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Objectives: To evaluate the potential of a fully automatic artificial intelligence (AI)-driven computed tomography (CT) software prototype to
quantify severity of COVID-19 infection on chest CT in relationship with clinical and laboratory data.

Methods: We retrospectively analyzed 50 patients with laboratory confirmed COVID-19 infection who had received chest CT between
March and July 2020. Pulmonary opacifications were automatically evaluated by an AI-driven software and correlated with clinical and
laboratory parameters using Spearman-Rho and linear regression analysis. We divided the patients into sub cohorts with or without
necessity of intensive care unit (ICU) treatment. Sub cohort differences were evaluated employing Wilcoxon-Mann-Whitney-Test.

Results: We included 50 CT examinations (mean age, 57.24 years), of whom 24 (48%) had an ICU stay. Extent of COVID-19 like opacities
on chest CT showed correlations (all p < 0.001 if not otherwise stated) with occurrence of ICU stay (R = 0.74), length of ICU stay
(R = 0.81), lethal outcome (R = 0.56) and length of hospital stay (R = 0.33, p < 0.05). The opacities extent was correlated with laboratory
parameters: neutrophil count (NEU) (R = 0.60), lactate dehydrogenase (LDH) (R = 0.60), troponin (TNTHS) (R = 0.55) and c-reactive protein
(CRP) (R = 0.51). Differences (p < 0.001) between ICU group and non-ICU group concerned longer length of hospital stay (24.04 vs. 10.92
days), higher opacity score (12.50 vs. 4.96) and severity of laboratory data changes such as c-reactive protein (11.64 vs. 5.07 mg/dl, p <

0.01).

Conclusions: Automatically AI-driven quantification of opacities on chest CT correlates with laboratory and clinical data in patients with
confirmed COVID-19 infection and may serve as non-invasive predictive marker for clinical course of COVID-19.
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INTRODUCTION
S evere acute respiratory syndrome coronavirus 2
(SARS-CoV-2) can cause coronavirus disease 2019
(COVID-19) which was first reported in Wuhan,

China in December 2019 (1). The virus has spread worldwide
at enormous speed and burdens especially old and multimor-
bid patients as well as healthcare systems. Globally, as of 13
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February 2021, there have been 107.686.655 confirmed cases
of COVID-19, including 2.368.571 deaths, reported to
WHO (2). The disease frequently starts with flu-like symp-
toms like fever, dry cough, fatigue and can lead to acute
respiratory distress syndrome, organ failure and intensive care
unit (ICU) admission (approximately 30%) with consecutive
high mortality rates (up to 15%) (3). Although real-time
reverse transcription polymerase-chain-reaction (RT-PCR)
is considered to be the current gold standard for diagnosing,
the method is slow and has a high false negative rate (4).
Among the 1014 COVID-Patients in Wuhan up to February
6, 2020 only 59% had a positive RT-PCR result, whereas
88% showed positive findings on chest computed tomogra-
phy (CT) scans (4). Chest CT therefore may not only be able
to detect more cases of viral pneumonia in terms of COVID-
19 but also to quantify the severity of pulmonary COVID-19
manifestation (5). Frequently reported findings in chest CT
were bilateral and peripheral ground-glass opacities (GGO),
crazy-paving pattern, and consolidations (6).
Some studies have analyzed the relationship between the

severity of abnormalities on chest CT scans in COVID-19
positive patients with clinical and laboratory data. Xiong
et al. showed that laboratory data like CRP, erythrocyte sedi-
mentation rate and LDH correlated with the severity of
abnormalities manually quantified on chest CT scans (7).
Lanza et al. found that semi-automatic quantification of com-
promised lung volume in COVID-19 patients on chest CT
scans correlated with the need for oxygenation support and
intubation and might therefore serve as a triaging and predic-
tion tool in COVID-19 positive patients (8). However, man-
ual and semi-automatic quantification and feature extraction
of pulmonary opacifications is time-consuming and prone to
inter-observer variance complicating implementation in clin-
ical routine (9). In this context, the application of fully auto-
matic deep learning models may enable radiologists to make a
more accurate diagnosis and quantification of corresponding
lung changes in terms of severity assessment (9-12). In addi-
tion, software-based analysis of chest CT scans may improve
time-efficiency in clinical routine, which gets more and more
important in context of increasing examination numbers.
Anyhow, there has been no diagnostic model based on medi-
cal imaging without high risk of bias so far. Studies often lack
information regarding how regions of interest are annotated
which results in no transparency and reproducibility of the
models (13).
Recently, a new software prototype for fully automatic

quantification of COVID-19 like lung opacities on chest CT
scans has been developed. This prototype offers several
advantages in that it is fast, fully-automatic, provides two
combined severity measures of the disease and can be used on
CT scans with a slice thickness up to 5 mm (14).
In this initial study, we aimed at evaluating the potential of

this prototype for fully automatic quantification of COVID-
19 like opacities on chest CT scans of 50 laboratory con-
firmed COVID-19 patients in relation with clinical and labo-
ratory data.
MATERIALS ANDMETHODS

