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Abstract
Introduction and objectives
Bacterial translocation (BT) is the passage of viable bacteria or endotoxins from the
gastrointestinal lumen to extra-luminal tissues and is usually observed after intestinal
ischaemia-reperfusion injury. The aim of this study was to investigate post-resuscitation BT
after cardiac arrest and resuscitation in a swine anaesthetized with propofol-based total
intravenous anaesthesia.

Materials and methods
Eighteen female Landrace/Large White piglets were randomly divided into control (CON),
cardiac arrest (CA) and cardiac arrest-cardiopulmonary resuscitation (CA-CPR) groups. In the
CON group, the animals were only monitored for two hours. In the CA group, the animals were
not resuscitated and underwent necropsy immediately after cardiac arrest. In the CA-CPR
group, the animals were resuscitated until the return of spontaneous circulation (ROSC) and
were monitored for two hours. The animals of the CON and CA-CPR groups underwent
necropsy 24 hours later. Bacterial translocation was assessed by blood and tissue cultures and
endotoxin measurement in the portal and systemic circulation. Malondialdehyde content
calculation and histological analysis of the intestine were performed in order to estimate
ischemia and reperfusion (I/R) tissue damage.

Results 
Malondialdehyde content, an indicator of oxidative stress, was significantly higher in the CA-
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CPR group compared to the CA in homogenized ileum (p=0.016). Malondialdehyde content in
homogenized colon revealed significantly higher levels in the CA-CPR group compared to the
CON (p=0.004) and the CA group (p=0.016). We found significantly higher levels of portal
endotoxin in the CA-CPR group compared to the CON (p=0.026) and the CA group (p=0.026).
The number of positive mesenteric lymph nodes cultures for E. coli was greater in the CA-CPR
group, followed by the CA and CON groups, although the difference was not significant (67%,
33%, and 33%, respectively; p=0.407).

Conclusions
Malondialdehyde content and portal endotoxin levels do not increase during the cardiac arrest
interval, but only after CPR and ROSC. Although the number of positive MLNs cultures was
greater in the CA-CPR animals, no statistically significant differences were observed between
the three groups due to the short monitoring period.

Categories: Anesthesiology, Emergency Medicine
Keywords: bacterial translocation, propofol, cardiac arrest, post-resuscitation period, reperfusion

Introduction
Cardiac arrest is a medical emergency with more than one million cases per year and dismal
prognosis. Even if return of spontaneous circulation (ROSC) is achieved, survival to hospital
discharge ranges from 9.4% for out-of-hospital cardiac arrest (OHCA) to 22.4% for in-hospital
cardiac arrest [1-3]. In addition, the risk for post-resuscitation septic complications is high;
more than one-third of OHCA victims become bacteremic within the first 12 hours after ROSC,
while bacteraemia or other confirmed source of infection may aggravate neurologic outcomes
and increase mortality [4].

Bacterial translocation (BT) is the passage of viable bacteria or endotoxins from the
gastrointestinal lumen, through the mucosal epithelium, to extra-luminal tissues, such as the
mesenteric lymph nodes (MLNs) and other distant organs [5-7]. This phenomenon is usually
observed after intestinal ischemia-reperfusion (I/R) injury, but the timing and the associated
pathophysiological mechanisms have been poorly investigated after cardiac arrest and
resuscitation.

The primary aim of this study was to investigate when BT occurs after the onset of cardiac
arrest in animals anaesthetized with propofol-based total intravenous anaesthesia. Secondary
aims were the assessment of intestinal oxidative stress and intestinal injury post-cardiac arrest.

Materials And Methods
The study protocol was approved by the Greek General Directorate of Veterinary Services
(license No 4978/16-10-2015) and was conducted in accordance to the Greek legislation
regarding ethical and experimental procedures.

Animal preparation
Study subjects were 18 female Landrace/Large-White piglets, aged 10-15 weeks, with an
average weight of 19±2kg. The animals were purchased from the same breeder (Validakis,
Koropi, Greece) and were transported to the research facility (Experimental Research Center,
ELPEN, European Ref No. EL 09 BIO 03) one week before experimentation. Prior to the
experimental procedure, the animals were fasted overnight but had free access to water [8]. All
animals were examined by a veterinarian on the day of the experimentation and were found
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healthy.

