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Competition for nutrients and its role in controlling
immune responses
Nidhi Kedia-Mehta1 & David K. Finlay 1,2

Changes in cellular metabolism are associated with the activation of diverse immune subsets.

These changes are fuelled by nutrients including glucose, amino acids and fatty acids, and are

closely linked to immune cell fate and function. An emerging concept is that nutrients are not

equally available to all immune cells, suggesting that the regulation of nutrient utility through

competitive uptake and use is important for controlling immune responses. This review

considers immune microenvironments where nutrients become limiting, the signalling

alterations caused by insufficient nutrients, and the importance of nutrient availability in the

regulation of immune responses.

Immune responses involve rapid and extensive changes in the activities of immune cells with
concomitant alterations in cellular metabolism. Immune cells have various demands for
nutrients, including glucose, glutamine and fatty acids, which are metabolised to generate

ATP for energy expenditure. Meanwhile, these nutrients are also used to generate cellular
building blocks for the biosynthesis of cellular components, including protein, nucleic acids and
lipids (Fig. 1). Indeed, diverse metabolic configurations supported by a number of different
nutrients have been described for immune subsets, which facilitate the specialised immune
functions of individual cells1. To understand how distinct immune cells are affected by immune
microenvironments where nutrient levels are limited, it is important to first appreciate the
nutrient demands and metabolic configurations of different immune cells, as briefly outlined in
the first section of this review [reviewed in detail elsewhere1–3]. We then discuss the circum-
stances in which nutrients might become limiting within different types of immune micro-
environment, including the tumour microenvironment and sites of infection. Finally, we
consider the consequences of nutrient deprivation on nutrient-sensitive signalling pathways and
its impact for immune function.

Nutrient demands and metabolic configurations
Cellular metabolism is a key factor in determining the fate and functions of immune cells.
Studies have shown that disrupting metabolic signalling pathways can result in the loss of
normal immune function or altered immune cell differentiation. Immune cells have diverse
functions, so it is perhaps unsurprising that they have different nutrient and energy demands. As
T cells differentiate into memory, regulatory and effector T cell subsets, the nutrients they use
and the metabolic configurations they adopt adjust to match their respective metabolic demands.
A good example is the different metabolic requirements of naive and effector T cell subsets
(Fig. 2)4. Naive T cells have low metabolic rates and minimal biosynthetic requirements when
compared to activated T cell subsets, which is due to their relative inactivity. Naive T cells take
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up small amounts of fuels such as glucose, glutamine and fatty
acids, which they metabolise through oxidative phosphorylation
(OXPHOS), primarily for the purpose of making energy (Figs. 1
and 2)4. Metabolic rates significantly increase in T cells following
immune activation due to proliferative expansion and the
induction of a range of effector functions including the produc-
tion of large amounts of cytokines, a process that demands sub-
stantial amounts of energy and cellular biosynthesis. This leads to
an increased demand for nutrients, including glucose and gluta-
mine as well as amino acids such as serine and arginine, to fuel
both bioenergetic and biosynthetic pathways (Figs. 1 and 2)4–8.
Effector T cells have high rates of glucose and glutamine uptake,
which are then metabolised by aerobic glycolysis in the cytoplasm
and the tricarboxylic acid (TCA) cycle in the mitochondria9–11.
Effector T cells also have increased uptake of other amino acids
including, but not limited to, leucine, serine and tryptophan6,7.
This metabolic configuration supports the combined cellular
needs of effector T cells for energy and biosynthesis (Fig. 1). By
contrast, memory T cells return to a quiescent state and have
reduced biosynthetic demands, and revert to using oxidative
metabolism for more efficient energy production. Memory T cells
also generate intracellular fuel reserves in the form of glycogen
and triacylglycerides that provide them with metabolic security
and plasticity essential to support the longevity and rapid recall
responses that are central to their functions4,5. Regulatory T cells,
important in exerting control over effector T cells, do not have
large biosynthetic demands and so predominantly engage in
OXPHOS, which is fuelled by exogenous fatty acids imported and
metabolised via a pathway called fatty acid oxidation to generate
energy, (Fig. 1)12. It should be noted that when regulatory T cells
do engage in cellular division, they switch on glycolytic meta-
bolism to support the biosynthetic demands for growth and

proliferation13,14. Disrupting cellular metabolism in T cells results
in impaired T cell function and alters the differentiation of T cells
towards effector, memory or regulatory subsets3.