Ethics Approval

The study was approved by the ethical review board of our
institution. Written informed consent was obtained for
experimentation with human subjects. All investigations
were conducted in accordance with the 1964 Declaration of
Helsinki and its amendments.
Patient selection and study design

This retrospective study was approved by the local ethics com-
mittee. Written informed consent was waived. Two radiolog-
ists (*BLINDED* and *BLINDED*) scanned our Picture
Archiving and Communication System (PACS) and Radiol-
ogy Information System (RIS) for a total of 151 patients, who
had received chest CT scans at our institution in case of suspi-
cion for a COVID-19 infection in the period from March 1,
2020 to July 31, 2020. COVID-19 infection was RT-PCR-
approved in 50 cases with a positive real-time fluorescence
polymerase chain reaction (RT-PCR) assay for SARS-CoV-2
nucleic acid with nasopharyngeal or oropharyngeal swab speci-
mens. Negative SARS-CoV-2 RT-PCR as well as patients
who did not fulfill inclusion criteria (children <18 years, slice
thickness >5 mm, artifacts) were excluded (Fig 1). Demo-
graphics, typical COVID-19 symptoms, and laboratory data
were retrospectively collected from the electronic medical
records platform. CRP, LDH, TNTHS, NEU, procalcitonin
(PCT), d-dimers (DDI), white blood cell count (LEU), lym-
phocyte count (LYM), thrombocyte count (THR), interleu-
kin-6 (IL-6), bilirubin (BIL), lactate (LAC), alanine
aminotransferase (GTP), quick value (TPZ), creatinine
(KREA) and urea (HST) were collected at the time point of
CT performance (§48 h) and were analyzed to examine a pos-
sible relation with automated quantification of abnormalities
associated with COVID-19. Time interval between onset of
symptoms and imaging at our institution, length of hospital
stays, length of ICU stay and outcome of the patients were col-
lected. For sub cohort analysis, patients were divided into a
critical (n= 24) and non-critical group (n= 26) based on
necessity of an ICU stay.
CT Image Data Acquisition

Unenhanced chest CT examinations were carried out on two
192-detector row, thirdgeneration CT scanners (SOMA-
TOM Force, Siemens Healthineers, Forchheim, Germany
(critical patients, n= 10; non-critical, n= 12) and SOMA-
TOM Definition AS, Siemens Healthineers [critical, n= 14;
non-critical, n= 14]). A tube voltage of 120 kV and auto-
matic tube current modulation (100�400 mA) were used.
Images were reconstructed with a slice thickness between
1.00 mm to 5.00 mm (1.00 mm= 42/50 [0.84], 5.00
mm= 8/50 [0.16]). The average time interval between initial
chest CT performance and onset of symptoms was 13.08 days
(range, 2�45 days).
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Figure 1. Flow chart of patient inclusion. Figure 2. (a-c) CT images showing postprocessing analysis and
quantification results of the evaluated AI-driven software prototype.
Segmentation of the lung lobes is shown in different colors. Seg-
mentation of lung opacities is displayed in red. Images illustrate a
1.0 chest HR-CT of a 35-year-old male patient with confirmed
COVID-19 infection. CT series show typical COVID-19 peripherally
pronounced GGO and consolidations. The CT examination was
taken 5 days after symptoms of fever, dyspnea and dry cough
started. The patient had an ICU stay for 9 days and could then be
transferred back to the normal infirmary. He had a hospital stay of
11 days in total. Currently the patient is largely symptom-free, apart
from a discreet tiredness and an intermittent slight pulling in the
lungs. (d) The VRT allows for quick overview of the spatial distribu-
tion of opacities. GGO, ground-glass opacities; VRT, volume render-
ing technique. (Color version of figure is available online.)
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Software Prototype

The software used to quantify COVID-19 like abnormalities
of the lung calculates percentage of opacity (PO) and lung
severity score (LSS) by segmenting three-dimensional abnor-
malities like ground glass opacities and consolidations, that
were related to COVID-19. Thereby PO and LSS define the
expanse of lung involvement and allocation of involvement
across lobes. High opacity abnormalities like consolidations
and subsolid regions were measured by percentage of high
opacity (PHO) and lung high opacity score, which define the
extent of high opacity abnormalities and the distribution
across the lung lobes. By default, a Hounsfield Unit (HU)
threshold of -200 HU was applied for identification of high
opacities. A lobe was classified as “affected” if the algorithm
detected high opacity abnormalities in the defined lung part.

