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A major clinical goal of brain-computer interfaces (BCIs) is to allow severely paralyzed patients to communicate their needs and
thoughts during their everyday lives. Among others, P300-based BCIs, which resort to EEG measurements, have been successfully
operated by people with severe neuromuscular disabilities. Besides reducing the number of stimuli repetitions needed to detect
the P300, a current challenge in P300-based BCI research is the simplification of system’s setup and maintenance by lowering
the number N of recording channels. By using offline data collected in 30 subjects (21 amyotrophic lateral sclerosis patients and
9 controls) through a clinical BCI with N =5 channels, in the present paper we show that a preprocessing approach based on a
Bayesian single-trial ERP estimation technique allows reducing N to 1 without affecting the system’s accuracy. The potentially great
benefit for the practical usability of BCI devices (including patient acceptance) that would be given by the reduction of the number

N of channels encourages further development of the present study, for example, in an online setting.

1. Introduction

Brain-computer interfaces (BCIs) are cutting-edge systems
aimed at identifying subjects’ intention from measurements
of brain activity [1-3]. A major clinical challenge in BCI
research has been to develop systems capable of restoring
communication in those people who, because of brainstem
strokes, cerebral palsies, brain/spinal cord injuries, or pro-
gressive neurodegenerative diseases (such as amyotrophic
lateral sclerosis, ALS), have lost the control of nearly all
voluntary muscles but still retain cognition and sensation
(4, 5].

Noninvasiveness, high temporal resolution, and low
encumbrance are among the reasons why EEG-based BCIs
are considered particularly appealing for the development of
systems intended to be finally used at patients’ home [3, 6].
The literature is huge and here is sufficient to mention that
in severely paralyzed or disabled patients EEG-based BCls

have been successfully operated by exploiting slow cortical
potentials [7, 8], sensorimotor y and f rhythms [9-12],
the P300 component of event-related potentials (ERPs) [13-
20], and the electrical activity associated with semantically
conditioned mental responses [21].

While some of the above-cited control signals may require
long trainings for being reliably produced accordingly with
users’ intention, for example, several weeks in [7,10], the P300
requires only focused attention and a suitable stimulation
scheme for being generated, approximately 300 ms after a
rare or task-relevant (target) stimulus [22]. Since the ERP is
embedded in background EEG activity, the target stimulus
has to be repeated several times in order to detect the
P300, often from the average of M EEG epochs aligned
with the stimulus onset [16, 19]. However, reliable generation
and detection of the P300 with as few as possible stimulus
repetitions (trials) is needed for obvious practical reasons. To
this aim, BCI investigators have studied ad hoc stimulation
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schemes [20, 23-25], optimal channel sets [14, 26], channel
selection methods [27, 28], classification algorithms [29-32],
and spatial filtering approaches [18, 33-35]. These efforts led
to the development of P300-based BClIs reliably operable by
a very small number of repetitions (~4 in [20] with N =
8 channels), and, in few cases, even to single-trial systems,
obtained, for example, by spatially filtering data from N = 5
recording channels [13, 17].

Yet, speed and accuracy are not the only concerns in BCI
research. Particularly in clinical applications, user’s physical
condition may render simplicity of use and setup even
more important than a theoretical 100% accuracy [36], as
witnessed, for instance, by the fact that a patient involved
in the study reported in [16] decided to withdraw from the
investigation because attaching and maintaining too many
electrodes was considered unacceptable. This is, indeed, a
general concern shared by BCI users and their caregivers
[37] and, although six to eight channels were believed to
be optimal for classification accuracy in P300-based BCIs
[26, 30], reduction of channels is advocated [16].

In this paper, we consider the challenge of reducing to
one the number N of channels in a single-trial P300-based
BCI. Specifically, as a preliminary proof of concept of the
feasibility of an assistive single-channel (SC) BCI, we assess
the hypothesis that the performance of the multichannel
(MC) BCI system documented in [13], with N = 5, is
preserved when only one channel is employed but a Bayesian
ERP estimation technique [38, 39] is used to preprocess the
signal. For such a scope, an offline comparison is made by
using the data collected in 21 ALS patients and 9 healthy
controls. Results will show that, in terms of classification
accuracy, the performance of the SC BCI is not significantly
different from that of the MC BCI, published in [13].