Animals were premedicated with intramuscular injections of 10 mg/kg ketamine hydrochloride
(Merial, Lyon, France), 0.5 mg/kg midazolam (Roche, Athens, Greece), and 0.05 mg/kg atropine
sulphate (Demo, Athens, Greece), as previously described [9]. The animals were subsequently
transported to the operation research facility and intravascular access through the auricular
veins was obtained. Anaesthesia was induced by an intravenous bolus dose of 2 mg/kg propofol
(Diprivan 1% w/v; Astra Zeneca, Luton, United Kingdom) and 2 μg/kg fentanyl (Janssen
Pharmaceutica, Beerse, Belgium) [10]. Whilst spontaneously breathing but anaesthetized, the
animals were intubated with an endotracheal tube (Portex, 4.5 mm ID; Mallinckrodt Medical,
Athlone, Ireland) and were immobilized in the supine position on a surgical table. Additional 1
mg/kg propofol, 0.15 mg/kg cis-atracurium (Nimbex 2 mg/mL; GlaxoSmithKline, Athens,
Greece), and 0.01 mg/kg fentanyl were administered to achieve synchrony with the ventilator.
The animals were ventilated with a tidal volume of 10 ml/kg and 21% oxygen (Alpha Delta lung
ventilator, Siare, Bologna, Italy), while propofol 0.1 mg/kg/min, cis-atracurium 20 μg/kg/min,
and fentanyl 0.6 μg/kg/min were administered to maintain adequate anaesthetic depth. End-
tidal carbon dioxide pressure (ETCO2) was continuously monitored (Tonocap-TC200; Datex
Engstrom, Helsinki, Finland) and the respiratory rate was adjusted to maintain ETCO2 between
35 and 45 mmHg. Pulse oximetry was monitored throughout the experiment.
Electrocardiographic monitoring included leads I, II, III, aVR, aVL, and aVF. The leads were
connected to a monitor (Mennen Medical, Envoy; Papapostolou, Athens, Greece) which
electronically calculated the heart rate. Arterial blood gases were measured on a blood-gas
analyzer (IRMA SL Blood Analysis System, part 436301; Diametrics Medical Inc, Roseville, MN).

For measurement of the aortic pressures, an arterial catheter (model 6523, USCI CR, Bart;
Papapostolou) was inserted and forwarded into the descending aorta after surgical preparation
of the right internal carotid artery. The systolic (SAP) and diastolic (DAP) arterial pressures
were recorded, whereas mean arterial pressure (MAP) was determined by the electronic
integration of the aortic blood pressure waveform. The right internal jugular vein was
cannulated with a catheter to measure central venous pressure (CVP). The left internal jugular
vein was also surgically prepared and a catheter was inserted for fluid administration.
Intravascular catheters were attached to pressure transducers that were aligned to the level of
the right atrium and were calibrated before their use. This allowed the recording of CVP, right
atrial, and arterial pressures. Cardiac output (CO) was measured as the product of time-velocity
integral of Doppler transaortic flow, the diameter of the aortic valve, and heart rate, while SVR
was calculated using the formula SVR = (MAP - CVP)/CO x 80, as previously described [11].

Experimental procedure
Baseline data were collected after allowing each animal to stabilize for a 30-minute period.
Before the experimental procedure, the animals were randomly divided using closed envelopes
into three groups: control (CON, n=6), cardiac arrest (CA, n=6) and cardiac arrest and CPR (CA-
CPR, n=6). We used three groups to investigate the evolution of intestinal damage during the
different stages of cardiac arrest and resuscitation. The investigators involved in data
recording, data entry, and data analysis were blinded to each animal's allocation.

In the CON group, the animals were subjected only to minor aseptic procedures
(instrumentation) and were monitored for two hours. In the CA and CA-CPR group, a 5F flow-
directed pacing catheter (Pacel, 100 cm; St Jude Medical, Ladakis, Athens, Greece) was
advanced into the apex of the right ventricle and ventricular fibrillation was induced using a 9V
ordinary cadmium battery, as previously described [12]. Cardiac arrest was recognized
electrocardiographically and confirmed by loss of arterial pulse. Mechanical ventilation and
administration of anaesthetics were discontinued simultaneously with the onset of cardiac
arrest and the animals were left untreated for eight minutes (representing the average time of
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EMS arrival in Europe).

