-

opment could lead to modifications in developmental
plasticity in humans. This hypothesis has recently been
tested using a paradigm that probes sensitive periods in
human language development. Infants with gestational
exposure to SSRIs exhibited a more mature pattern of
language discrimination than non-exposed infants,157 sug-
gesting that in utero SSRI exposure accelerates the clo-
sure of a critical time period in the speech perception
system. Interestingly, maternal depression appeared to
have the opposite effect by inducing a delay in the mat-
uration of language discrimination.157

Conclusions

Current translational research has revealed novel roles
for the serotonin system in regulating the formation of
cortical circuits and modulating plasticity during critical
time periods of development. This has provided new
insights on the impact of early-life serotonin program-
ming in determining the risk for a wide range of behav-
ioral phenotypes ranging from stress-related dimensions
to alterations in social domains. Genetic studies in
humans have revealed that serotonin-related gene vari-
ants interact with early-life stress and modulate activa-
tion of neural circuits involved in mood and anxiety dis-
orders as well as HPA axis responsiveness to stressors.
Vulnerability or resilience to the detrimental conse-
quences of early-life stress is likely to depend on the
complex interactions between early-life adversity and
serotonin-related genetic variants. In addition, data
demonstrates a novel level of transcriptional regulation
suggesting that early-life stress modifies the methylation
status of serotonin-related genes. Further work is needed
to explore the impact of early-life stress on these novel
epigenetic targets and its consequences on neural circuit
activation patterns and psychiatric-relevant dimensions.
Finally, the discovery that SSRIs can reinstate juvenile-
like forms of neural plasticity, in conjunction with behav-
ioral learning, is providing new insights on the biologi-
cal mechanisms and clinical applications of
antidepressants. ❏
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Vías relacionadas con serotonina y 
plasticidad del desarrollo: su importancia
para los trastornos psiquiátricos

El riesgo para los trastornos psiquiátricos del adulto
está determinado en parte por alteraciones de los
primeros años de vida que ocurren durante la for-
mación y maduración de los circuitos neurales.
Desde esta perspectiva, hay información reciente
que muestra que el sistema serotoninérgico regula
los procesos celulares que participan en la cons-
trucción de los circuitos corticales. Hay información
traslacional de roedores que indica que la falta de
regulación de serotonina en etapas precoces de la
vida conduce a una amplia gama de alteraciones
conductuales, que van desde fenotipos relaciona-
dos con el estrés a déficits sociales. Los estudios en
humanos han revelado que las variantes genéticas
relacionadas con la serotonina interactúan con el
estrés de los primeros años para regular la res-
puesta de cortisol inducida por el estrés y activar los
circuitos neurales involucrados en los trastornos del
ánimo y de ansiedad. Han aparecido datos que
demuestran que la adversidad en los primeros años
de vida induce modificaciones epigenéticas en los
genes relacionados con la serotonina. Finalmente,
hay hallazgos recientes que revelan que los inhibi-
dores selectivos de la recaptura de serotonina pue-
den restituir formas de tipo juvenil de plasticidad
neural, lo que permite la supresión de memorias de
temor de larga duración. Estas aproximaciones
están aportando nuevas perspectivas acerca de los
mecanismos biológicos y la aplicación clínica de los
antidepresivos.  

Les voies de la sérotonine et la plasticité du
développement : pertinence pour les
troubles psychiatriques

Le risque de développer des maladies psychia-
triques à l’âge adulte est en partie déterminé par
des altérations précoces touchant la formation et
la maturation des circuits neuronaux. Dans cette
perspective, des données récentes indiquent que
le système sérotoninergique régule des événe-
ments cellulaires impliqués dans la construction
des circuits corticaux. Des recherches translation-
nelles chez l’animal révèlent qu’une dysrégulation
précoce du système sérotoninergique induit un
large éventail d’altérations comportementales
allant de phénotypes anxieux-dépressifs liés au
stress à des déficits sociaux. Chez l’homme, des
études ont permis de mettre en évidence que des
variants génétiques du système sérotoninergique
interagissent avec l’adversité précoce et régulent
la sécrétion du cortisol induite par le stress et l’ac-
tivation de circuits cérébraux impliqués dans les
troubles de l’humeur. De plus, des données
récentes révèlent que l’adversité précoce induit
des modifications épigénétiques dans des gènes
du système sérotoninergique. Finalement, il a pu
être récemment démontré que des inhibiteurs
sélectifs de la recapture de la sérotonine peuvent
réinstaurer des formes de neuroplasticité juvénile
permettant d’effacer des souvenirs liés à la peur.
Ces approches donnent un éclairage novateur sur
les effets biologiques des antidépresseurs et leur
application clinique.   
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