The paper is organized as follows. In Section 2, after a
brief review of experimental protocol and reference MC BCI
used in [13], the algorithms of the SC BCI prototype are
described. Accuracy of the SC and MC systems is assessed
and compared in Section 3. Comments on results, practical
challenges, limits of the study, and margins for further
investigations are reported in Section 4. Some conclusions
end the paper in Section 5.

2. Materials and Methods

2.1. Experimental Protocol and Database. Data utilized in the
present study for offline analyses are those recorded during
the online BCI sessions described in [13] from 21 ALS patients
(aged 55.6 + 14.3 years), in early and middle stages of the
disease (32.2 + 6.7 ALSFRS-R score [40], 47 + 32 months
from the disease onset), and 9 healthy controls (aged 54+18.8
years). We refer the reader to [13] for details. Briefly, users
were faced with a monitor with four images at its borders,
representing four basic needs, for example, being hungry, and
a circle in the center, as shown in Figure 1. The stimulation
consisted of consecutive blocks of randomized flashings of
four arrows (upward, rightward, downward, and leftward),
each pointing to the direction of one image. By focusing
on the flashing of the arrow pointing to the desired image
(target stimulus) and ignoring the others (nontarget stimuli),
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FIGURE 1: Graphical interface of the reference P300-based BCI [13].
The four icons represent four different basic needs. The flashing
arrow on the left side is an example of stimulation.

a P300 component was elicited. EEG was recorded from four
channels, that is, Fz, Cz, Pz, and Oz, and the electrooculogram
(EOG) was recorded from two electrodes placed laterally and
below the left eye. All electrodes were referenced to the left
earlobe. Signals were amplified by a SynAmps (NeuroSoft,
Inc.) amplifier, band-pass filtered between 0.15 and 30 Hz,
digitized with a 16-bit resolution, and sampled at 200 Hz.
After each flashing, a detection of a P300 activity from the
measured EEG determined the movement of the circle by
one step towards the direction of the flashed arrow and four
consecutive steps in the desired direction were needed to
reach the image. The time interval between two consecutive
flashings, that is, the inter stimulus interval (ISI), was 2.5s.
Each BCI session started with the circle at the center of the
screen and ended when the user reached the desired image or
a time-out occurred (defined below for testing sessions only).

Sessions were distributed over five days. In the first day,
eight sessions were carried out to collect data for initial
calibration tasks. In particular, target and nontarget EEG data
were recorded with an automatic feedback; that is, after each
target flashing, the system automatically moved the circle
towards the target image and, after each nontarget flashing,
the system kept the circle still. In each automatic-feedback
session, the number of flashings varied from a minimum of
13 to a maximum of 16, depending on when the target arrow
was flashed in the fourth randomized block. In each of the
subsequent testing days, denoted as T1, T2, T3, and T4, four
sessions with feedback based on the identification of the P300
by means of the classification algorithm were carried out.
Each testing session ended when the user reached the desired
image or after a maximum of 92 flashings, corresponding to
a time-out of 3 minutes and 50 seconds.

A classification error in correspondence with a nontarget
stimulus determined the movement of the circle towards
the wrong image, whereas a classification error in corre-
spondence with a target stimulus determined the lack of a
movement towards the desired image.