B lymphocytes, or B cells, are important for humoral immunity
and are the cells that produce antibodies. B cells also up-regulate
glucose uptake and metabolic genes upon B cell antigen receptor
activation to fuel both energy production and biosynthesis; in
particular, de novo lipogenesis is required during the differ-
entiation of plasma cells, which are responsible for making large
amounts of high affinity antibody15,16. Glutamine can also be
used by B cells and is particularly important for B cell survival in
hypoxic conditions17. Other lymphocytes, such as activated nat-
ural killer (NK) cells are fuelled primarily by glucose but not by
glutamine (Fig. 2). Here glucose simultaneously supports high
rates of aerobic glycolysis and mitochondrial respiration, with the
latter being achieved by engaging the citrate–malate shuttle,
rather than the TCA cycle, to drive OXPHOS18,19. It is not yet
clear why NK cells adopt this metabolic configuration but it
seems likely that it is important to support epigenetic regulation
as the citrate–malate shuttle also generates acetyl-CoA, the sub-
strate for histone acetylation.

Myeloid cells have also been reported to adopt distinct meta-
bolic phenotypes and have differing requirements for nutrients.
Inflammatory M1 macrophages adopt a glycolytic metabolism
and largely shut down OXPHOS; the TCA cycle is not operating
in these cells, and the TCA cycle enzymes are repurposed into
two linear metabolic pathways that produce important immune
regulatory molecules, meaning that this metabolic configuration
is essential for the proinflammatory functions of these cells
(reviewed in ref. 20). In contrast, M2 macrophages, which are
longer lived than M1 macrophages, are implicated in wound
healing and tissue repair, and maintain an intact TCA cycle and
favour oxidative metabolism fuelling OXPHOS with glutamine
and fatty acids2. In this regard, interfering with macrophage
metabolism can alter the differentiation of M1 versus M2 mac-
rophages, such that the inhibition of glycolysis promotes the
differentiation of M2 macrophages over M1 macrophages3.
Lastly, the amino acid arginine is important for both M1 and M2
macrophages as a substrate for the enzymes inducible nitric oxide
synthase (iNOS) and arginase, respectively.

Granulocytes such as neutrophils have very low levels of
OXPHOS and rely primarily on glycolysis3. Interestingly,
inflammatory neutrophils contain large glycogen deposits that are
intracellular fuel stores that can be used to sustain this glycolytic
metabolism in the absence of glucose21. This may provide neu-
trophils with an advantage in inflammatory microenvironments
where extracellular glucose levels are limiting. Dendritic cells
(DCs) have also been shown to contain glycogen stores that are
important in fuelling the immediate glycolytic response following
lipopolysaccharide stimulation22. Interestingly, glycolytic restric-
tion can both inhibit and enhance DC functions depending on its
timing during DC activation. Inhibition of glycolysis during
initial activation results in impaired DC function, while inhibition
of glycolysis 8 h after initial activation, a time point when DCs are
likely to have reached the draining lymph node, enhances DC
proinflammatory function and induction of T cell responses22–25.

Overall, it is clear that different immune cell subsets have
distinct demands for nutrients, so they will be differentially
affected by nutrient-restrictive microenvironments such as
tumours or sites of infection. This argues that nutrient availability
could play an important role in shaping immune responses.