The overall extent of opacities is displayed by a reproduc-
ible, fully automatically calculated so called opacity score
ranging from 0 - 20, which is a sum up of the five lung lobes.
An opacity score of zero means that none of the lobes is
affected whereas 20 represents extensive involvement of all
five lobes. Lobe-wise, the score is calculated on the percent-
age of opacity per lobe, using a Likert scale from 0 to 4. Per-
centage of opacity - which represents the percentage of
predicted volume of abnormalities compared with the total
lung volume within a given region - is classified as follows:
score = 0,1,2,3,4 extent of opacity within a given region
�1%, �25%, �50, �75%, >75%, respectively (Fig 3).

The software is based on AI algorithms to automatically
identify and quantify lung hyperdensities for research purposes
(Fig 2). Multi-scale deep reinforcement learning (15) was used
for anatomical landmark detection and a Deep Image to Image
Network (DI2IN) (16) for segmentation, based on a dataset of
8792 CT volumes. To ensure a stable lobe-wise segmentation
and identification of abnormal patterns, the DI2IN was trained
1050
on 8087 patients with various diseases and afterwards fine-
tuned on another dataset of 1136 patients with similar abnor-
malities as COVID-19 like GGO and consolidation (e.g. viral
pneumonia, interstitial lung diseases). The algorithm was finally
evaluated on 100 control volumes without pathological chest-
CT findings and 100 patients with confirmed COVID-19.
The Pearson correlation coefficient between method predic-
tion and ground truth for COVID-19 positive scans was calcu-
lated as 0.92 for PO (p< .001), 0.97 for PHO (p< .001), 0.91
for LSS (p< .001), 0.9 for LHOS (p< .001) (14). For further
information we recommend the recently published study by
Chaganti et al (14).

Automatic segmentation was visually approved by two
radiologists (*BLINDED* and *BLINDED*) in each exami-
nation. In no cases pleural effusions or other findings affected
the software-based severity measurement. No manual adjust-
ment was performed in order to reduce manual manipulation
and to examine a fully automated quantification approach.
Statistical Analysis

Statistical analysis was conducted using RStudio (Version
1.2.5001, RStudio, Inc.). Demographics and clinical



Figure 3. Representative software analysis key data to quantify the extent of overall and lobe-wise opacity abnormalities based on the 3D
segmentations of lesions, lungs, and lobes in a 35-year-old male patient with confirmed COVID-19 infection. Total opacity score (range, 0-20)
represents the mean of the opacity scores of each lung lobe. Percentage of opacity represents the percentage of opacity for the whole lung.

TABLE 1. Demographic and Clinical Patient Characteristics

Clinical characteristics n %

Age, in years (mean, range) 57.24
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characteristics were analyzed applying descriptive statistics.
Correlation coefficients were calculated using Spearman-rho.
Differences between groups were calculated using Wil-
coxon-Mann-Whitney-Test. Levels of significance are
depicted as followed: *p< 0.05; **p< 0.01; ***p< 0.001.
(35-85)
<40 6 0.12
40-68 34 0.68
>68 10 0.20
Male 44 0.88
Pre-existing comorbidities n %
Cardiovascular disease 13 0.26
Diabetes 10 0.20
Hypertension 17 0.34
Malignancy 4 0.08
Lung disease (2 COPD, 3 asthma, 1
silicosis)

6 0.12

Chronic kidney disease 7 0.14
No. of comorbidities (mean) 1.68 Min: 0,

Max: 5
Symptoms (n = 44) n %
Fever 32 0.64
Cough 28 0.56
Dyspnea 33 0.66
Gastrointestinal symptoms 10 0.20
Fatigue, head & body aches 12 0.24
Anosmia & ageusia 8 0.16
Clinical features (n = 44) n %
Time interval between onset of
symptoms & image acquisition
(days, mean)