2.2. The Reference Multichannel (MC) BCL. EEG raw epochs,
starting 500 ms before and ending 1000 ms after each flashing,
were extracted and baseline was corrected to the mean of
prestimuli data, resulting in 7, = 100 prestimulus and

Mpost = 200 poststimulus samples. Functional blocks of
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FIGURE 2: Functional blocks of the reference MC BCI and of the simulated SC prototype. MC (solid lines) and SC (dashed lines) preprocessing
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the reference multichannel (MC) BCI [13] are graphically
illustrated in Figure 2. Briefly, in correspondence with each
flashing, raw epochs from N = 5 channels, that is, Fz, Cz, Pz,
Oz, and EOG, fed a single-trial ICA decomposition block that
produced five independent components. One of the compo-
nents was, then, selected and used to extract the information
(features) supplied to the classifier to take the decision about
whether the stimulus that produced the signal was target
or nontarget. Seventy-eight features were computed for each
epoch and comprised, for example, latencies and values of
minimum and maximum peaks, power of the signal in 200 ms
windows, and wavelet coefficients [13, 17]. Feature vectors
were classified by means of a support vector machine (SVM)
classifier with a radial basis function kernel [41].

As explained in more detail in [13], calibration tasks
were performed at the beginning of each testing day using
data collected during all preceding BCI sessions. Specifically,
based on calibration data, for each subject, the ICA demixing
matrix and the index of the component to be selected were
determined offline by means of the algorithms described
in [42, 43], respectively. Moreover, parameters needed for
running the SVM classifier were derived by a cross-validation
procedure on sets obtained by repeatedly splitting calibration
data in 80%/20% fractions.

2.3. The Single-Channel (SC) BCI Prototype. The single-
channel (SC) BCI prototype that we simulate and assess
offline in the present paper is obtained by replacing the
preprocessing steps of the MC BCI (blocks with solid lines
in the left portion of Figure 2), which exploits 5 inputs, with
a single-trial ERP estimation algorithm operating only on
the Pz channel (block with dashed lines in Figure 2). Single-
trial ERPs are estimated through the Bayesian approach
extensively described in [38], which also admits further
sophistications, recently documented in [39, 44], though not
usable in real time and thus unsuited to the BCI setting.
Briefly, the method performs an ad hoc smoothing of
each EEG raw epoch by exploiting, in a Bayesian setting,
prior knowledge on the smoothness of the unknown ERP,
described as m discrete integrations of a white noise with

variance A%, and on the autocorrelation of the background
EEG (noise), obtained from an AR model of order p with
coefficients and variance parameter ¢* identified from the
prestimulus data of each epoch. In our application, m = 2,
while p is determined, according to the final predictor error
(FPE) criterion, epoch by epoch. A* being unknown, the
ratioy = o? //\2, which determines the single-trial smoother,
is determined, epoch by epoch, by the popular discrepancy
regularization criterion [45]. An example of application of the
single-trial ERP estimation to our BCI data is described in
Section 3.1.

After Pz data preprocessing, the same features defined
and employed in the reference MC BCI are extracted (from
the estimated single-trial ERPs) and, finally, classified by an
SVM classifier with the same type of kernel. In order to allow a
fair comparison between SC and MC, available datasets were
processed offline by the SC BCI in the same way as in the
online MC BCI. Specifically, for each subject, before process-
ing single-trial data from each testing day, calibration tasks,
for example, classifier training, were performed based on Pz
datasets from all preceding sessions. This was done to obtain,
for each subject and testing day, accuracy comparable to that
obtained by the MC BCI and assess the role of the proposed
preprocessing approach on the system’s performance.

Remark. The determination, epoch by epoch, of y can be
computationally expensive (see [46]). While this is not
an issue for offline calibration tasks, it can affect online
operability. For this reason, in the present paper, for each
testing session, instead of optimizing y for each epoch, we
utilize a fixed y* predetermined from calibration data as
the median of the set of y values “optimally” tuned, for all
target and nontarget calibration epochs, by the discrepancy
criterion.

3. Results

3.1. Output of the New Pre-Processing Step. Before investi-
gating the performance of the BCI system, it is useful to
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FIGURE 3: Preprocessing results for a representative ALS patient. Raw target and nontarget epochs collected from P8 in T4 are shown in (a)
and (b), respectively, together with their average, shown as solid blue lines. In (c) and (d) two representative raw target and nontarget epochs
(blue curves) are superimposed to their denoised versions obtained by the Bayesian preprocessing (red curves). In (e) and (f) signals obtained
by preprocessing target and nontarget epochs in (a) and (b), respectively, together with their averages (red curves), are shown.

show an example of application of the single-trial estimation
technique to our data. Figure 3 reports, in panels (a) and
(b), respectively, single-trial target and nontarget raw epochs
recorded from Pz in patient P8 during the testing day T4.
The blue curves drawn in the same panels are the averages of
target and nontarget raw epochs, respectively. Panels (c) and
(d) display results of the new preprocessing step (red curves)
for one representative target and one representative nontarget
raw epoch (blue curves). Finally, the black curves in panels (e)
and (f) are the preprocessed versions of all curves in panels
(a) and (b), respectively, and the red curves are their averages.