In the CA group, the animals were not resuscitated. Blood samples were collected immediately
after the eighth minute of cardiac arrest and then the animals underwent necropsy. Tissue
samples from MLNs, liver, spleen, and lungs were also collected. In the CA-CPR group,
resuscitation was immediately started after the eighth minute of cardiac arrest according to the
2015 European Resuscitation Council guidelines on resuscitation, with ventilation in 100%
oxygen and chest compressions at a rate of 100/min (LUCAS 2 CPR device, Jolife, Lund, Sweden)
[13]. Defibrillation was attempted with a 4 J/kg monophasic waveform shock delivered between
the right infraclavicular area and the cardiac apex (Primedic Defi-B Defibrillator; Metrax GmbH,
Rottweil, Germany), while adrenaline was administered at a dose of 0.02 mg/kg via the marginal
auricular vein [8]. Resuscitation efforts continued until ROSC (MAP of at least 60 mm Hg for a
minimum of five minutes) or when asystole occurred after the tenth minute of CPR. After
ROSC, the animals were anaesthetized and monitored for two hours, during which no further
resuscitation was attempted.

Subsequently, anaesthesia was discontinued in the CON and CA-CPR groups, all catheters were
removed as previously described, and manual ventilation was initiated [14]. Atropine 0.2 mg/kg
followed by neostigmine 0.05 mg/kg were administered after detection of spontaneous
swallowing reflex and extubation was performed when adequate inspiration depth was
confirmed. Each animal was then transferred to its house for observation. After 24 hours, the
animals were humanely euthanized by an intravenous overdose of pentobarbital and
underwent necropsy [15]. Blood and tissue samples were also collected.

Malondialdehyde and endotoxin analysis - Histopathological
evaluation
Using aseptic techniques, tissue samples of 2.0-3.0 cm from terminal ileum and colon were
collected and stored in liquid nitrogen at -70 °C until analysis. Additional samples of ileum and
colon were collected and immediately stored in 10% formaldehyde. Blood samples from the
portal vein and the aorta were collected and immediately stored in endotoxin-free tubes
(EndoGrade® Glass Test Tubes, Hyglos/bioMérieux, Bernried, Germany) until analysis. Plasma
levels of endotoxin in the portal and the systemic circulation were determined using a
commercially available ELISA kit (KIT LS-F15272, Life Span BioSciences, Inc., Seattle, WA,
USA). Tissue malondialdehyde (MDA) content in homogenized ileum and colon was measured
using a commercially available ELISA kit (KIT EU2577, Wuhan Fine Biological Technology Co.,
Ltd., Wuhan, China). The degree of intestinal tissue injury was graded from 0 to 5, using a
modified Chiu’s method, as previously described [16].

Statistical analysis
During study design, the insufficient data in literature did not allow for power analysis and
sample size estimation. Therefore, we were given permission to conduct a pilot study with six
animals per group. The pilot data analysis revealed an adequate level of statistical significance
and considering the guiding principles underpinning the humane use of animals in scientific
research (three Rs), the final sample size included six animals per group [15,17]. Data were
expressed as mean±SD or median±IQR for continuous variables. The normality of distributions
was assessed using the Kolmogorov-Smirnov test. Categorical variables were compared between
groups using the chi-square test, or Fisher's exact test, as required. Comparisons of continuous
variables between the three groups were performed using one-way ANOVA and pairwise
comparisons were performed using the Bonferroni test. In case of non-normal distributions,
the non-parametric Kruskal-Wallis and Mann-Whitney tests were used. Comparisons of
continuous data extracted at the predefined time points of the observation period, only for the
CON and CA-CPR groups, were performed using independent samples t-test, or Mann-Whitney
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test in case of violation of normality. All tests were two-tailed and a value of p<0.05 was
considered significant. Statistical analysis was performed using SPSS version 21.0 (IBM Corp,
Armonk, NY, USA).

Results
All animals in the CA-CPR group were successfully resuscitated.

Haemodynamic and metabolic parameters
No statistically significant differences were observed in baseline haemodynamic and metabolic
parameters between the three groups (Table 1).