13.08 Min: 2,
Max: 45
RESULTS

Demographics, Clinical and Laboratory Data

The study included a total of 50 patients (44 male). Mean age
was 57.24 years (range, 35�85 years). Common comorbid-
ities of the patients included hypertension (17/50, 34%), car-
diovascular disease (13/50, 26%), diabetes (10/50, 20%),
chronic kidney disease (7/50, 14%). chronic lung disease (6/
50, 12%) and malignancy (4/50, 8%). Mean time interval
between onset of COVID-19 symptoms and CT image
acquisition was 13.08 days (range, 2�45). The average length
of hospital stay was 17.22 days (range, 0�70). One non-ICU
patient was treated in an ambulant setting. A total of 24
patients were admitted to the ICU (ICU-group) with a mean
length of ICU stay of 15.62 days §13.46. Lethal disease pro-
gression was observed in 8 ICU patients (16%, ICU-group).
Most common symptoms were dyspnea (33/50, 66%), fever
(32/50, 64%), and dry cough (28/50, 56%). Further fre-
quently encountered symptoms were fatigue, head and body
aches (12/50, 24%) gastrointestinal symptoms like diarrhea
(10/50, 20%) as well as anosmia and ageusia (8/50, 16%)
(Table 1).
Length of hospital stay (days, mean) 17.22 Min: 0
Max: 70

Intensive care unit stay (ICU) 24 0.48
Length of Intensive care unit stay
(days, mean)

15.62 Min: 1;
Max: 70

lethal outcome 8 0.16
Chest CT Software Prototype Parameters

All CT scans (n= 50/50) showed opacities in both lungs.
Overall opacity score ranged from 1 (n= 2) to 20 (n= 4).
The mean of the score of both lungs was 8.58 (§5.34). The
1051



TABLE 2. Software Parameters

Number of Affected Lobes n

Both lungs 50
Left lung 50
Right lung 48
Left upper lobe 46
Left lower lobe 50
Right upper lobe 44
Right middle lobe 42
Right lower lobe 48
Opacity score (1-20) Mean SD
Both lungs 8.58 5.34
Left lung 3.52 2.07
Right lung 5.06 3.40
Left upper lobe 1.46 0.99
Left lower lobe 2.06 1.19
Right upper lobe 1.56 1.23
Right middle lobe 1.36 1.12
Right lower lobe 2.14 1.29

Percentage of opacity (%) Mean SD
Both lungs percentage of opacity 28.40 29.70
Left lung percentage of opacity 26.58 29.02
Right lung percentage of opacity 30.09 30.85
Left upper lobe percentage of opacity 20.23 27.26
Left lower lobe percentage of opacity 36.43 34.84
Right upper lobe percentage of opacity 25.15 31.54
Right middle lobe percentage of opacity 19.56 30.10
Right lower lobe percentage of opacity 41.10 34.58
Percentage of high opacity (%) Mean SD
Both lungs percentage of high opacity 10.46 14.55
Left lung percentage of high opacity 9.40 14.05
Right lung percentage of high opacity 11.38 15.21
Left upper lobe percentage of high opacity 6.30 12.44
Left lower lobe percentage of high opacity 14.83 19.74
Right upper lobe percentage of high opacity 8.28 14.43
Right middle lobe percentage of high opacity 5.23 11.50
Right lower lobe percentage of high opacity 16.46 18.95

TABLE 3. Relationship Between Opacity Score and Clinical
and Laboratory Characteristics

Clinical Characteristics Opacity Score N

Age 0.20 50
Sex 0.32* 50
Dyspnea 0.37** 50
Fever -0.36 50
Cough -0.11 50
Fatigue -0.16 50
Anosmia & aneugesia -0.06 50
Gastrointestinal symptoms -0.07 50
Cardiovascular disease 0.25 50
Chronic kidney disease -0.01 50
Chronic lung disease 0.03 50
History of cancer -0.15 50
Hypertension 0.00 50
Diabetes 0.12 50
No. of comorbidities 0.09 50
Intensive care unit 0.74*** 50
Intensive care unit length of stay 0.81*** 50
Length of stay 0.33* 50
Lethal outcome 0.56*** 50
White blood cell count/nl 0.55*** 50
Neutrophil count/nl 0.60*** 48
Lymphocyte count/nl -0.14 50
Thrombocyte count/nl 0.1 50
Neutrophil to lymphocyte ratio 0.61*** 48
C-reactive protein mg/dl 0.51*** 50
Procalcitonin ng/ml 0.56*** 40
D-dimers ng/ml 0.32* 44
Troponin pg/ml 0.55*** 47
Lactate dehydrogenase U/L 0.60*** 50
Interleukin-6 pg/ml 0.47** 44
Lactate mg/dl 0.46** 39
Creatinine mg/dl 0.20 50
Urea mg/dl 0.51*** 43
Bilirubin mg/dl 0.30* 50
Alanine aminotransferase U/L 0.41** 50
Quick value% -0.13 48