As visible from the blue curves in panels (a) and (b), target
raw epochs are characterized by an average positive deflection
that is not present in nontarget epochs. The deflection, which
takes place at around 500 ms, is the P300 component of the
ERP. The red curve in panel (c) shows that, at the single-trial
level, the considered preprocessing smoothes away spurious
oscillations and produces a signal in which the P300-related
activity is more evident. As far as nontarget epochs are
concerned, panel (d) confirms that, as expected, the proposed
preprocessing yields a signal that is quite flat, reflecting the
absence of a P300-related activity. Finally, panels (e) and (f)
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TABLE 1: Percentage accuracy achieved by ALS patients in testing days T1, T2, T3, and T4 by means of the MC BCI (MC acc.) and the SC BCI

prototype (SC acc.).
Tl T2 T3 T4
MC acc. (%) SC acc. (%) MC acc. (%) SC acc. (%) MC acc. (%) SC acc. (%) MC acc. (%) SC acc. (%)

P1 73,5 72,6 73 78,4 78,3 81,7 779 81
p2 60,3 71,3 81,3 76,1 74,2 71,4 70,8 75,2
P3 63,4 69,2 90,9 69 80,6 70,5 87,2 74,1
P4 65 74,9 69,5 73,4 61,6 74,9 75,3 73,5
P5 80,2 78,8 80,6 70,6 89 83,7 82,1 82
P6 80,9 78,6 81,3 86,2 86,4 89,3 88,7 85,2
p7 72,9 80,7 76,2 75,4 74,7 79,2 72,7 80,1
P8 76,6 86,1 78,6 83,7 80,6 76,7 76,3 83,7
P9 80,4 78,6 78,4 90,2 79,1 88,7 84,4 83,9
P10 82,2 76,2 77,9 79 80,1 85,6 79,4 87,5
P11 82 72,3 78,8 78,5 74,7 76,5 85,2 69,7
P12 79,1 76,5 85,7 75,5 70,7 81,5 79,3 77
P13 77,6 77,6 86,4 86,3 88,4 83,1 91 96,7
P14 75,9 72,9 79 74 85,4 83,2 77,2 81,5
P15 67 87,5 79 95,1 79,2 90,7 80,3 89,7
P16 61,5 63,9 56,4 74,8 79,4 78,4 76,8 83,7
P17 70,6 70,4 75,3 76,6 80 74,2 71,4 70,9
P18 66,4 70,3 74,6 74,8 80,9 79,5 78 80
P19 78,1 82,5 88,8 85,3 84,3 85,9 69,6 84,9
P20 72,9 72,4 77,5 70 86,4 76,8 78,9 74,1
P21 72,7 72,3 69,5 76,9 75,5 82,9 77,4 79,3
show how the extracted activity varies from epoch to epoch, 10
with average activities (red curves) similar to the ones of raw
epochs.

Similar comments could be drawn from the results
obtained in the other patients and in healthy subjects,
irrespectively of ERP interepoch variations and general group > 1
differences, visible, for example, from the grand averages -
depicted in Figure 4, which show a lower and slightly delayed E.
P300 for patients with respect to controls. Indeed, according 4
to the comprehensive simulation studies reported in [38, 39], £ |
the accuracy of ERP estimates depends on the signal-to-noise E
ratio (SNR) and not on the specific shape of the ERP.