  Measurement
CON CA CA-CPR

  p-value
Mean±SD Mean±SD Mean±SD

Heart rate (beats/min) 106.83 ± 11.53 107.00 ± 5.73 96.33 ± 14.99 0.212

Systolic aortic pressure (mmHg) 115.50 ± 7.4 116.83 ± 10.34 115.17 ± 10.74 0.951

Diastolic aortic pressure (mmHg) 92.17 ± 5.78 94.00 ± 10.86 89.67 ± 10.09 0.720

Systolic right atrial pressure (mmHg) 12.00 ± 4.43 10.17 ± 3.06 13.50 ± 3.02 0.297

Diastolic right atrial pressure (mmHg) 6.83 ± 2.48 5.33 ± 2.42 8.33 ± 2.50 0.144

Cardiac output (L/min) 5.53 ± 0.61 4.93 ± 1.00 4.90 ± 0.99 0.399

pH 7.44 ± 0.05 7.39 ± 0.03 7.41 ± 0.04 0.160

pO2 (mmHg) 128.17 ± 19.05 111.33 ± 17.37 119.00 ± 16.75 0.287

pCO2 (mmHg) 42.5 ± 4.04 45.83 ± 2.40 42.67 ± 4.27 0.240

HCO3 (mmol/L) 27.68 ± 2.87 26.50 ± 1.63 26.20 ± 2.25 0.515

Lactate (mmol/L) 0.51 ± 0.32 0.58 ± 0.15 0.97 ± 0.91 0.348

TABLE 1: Baseline hemodynamic and metabolic parameters of the study
CON, control group; CA, cardiac arrest group; CA-CPR, cardiac arrest and cardiopulmonary resuscitation group.

All animals in the CA-CPR group restored ROSC after 6.3±2.1 min of CPR and a mean
adrenaline dose of 0.5±0.17.

Statistically significant differences were observed in pH (p=0.002), HCO3 (p=0.003) and lactate
(p=0.008) between the CON and the CA-CPR group one hour after ROSC. Two hours after ROSC,
pH and HCO3 levels remained significantly lower (p=0.016 and p=0.007, respectively), whereas
lactate concentration remained significantly higher (p=0.046) in the CA-CPR group (Table 2).
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  Measurement

1 hour 2 hours

CON CA-CPR p-
value

CON CA-CPR p-
valueMean±SD Mean±SD Mean±SD Mean±SD

Heart rate (beats/min) 101.67 ± 9.50
110.50
±13.20

0.213 99.83 ± 8.26
103.17 ±
12.40

0.596

Systolic aortic pressure (mmHg)
112.83 ±
13.4438

103.17 ±7.76 0.158
112.00 ±
18.49

117.50 ± 7.77 0.524

Diastolic aortic pressure (mmHg) 86.17 ± 10.70 82.50 ± 6.66 0.492 82.33 ± 16.37 93.83 ± 7.94 0.164

Systolic right atrial pressure
(mmHg)

11.50 ± 2.43 13.17 ± 2.79 0.295 12.17 ± 2.56 13.50 ± 3.51 0.469

Diastolic right atrial pressure
(mmHg)

7.67 ± 2.58 8.17 ± 2.48 0.740 7.83 ± 2.40 8.33 ± 3.39 0.774

Cardiac output (L/min) 6.05 ± 1.48 5.55 ± 0.82 0.485 6.25 ± 1.41 4.83 ± 0.79 0.064

pH 7.4 ± 0.05 7.28  ± 0.06 0.002 7.41 ± 0.05 7.32 ± 0.06 0.016

pO2 (mmHg) 128.17 ± 27.86
108.33
±19.75

0.185
121.17 ±
29.67

113.17 ±
28.43

0.644

pCO2 (mmHg) 43.17 ± 4.40 40.50 ± 2.59 0.229 42.33 ± 3.56 39.50 ± 2.26 0.131

HCO3 (mmol/L) 26.05 ± 3.94 18.75 ± 2.36 0.003 26.35 ± 3.44 19.78 ± 3.20 0.007

Lactate (mmol/L) 0.70 ± 0.35 3.27 ± 1.85 0.008 0.59 ± 0.47 2.21 ± 1.50 0.046

TABLE 2: Hemodynamic and metabolic parameters in the CON and CA-CPR groups
during the monitoring period
CON: control group; CA: cardiac arrest group; CA-CPR: cardiac arrest and cardiopulmonary resuscitation group.