Data are R correlation coefficients, calculated using Spearman
correlation.
* Correlation is significant at the 0.05 level.
** Correlation is significant at the 0.01 level.
*** Correlation is significant at the 0.001 level.
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right lung revealed higher mean opacity score of 5.06 (left
lung, 3.52). The mean percentage of opacity was 28.40
(§29.70) for both lungs. The percentage of high opacity was
10.46 (§14.55) for both lungs (Table 2). The prototype had
a constant average evaluation time of approximately 2
minutes for automatic quantification of a chest 1.0 HR-CT
scan measured on a sample (n= 10).
Correlations Between Software Parameters and Clinical
and Laboratory Data

We could reveal highest correlation coefficients (all p< 0.001
if not otherwise stated) between the opacity score and clinical
data such as occurrence of an ICU stay (R = 0.74), length of
ICU stay (R = 0.81), length of hospital stay (R = 0.33,
p< 0.05), and mortality (R = 0.56). Furthermore, moderate
to strong correlations between laboratory data and the opacity
score were found for numerous blood compounds among
1052
others LEU (R = 0.55), NEU (R = 0.60), CRP (R = 0.51),
IL-6 (R = 0.47, p< 0.05), LDH (R = 0.6) and TNTHS
(R = 0.59) (Table 3; Figs 4 and 5).

Sub cohort-analysis of ICU and non-critical (non-ICU)
patients showed significant differences (all p< 0.001 if not
otherwise stated) with ICU patients revealing longer hospital
stay (24.04 vs. 10.92 days), higher opacity score (12.50 vs.
4.96), higher percentage of opacity (50.06 vs 8.42) and higher
PHO (19.53 vs. 2.09) (Fig 6). Non-invasive quantification
value differences for ICU and non-ICU patient sub cohorts
were corroborated by significant differences in laboratory
data (all p< 0.001 if not otherwise stated) such as LEU
(8.45 vs. 5.20), NEU (7.01 vs. 3.38), TNTHS (84.91 vs.



Figure 4. Scatter Plots illustrate correlations between the opacity score and (a) NEU (R = 0.60), (b) LDH (R = 0.60), (c) LEU (R = 0.55) and (d)
TNTHS (R = 0.55) from 50 confirmed COVID-19 patients (all p < 0.001). (Color version of figure is available online.)

Figure 5. Correlation matrix displays correlations between laboratory
data and the opacity score in 50 patients with confirmed COVID-19
infection. Most relevant correlations between laboratory data and the
opacity score (all p < 0.001) were found between NEU (R=0.60), LDH
(R=0.6), LEU (R=0.55), TNTHS (R=0.55), CRP (R=0.51). BIL, bilirubin;
CRP, C-reactive protein; DDI, d-dimers; () GPT, alanine aminotransferase
IL6, interleukin-6; LAC, lactate; LDH, lactate dehydrogenase; (), LEU,
white blood cell count; NEU, neutrophil count; TNTHS, troponin; PCT,
procalcitonin. (Color version of figure is available online.)
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10.15), PCT (2.02 vs. 0.22), IL-6 (375.73 vs. 33.86, p< 0.01),
CRP (11.64 vs. 5.07, p< 0.05) and LDH (419.00 vs. 304.08,
p< 0.05) (Table 4). Noteworthy, 8 patients (n= 8) with mor-
tal disease outcome had a mean number of comorbidities of
1.88 (range, 0-4) and showed a constantly higher opacity
score (mean 16.38, range 11-20) compared with survivors
(n= 42) (mean 7.10, range 1-20) (p< 0.001).
DISCUSSION