-5

3.2. Assessment of Classification Accuracy: SC versus MC.
Classification accuracy obtained by feeding the SC prototype 500 o =00 1000
with the input data described in Section 2.1, together with the Time (ms)
reference accuracy published in [13], is reported in Tables 1
and 2 for ALS p'atients and controls, .respectively. Results are  ALS patients
grouped by testing day and, for brevity, accuracy by the MC —— Healthy controls

BCI of [13] and by the SC BCI prototype is denoted as “MC
accuracy” and “SC accuracy;” whereas labels P1,. .., P21 and
HI, ..., H9 are used for patients and controls, respectively.
Numerical results in Tables 1 and 2 are graphically
represented in Figure 5, where a series of box-plots are
reported in two panels related to ALS patients (panel (a))
and healthy controls (panel (b)), respectively. Each box-plot is
based on values from one column of the tables, that is, on the
accuracy achieved in a specific testing day, T;, i = 1,...,4,

FIGURE 4: Average of target epochs collected from Pz during all
testing days for ALS patients (red curve) and healthy controls (blue
curve).

and by a specific system, MC or SC. The lower and upper
edges of the rectangles are drawn in correspondence with the
25th and 75th percentile of accuracy, respectively, and the red
lines represent the median accuracy.
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TABLE 2: Percentage accuracy achieved by healthy controls in testing days T1, T2, T3, and T4 by means of the MC BCI (MC acc.) and the SC

BCI prototype (SC acc.).
T1 T2 T3 T4

MC acc. (%) SC acc. (%) MC acc. (%) SC acc. (%) MC acc. (%) SC acc. (%) MC acc. (%) SC acc. (%)
H1 73,6 81,9 77,3 84,1 73,9 84,5 79,6 84,5
H2 73,3 81,2 77,5 86,5 86,6 91,8 78,6 91,9
H3 71,2 74,6 76,9 76,8 71,8 76 76,1 75
H4 85,9 87 80,8 89 86,3 86,7 89,4 94,1
H5 81,2 77,6 91,3 79,12 81 77,6 87,4 84,6
Hé6 76,4 79,6 83,1 80,6 81,9 79,8 78,2 73,1
H7 95,1 87,6 86,9 81,7 89 88,1 93,1 83,5
HS8 70,1 75,8 83,6 68,9 76,1 77,9 83,5 76,7
H9 77,3 86,1 75,7 72,4 70,3 82 80,7 92

__ 100 : ; ; __100 ; = ; = ; é E]
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(a) ALS patients

(b) Controls

FIGURE 5: Distributions of accuracy achieved by MC and SC systems in T1, ..., T4 for ALS patients (a) and controls (b). Labels Tj-MC and
Tj-SC for, j =1, ..., 4, denote accuracy achieved in testing day Tj by MC and SC systems, respectively.

As shown by the plots, in all testing days the median
accuracy yielded by the two systems is very close both for
patients and for controls. Actually, based on values in Tables 1
and 2, it can be assessed that differences between medians are
below 5% and, whereas the average performance in T1and T2
is slightly higher when the MC BCI is employed, the inverse
happens in T3 and T4, where the SC prototype yields slightly
higher medians for both groups, for example, 81% versus 78%
and 84,5% versus 80,7% for patients and controls, respec-
tively, in T4. The plots in Figure 5 also show that for all testing
days the distributions of accuracy around the medians mainly
overlap for the two systems, without a clear predominance of
one system over the other. For instance, in T4 the accuracy
achieved by ALS patients is concentrated between 76,1% and
82,7% for the MC BCI and between 74,9% and 83,7% for the
SC prototype. Similarly, for healthy controls, the ranges are
78,5-87,9% and 76,3-91,9%, respectively. In order to validate
these graphical evidences, MC accuracy and SC accuracy
were compared by means of a statistical test. Specifically,
both for patients and for controls, a Wilcoxon paired test was
performed on accuracy from each testing day. None of the
tests revealed statistically significant differences, confirming
that, thanks to the proposed preprocessing, users’ intention
can potentially be decodable from only one channel with the
same accuracy achieved with the reference N = 5 channels
BCI. As a final remark, in terms of best cases, it is interesting
to note that maximum accuracy achieved by ALS patients in