Intestinal mucosal injury and malondialdehyde content
Although histological analysis revealed mild intestinal damage in the CA and CA-CPR groups,
there was no statistically significant difference in intestinal mucosal injury score between the
three groups (p=0.504) (Table 3, Fig. 1).
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CON CA CA-CPR

          p-value
Median IQR Median IQR Median IQR

 MDA – Ileum (ng/ml) 23.02 4.51 20.99 7.77 27.46a 4.53 0.042

 MDA – Colon (ng/ml) 9.73b 8.06 10.56 c 8.19 18.82 10.36 0.006

Mucosal Injury Score 2.00 2.50 3.00 2.50 3.00 1.00 0.504

TABLE 3: Comparison of malondialdehyde content and mucosal injury between the
three groups
a p=0.016 vs CA; b p=0.004 vs CA-CPR; c p=0.016 vs CA-CPR

MDA: malondialdehyde; CON: control group; CA: cardiac arrest group; CA-CPR: cardiac arrest and cardiopulmonary resuscitation
group.

FIGURE 1: Intestinal mucosal injury in our study. Magnification
200×.
0: Normal villi – CON group.

1: Development of the sub-epithelial Gruenhagen’s space (black arrow) with some capillary
congestion – CON group.

2: Extension of the sub-epithelial space with moderate lifting of the epithelial layer from the lamina
propria – CA group.

3: Massive epithelial lifting with a few denuded villi – CA group
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4: Denuded villi with exposure of dilatated capillaries – CA-CPR group.

5: Digestion and disintegration of lamina propria, hemorrhage and ulceration – CA-CPR group.

CON: Control; CA: cardiac arrest; CA-CPR: cardiac arrest-cardiopulmonary resuscitation

We found no statistically significant difference in the MDA content of the homogenized ileum
(p=0.337) and colon (p=0.337) between the CA and CON groups. Malondialdehyde content in
homogenized ileum was significantly higher in the CA-CPR group compared to the CA group
(p=0.016), but not compared to the CON group (p=0.109). Also, MDA measurements in
homogenized colon revealed significantly higher levels in the CA-CPR group compared to the
CON (p=0.004) and the CA group (p=0.016) (Figure 2).

FIGURE 2: Malondialdehyde concentration in homogenized
ileum-colon.
CON: control group; CA: cardiac arrest group; CA-CPR: cardiac arrest and cardiopulmonary
resuscitation group.

Endotoxin levels
No statistically significant differences were observed in endotoxin levels in the systemic
circulation between the three groups (p=0.628). On the contrary, measurements in the portal
circulation revealed significantly higher levels of endotoxin in the CA-CPR group compared to
the CA (p=0.026) and the CON (p=0.026) group. However, there was no significant difference in
portal endotoxin levels between the CA and the CON group (p=0.240) (Figure 3).
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FIGURE 3: Endotoxin levels in systemic and portal circulation.
CON: control group; CA: cardiac arrest group; CA-CPR: cardiac arrest and cardiopulmonary
resuscitation group.

Blood and tissue cultures
The number of positive MLNs cultures for E. coli was greater in the CA-CPR group, followed by
the CA and CON groups, although the difference was not significant (67%, 33%, and 33%,
respectively; p=0.407). All other blood and tissue cultures collected at 24 hours post-ROSC were
not indicative of BT.

Discussion
Despite advances in resuscitation science and the increasing evidence on the pathophysiology
of post-resuscitation syndrome, the time at which BT occurs after cardiac arrest remains
unknown. In this study, we found that CA-CPR animals had significantly higher levels of
endotoxin in portal circulation compared to CA and CON animals. In addition, the CA-CPR
animals had more positive MLNs cultures compared to the other groups, although the
difference was not statistically significant. To our knowledge, this is the first study presenting
direct evidence regarding the timing of BT after cardiac arrest.

Malondialdehyde, the end product of fatty acid peroxidation, is a good indicator of oxidative
injury and the degree of lipid peroxidation and oxidative stress [18]. In our study, we did not
find significant differences in the MDA content of the homogenized ileum and colon between
the CA and CON groups. Considering that our animals were healthy without any comorbidity,
we conclude that intestinal ischaemia alone could not increase oxidative stress during the
eight-minute cardiac arrest interval, indicating significant intestinal physiological reserves
possibly due to preserved microcirculatory autoregulation [19]. After the onset of CPR, the gut
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receives a small amount of the compression-related cardiac output (less than 5%) and thus the
major intestinal disturbance during CPR continues to be ischaemia rather than reperfusion
[5]. However, even this small amount of oxygenated blood may be capable for inducing
reperfusion injury, which is significantly exacerbated after ROSC [20]. This was also evident in
the CA-CPR group, in which intestinal reperfusion increased inflammation and the oxidative
stress, resulting in a higher MDA content in these animals.