In this study we evaluated the potential of a state-of-the-art
AI-driven software prototype to automatically quantify
COVID-19 like lung opacities on chest CT in relationship
with course of disease, clinical and laboratory data. The study
demonstrated that application of software-based automatic
quantification of COVID-19 like opacities is feasible in clini-
cal routine. Furthermore, the statistical analysis revealed mod-
erate to strong correlations between parameters such as the
opacity score and length of hospital stay, presence and length
of ICU stay, lethal outcome and the severity of laboratory
data changes of inflammation parameters, blood count
parameters and cardiac markers in 50 laboratory-confirmed
COVID-19 patients. ICU (n= 24) and non-ICU (n = 26)
patients differed in several analyses, corroborating the poten-
tial of automatic non-invasive CT-scoring to serve as a pre-
dictive marker for assessing severity of the clinical course of
COVID-19.
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Figure 6. Box-Whisker-Plots illustrate differences regarding (a) the Opacityscore (ranging from 0-20) and (b) Length of hospital stay (in days)
between the ICU group and the non-ICU group (all p < 0.001). (Color version of figure is available online.)
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Clinical workload and organizational effort have continu-
ously increased during the COVID-19 pandemic (17). Non-
invasive and rapid screening for potential ICU candidates by
applying fully automatically calculated CT-scoring systems
may result in a more time-efficient clinical workflow, which
may be necessary in the scenario where COVID-19 admis-
sion rates rapidly increase (8). In this context, our experience
with the prototype’s average evaluation time of approxi-
mately 2 minutes for a chest 1.0 HR-CT scan emphasizes
time-efficient application in clinical routine.

Certain studies have shown that quantitative analysis of
COVID-19 like lung findings on chest CT is correlated with
clinical and laboratory data and partially might be superior to
previous clinical biomarkers in predicting COVID-19 progres-
sion to severe illness (8, 18, 19). Nevertheless, manual or semi-
automatic quantification of lung lesions on chest CT scans is still
prone to inter-observer variance and remains time-consuming
(9). In order to reduce bias inherent in semiautomatic analyses
we decided to apply a fully automatic software solution to quan-
tify CT scans providing the advantage of a short analysis time
and absence of inter-observer variance (14). The prototype
applied in our study represents a major step towards transparency
and standardization in COVID-19 diagnostics. The software is
based on a comprehensible algorithm; the quantification is fully
automatic, fast and offers standardized numeric scores in order to
quantify the extent of the disease (14). Furthermore, the color-
coded illustration of lung lobes enables an easy comprehension
and review of the software’s analyses. Spatial distribution of
opacities can be quickly overviewed by using VRT reconstruc-
tions and the high opacity threshold is configurable. Considering
that all patients with lethal outcome in this study had a signifi-
cantly higher opacity score than survivors and the fact that risk
models are often based on multiple data which are not directly
accessible during an epidemic (20), the use of the software
parameters as risk predictors may serve as clinical decision sup-
port tool though validity still needs to be elucidated. In addition,
the prototype analyses CT scans with a slice thickness of up to
5 mm. Since AI algorithms usually require HR-CT which is
frequently associated with consecutive higher radiation and
higher costs, the software could be used more widely (e.g. in
1054
developing countries) and may contribute to a lower radiation
exposure in certain cases (21).

The results of this study are in accordance with previously
published results demonstrating that COVID-19 infection
contributes to changes in clinical and laboratory parameters -
particularly increased CRP, IL-6, LDH and caused lympho-
penia - which were significantly associated with disease sever-
ity (22-24). DDI and TNTHS showed significant correlations
with opacity score in COVID-19 patients, who are known to
have an increased risk of acute pulmonary embolism (25) and
might have long-term cardiovascular consequence (26). Our
findings may indicate that the level of lung manifestation
could also be associated with a higher probability of concomi-
tant diseases. Furthermore, this study supports previous find-
ings in terms of association between quantification features
and clinical parameters (8, 27). ICU and non-ICU patients
significantly differed in opacity score. This is in line with a
previously published study describing significant differences
in lung opacification percentage among patients with differ-
ent clinical severity, such as an increased opacity percentage
from baseline CT to first follow-up (12). Also, Colombi et al
observed that a well-ventilated lung parenchyma of less than
73% on CT on hospital admission was significantly associated
with subsequent admission to ICU or death (18). In face of
the disadvantage of semi-automatic quantification methods,
software-derived parameters might have the potential to pre-
dict severity of illness and clinical course and to enable early
stratification of critical patients in a fully automatic manner.
In addition, the automatic quantification enables an objective
evaluation of the COVID-19 like changes independent from
the experience of radiologists, which can play a major role in
the assessment of the disease, especially for unexperienced
observers (28-30).