each testing day by means of the SC prototype, that is, 87.5%,
92.2%, 90.7%, and 96.7%, in T1, T2, T3, and T4, respectively,
besides being impressively high from the first day, slightly
outperforms that achieved by the MC BCI, that is, 82.2%,
90.9%, 89%, and 91%, with the best improvement of 5.7%
obtained in T4. The same happens for healthy controls in T3
and T4, where the SC prototype yields maximum accuracy of
91,8% and 94,1%, respectively, versus the 89% and 93,1% of the
MC BCI. It is worthy to note that all users only participated in
the five-day experimental protocol described in Section 2.1.

4. Discussion

Offline analysis on data collected in 21 ALS patients and 9
controls indicates that the proposed Bayesian preprocessing
technique yields signals with enhanced SNR well evidencing
the presence or absence of P300-related activity. Accuracy of
the SC prototype was found to be not statistically different
from that of the MC BCI, confirming that no performance
degradation was caused by the reduction of channels from
N=5toN=1

Remarkably, results about SC accuracy, reported in
Section 3.2, were obtained without any strategy to individ-
ually select the single channel. Interesting insights in this
regard may be obtained from an accurate inspection of the
outcomes in some specific cases (details not reported for the
sake of brevity of the paper). For instance, in those cases in
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which SC performed worst, we observed that Pz did not show
an evident P300 activity and that an improvement in accuracy
could be achieved by using data from Cz, for example, from
67.9% to 80.7% for patient P11 in T4. Similar examples were
found that highlighted the benefit of an optimized electrode
positioning in SC systems.

As far as communication speed is concerned, the 2.5s
ISI of the considered four choices paradigm yields an upper
bound of 12bit/min for the information transfer bit rate
(TBR), computed as in [17]. Interestingly, this value is almost
achieved by P15 in T2, where the SC prototype allows a
communication of 11.2 bit/min.

Limits of the present study include the fact that results
were obtained in an offline setting, where adaptation mech-
anisms that take place when the user receives the feedback
to his/her mental activity cannot be reproduced. Therefore,
an online implementation of the SC prototype will be
needed to validate and confirm the results obtained in the
simulated environment of this paper. Another potentially
critical point concerns the ISI, which should be reduced in
order to increase communication speed. Obviously, short
ISIs, for example, the 400 ms proposed in [14] for a six-icon
paradigm, determine a possible spread of the target P300
activity in epochs corresponding to nontarget stimuli. Proper
investigations would be needed in this case to assess the
capability of the classifier to predict users’ intention from the
activity estimated by the Bayesian technique. In any case, a
short ISI would require improving numerical implementa-
tion of the Bayesian preprocessing algorithm. In particular,
in place of the matrix-vector approach [38] used also in the
present paper, methods implementing Wiener filtering by Z-
transforms and spectral factorization techniques [47] should
be chosen.

Finally, it is worth mentioning that the number of ALS
datasets available for the present work, that is, 21, is quite
high with respect to commonly published BCI investigations.
In perspective, this adds to the potential clinical interest of
the study, because, sometimes, results obtained in healthy
subjects do not reflect those of patients [48].

5. Conclusions

The study presented in this paper shows that a preprocessing
by a sophisticated single-trial ERP estimation technique can
potentially allow driving a P300-based BCI by a single chan-
nel. This can be of high impact in BCI clinical applications,
where simplicity of use and setup can be even more important
than 100% of accuracy and reduction of the number N
of channels has been solicited [16]. Moreover, a reduced
number of channels would also have an impact on power
consumption in wireless EEG caps.

As future developments of the present study, besides
validating results in an online setting and with diverse
stimulation schemes with variable ISIs, further research will
be aimed at better understanding of to what extent single-
trial ERP estimation techniques may effectively contribute to
improve P300-based BCI systems, for example, by optimizing
the position of the single channel. A further boost to the
practical usability of P300-based BCIs may be given by the

use of a subcutaneous (minimally invasive) electrode such as
that proposed in [49] for hypoglycemia detection.
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