Despite the significant differences in the MDA content of our animals, several authors have
reported that treatment with propofol decreases intestinal MDA levels [16]. Therefore, propofol
may have exerted protection against oxidative stress, resulting in lower MDA levels in study
[16]. In another animal study, pre-treatment with a sedative dose of propofol attenuated
intestinal epithelial apoptosis after I/R, which was attributed to its antioxidant properties [21].
Similarly, our animals were pre-treated with sedative doses of propofol prior to the induction of
cardiac arrest and CPR, which may have significantly alleviated oxidative stress, intestinal
injury, and thus BT, suggesting a preconditioning-like effect of propofol [7,16,22]. In addition, it
is important to remember that healthy intestinal mucosa expresses low concentrations of toll-
like receptor 4 (TLR-4), which is significantly increased in inflammatory conditions [23].
However, propofol has been reported to down-regulate TLR-4 expression, therefore delaying
the reperfusion-induced BT [24]. Further studies in different animal models and particularly in
the clinical setting are warranted to determine if this response translates to the bedside when
propofol is used during the peri-arrest period.

Although research has shown that the reperfused intestine is characterized by severe
histological alterations, mucosal rupture, and increased permeability [23], we did not find
significant differences in the intestinal mucosal injury score between the three groups. Our
results are similar to those of Schroeder et al. who reported a mild intestinal barrier damage
and mild local intestinal inflammation within 24 h post-ROSC in a rat model of six-minute
cardiac arrest [25]. The mild intestinal injury in the CA-CPR group may be also explained by the
low dose of the administered adrenaline, which may have minimized the detrimental effect of
the drug on mesenteric blood flow [26]. Also, the non-significant differences in endotoxin
levels between the CA and the CON group imply that the ischaemic-induced intestinal injury
was not able to cause BT. On the other hand, reperfusion of the intestine after CPR and ROSC
induced BT, significantly increasing endotoxin levels in the portal circulation of the CA-CPR
group [27]. Of note, research has shown that endotoxin increases in more than 24 hours after
ROSC, implying that the short monitoring period of 24 hours may be the reason for the non-
significant differences in systemic endotoxin levels in our study [27]. Another explanation for
this finding may be the circulation of endotoxin, which either translocates through the portal
venous system to the liver or enters the systemic circulation via the thoracic duct. Then, a
significant fraction of endotoxin binds to plasma proteins and is removed by certain organs,
particularly the liver [28].

Although our findings imply that reperfusion may play a causative role in intestinal injury,
possibly due to overproduction of oxygen radicals and/or insufficient antioxidant activity, the
difference in MDA concentration in ileum and colon may be inversely correlated with the
amount of bacteria species and populations commonly hosted in these two sites of the gut.
However, gut-derived BT may not be the sole mechanism of post-resuscitation inflammation
and sepsis. It is possible that bacteria, macromolecules, immune cells, and cytokines travel
along the mesenteric lymphatics to the systemic circulation, entering pulmonary circulation
and inducing acute lung injury and multiple organ dysfunction [29]. As the gut-portal and the
gut-lymph mechanism may occur independently of each other, further studies are required for
the elucidation of these phenomena.

Limitations to our study should be considered. First, our experiment was conducted on
apparently healthy pigs with no underlying disease. This is not the case in human cardiac arrest
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victims who, most of the time, have various comorbidities. Second, the monitoring period of
the CA-CPR group was limited to 24 hours and different results could be obtained in longer
monitoring periods. Due to the small sample size of our study, statistical analysis may have
failed to capture other factors associated with BT. Moreover, we did not search for TLR-4
polymorphisms, although some of them may prevent the deleterious effect of endotoxin
[30]. In addition, we did not perform repeated measurements of endotoxin. Nevertheless, all
measurements were performed at 24 hours following ROSC.

Conclusions
This is the first study presenting direct evidence regarding the timing of BT after cardiac arrest.
Malondialdehyde content and portal endotoxin levels increased significantly only after CPR and
ROSC. Although the number of positive MLNs cultures was greater in the CA-CPR animals, no
statistically significant differences were observed between the three groups at 24 hours. Future
studies on BT should include a post-reperfusion monitoring period of more than 48 hours.
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