Gerard et al. used a multi-resolution convolutional neural
network to develop a fully automated segmentation algo-
rithm by incorporating CT scans of human with COPD and
non-specific lungs of animals with acute lung injury. This
lung segmentation was evaluated on CT scans of subjects
with COPD, COVID-19, lung cancer and idiopathic pulmo-
nary fibrosis. This study showed that a polymorphic training



TABLE 4. Differences in Clinical and Software Parameters Between Critical and Noncritical Group

Clinical Characteristics Whole Cohort Non-Critical cohort Critical Cohort p-value

Age 57.24 (35-85) 54.58 § 12.24 60.12 § 14.67 0.17
Male: female 44:6 20:6 24:0 0.01*
Dyspnea 33 (0.66) 15 (0.58) 18 (0.75) 0.20
Fever 32 (0.64) 21 (0.81) 11(0.46) 0.01*
Cough 28 (0.56) 17 (0.65) 11 (0.46) 0.17
Gastrointestinal symptoms 10 (0.20) 7 (0.27) 3 (0.13) 0.21
Fatigue, head & body aches 12 (0.24) 9 (0.35) 3 (0.13) 0.07
Anosmia & ageusia 8 (0.16) 6 (0.23) 2 (0.08) 0.16
Length of hospital stay 17.22 10.92 § 5.65 24.04 § 14.09 <0.001***
No. of comorbidities (median, range) 1.68 (0-5) 1.31 (0-5) 1.79 (0-4) 0.14
Hypertension 17 (0.34) 7 (0.27) 10 (0.42) 0.28
History of cancer 4 (0.08) 1 (0.04) 3 (0.13) 0.27
Diabetes 10 (0.20) 4 (0.15) 6 (0.25) 0.41
Cardiovascular disease 13 (0.26) 4 (0.15) 9 (0.38) 0.08
Lung disease 6 (0.12) 3 (0.12) 3 (0.13) 0.93
Chronic kidney 7 (0.14) 1 (0.04) 6 (0.25) 0.03*
Lethal outcome 8 (0.16) 0 8 (0.33) <0.01**
Opacity score 8.58 § 5.34 4.96 § 1.78 12.50 § 5.14 <0.001***
Percentage of opacity 28.40 § 29.70 8.42 § 8.64 50.06 § 29.28 <0.001***
Percentage of high opacity 10.46 § 14.55 2.09 § 2.39 19.53 § 16.73 <0.001***
White blood cell count/nl <4.5 >10.0 6.76 § 3.49 7/50 (0.14) 9/50 (0.18) 5.20 § 2.49 11/26 (0.42) 1/26 (0.04) 8.45 § 3.67 2/24 (0.08) 8/24 (0.34) <0.001***
Lymphocyte count /nl <1.0 0.99 § 0.53 25/50 (0.5) 1.20 § 0.60 10/26 (0.38) 0.88 § 0.40 15/24 (0.63) 0.08
Neutrophil count /nl �7.1 5.12 7/48 (0.15) 3.38 § 12.01 1/25 (0.04) 7.01 § 5.44 6/23 (0.26) <0.001***
Neutrophil to lymphocyte ratio �3.0 5.32 31/48 (0.65) 3.19 § 2.32 11/26 (0.42) 7.84 § 4.49 20/24 (0.83) <0.001***
C-reactive protein mg/dl �10 8.221 § 7.79 19/50 (0.38) 5.07 § 5.33 6/26 (0.23) 11.64 § 8.65 13/24 (0.54) <0.01**
Interleukin-6 pg/ml �7 212.57 41/44 (0.93) 33.86 § 20.70 18/21 (0.86) 375.73 § 751.23 23/23 (1.0) <0.01**
Lactate dehydrogenase U/L �245 359.2 § 135.03 36/50 (0.72) 304.08 § 124.50 15/26 (0.58) 419.00 § 121.78 21/24 (0.88) <0.01**
Troponin pg/ml �14 48.32 20/47 (0.43) 10.15 § 12.02 4/23 (0.17) 84.91 § 157.47 16/24 (0.67) <0.001***
D-dimers ng/ml �500 2582.6 33/44 (0.75) 964.7 § 791.86 14/23 (0.61) 4354.52 § 7841.04 19/21 (0.90) <0.01**
Lactate mg/dl �20 11.26 3/39 (0.07) 9.43 § 3.58 0/23 (0.0) 13.88 § 6.75 3/16 (0.19) 0.01*
Procalcitonin ng/ml �0.5 1.25 9/40 (0.23) 0.22 § 0.45 1/17 (0.06) 2.02 § 3.79 8/23 (0.19) <0.001***
Bilirubin mg/dl �1.4 1.05 § 2.05 4/50 (0.08) 0.52 § 0.27 0/26 (0.0) 1.62 § 2.86 4/24 (0.17) 0.12
Alanine aminotransferase U/L �50 61.98 § 63.39 25/50 (0.5) 53.42 § 61.94 9/26 (0.) 71.25 § 64.94 16/24 (0.67) 0.04*
Urea mg/dl �50 49.67 12/43 (0.28) 28.95 § 14.30 2/19 (0.11) 66.08 § 69.49 10/24 (0.42) <0.01**
Creatinine mg/dl �1.2 1.29 § 1.14 13/50 (0.26) 0.94 § 0.24 3/26 (0.12) 1.68 § 1.55 10/24 (0.25) 0.17
Thrombocyte count /nl <140 206.0 § 105.78 38/50 (0.76) 208.46 § 118 6/26 (0.23) 203.33 § 93.21 6/24 (0.25) 0.85
Quick value % <70 77.54 14/48 (0.29) 79.17 § 20.45 6/24 (0.25) 75.92 § 24.05 8/24 (0.33) 0.60

Data are p values, calculated using Wilcoxon-Mann-Whitney-Test.
* Correlation is significant at the 0.05 level.
** Correlation is significant at the 0.01 level.
*** Correlation is significant at the 0.001 level.
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enables accurately segmentation of COVID-19 cases and
detects common phenotypes without the previous training of
data sets with COVID-19 images (31). Harmon et al. used AI
for detection of COVID-19 cases and differentiation from
other entities in a diverse multi-institutional dataset. The
application of a 3D classification and a hybrid 3D model
reached an accuracy with high specificity (demonstrating a
false negative rate of 10% for other pneumonia entities) and
sufficient generalizability (32).

Our study cohort only included COVID-19 laboratory
confirmed cases. We are not able to state information about
the specificity and sensitivity for the detection of a COVID-
19 infection using our software yet. Further, it needs to be
investigated, if the technique enables the distinction between
different entities of pneumonia.

Since the software works with HU threshold-based detec-
tion of opacities it remains unclear whether subtle GGO can-
not be detected by the software. Booz et al. showed that
MinIP reconstructions could improve the depiction of subtle
GGO. Disregarding different slice thicknesses, this method
works independently from HU threshold and might lead to
an increased sensitivity and therefore to a decline of false-neg-
ative cases of non-COVID chest CT scans (33).

Pinkung et al. did an integrative analysis for COVID-19
patient outcome prediction showing that radiomics features
describing texture and change of pulmonary opacities in
combination with laboratory and demographic data can sig-
nificantly increase the performance of prediction for a need
of ICU admission by an AUC up to 0,884 and sensitivity of
96,1% (34). We found several correlations between image-
based severity measures (e.g. opacity score) and likelihood of
an ICU admission which might be improved by further
inclusion of radiomics features in the future.

This study had several limitations beyond the retrospective
study design that need to be addressed. First, correlation does
not mean causation. Although COVID-19 might have influ-
enced ICU admission for a certain part, comorbidities could
not be deducted. Second, the patient population size was rela-
tively small; studies with larger patient populations are neces-
sary to confirm our results and to further evaluate the potential
of the applied software prototype. Third, not all laboratory
data were collected on the date of CT performance (§48 h),
which may have influenced the results. In addition, the course
of laboratory data changes was not included into the correla-
tion analysis in this study. Fourth, CT examinations were car-
ried out at various disease stage due to individual reasons. Fifth,
the applied AI-driven software is vendor-specific and currently
only applicable on a dedicated research post-processing plat-
form. Sixth, the difference between radiologist and software
performance in quantification of COVID-19 like opacities has
not been addressed by us in this study.

In this initial study, we demonstrated that fully automatic
quantification of COVID-19 like opacities using a software pro-
totype is feasible in clinical routine. The opacity score correlated
with clinical and laboratory data in confirmed COVID-19
patients. Furthermore, ICU and non-ICU patients significantly
1056
differed regarding the opacity score. Therefore, the automati-
cally computed software parameters offer several advantages
compared with semi-automatic quantification methods and
might serve as a predictive marker for clinical course of
COVID-19 and enable early non-invasive stratification of
patients with prognostic and therapeutic relevance. Prospective
multicenter studies are required to evaluate software robustness
and to further validate translation into clinical practice.
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