Availability of nutrients within immune microenvironments
Tumours have long been known to be highly glycolytic and to
have a prodigious appetite for glucose, which is used to support
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Fig. 1 Metabolism configured to support energy homoeostasis and
biosynthesis. Cellular metabolism can be configured to efficiently generate
energy in the form of ATP. Glucose is metabolised by aerobic glycolysis
(red) and via glycolysis coupled to the tricarboxylic acid (TCA) cycle
(purple) to drive oxidative phosphorylation (OXPHOS) (blue) and the
generation of energy in the form of ATP. Additional fuels, including fatty
acids and the amino acid glutamine, can be used to support OXPHOS.
Various other amino acids can also feed into both glycolysis and the TCA
cycle. In addition to fuelling energy production, glucose and amino acids
can be metabolised and used to support biosynthetic processes (green).
Intermediates of glycolysis and the TCA cycle can be diverted into
metabolic pathways to generate biosynthetic precursors important for the
synthesis of lipids, nucleotides and proteins. Fatty acids can also be directly
used for biosynthesis
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unrestrained tumour growth and proliferation. This elevated
glucose utilisation by tumour cells rapidly consumes the glucose
delivered to the tumour from the blood resulting in low extra-
cellular levels of glucose within solid tumours26–28. Some
tumours also rely on glutamine to support their energy and
biosynthetic demands29,30, and there is some evidence to suggest
that glutamine levels may become limiting in some tumour
microenvironments31. These features make the tumour micro-
environment a metabolically restrictive setting for infiltrating
immune cells, and this has been reported to have an effect on the
efficacy of cancer immunotherapies; in the case of human mel-
anoma, tumour cells with high glycolytic rates have been found to
be resistant to adoptive T cell therapy showing poor T cell
infiltration and cytotoxicity32.

Do similar mechanisms to those observed in the tumour
microenvironment affect immune cells at other immunological

sites? There is certainly evidence that competition for nutrients is
also relevant at sites of pathogen infection. Many viruses repro-
gramme the cells that they infect for increased glycolysis33–39, and
some have been reported to increase glutamine metabolism in the
cells that they infect40,41. Increased glycolysis and/or glutamino-
lysis are advantageous for the virus, as they provide the biosyn-
thetic material to construct new viral particles and complete the
viral life cycle. Similarly, intracellular bacteria, such as Myco-
bacterium tuberculosis, also reprogramme the host cell for
increased glucose metabolism and glycolysis42–45. Increased fuel
consumption in these infected cells is likely to lead to decreased
concentrations of extracellular glucose and glutamine in the local
microenvironment. Additionally, many extracellular bacteria,
such as Staphylococcus aureus, use glucose as their primary fuel
source, and large numbers of bacteria can accumulate at a given
site during infection46. Therefore, it is likely that glucose levels
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Fig. 2 Illustrating the different metabolic configurations of immune cells. a T cells: Naive T cells (TN) have low metabolic rates fueled by glucose and
glutamine. Effector T cell (TE) subsets tend to have elevated levels of both aerobic glycolysis (for metabolising glucose to lactate (Lac)) and OXPHOS (as
fueled by glucose (Glc) and glutamine (Gln)). Memory T cells (TM) maintain intracellular fuel stores in the form of glycogen (Glg) and triacylglycerides
(TG) fueled by glucose and fatty acid (FA) uptake, and primarily use OXPHOS rather than glycolysis. TM have metabolic plasticity as they can engage
multiple opposing metabolic pathways including gluconeogenesis/glycolysis, glycogenesis/glycogenolysis and FA synthesis/FA oxidation. TG stores are
generated using imported glycerol (Gl). This metabolic configuration supports two key features of TM cells; long term survival by providing dependable fuel
sources within the cell (TG and Glg) and rapid metabolic responses to re-stimulation because the metabolic machinery is already present and in use.
Regulatory T cells (TReg) import FA for use in biosynthesis and to generate energy through FA oxidation. b Other immune cells: Natural killer (NK) cells
primarily use glucose as a fuel, which supports aerobic glycolysis and drives OXPHOS through the citrate-malate shuttle (CMS) but not the TCA cycle. In
M1 macrophages (M1Mφ) the TCA cycle is broken, and glucose is metabolised to lactate and citrate (Cit) (used to make immunoregulatory molecules such
as itaconate) while glutamine is metabolised to succinate (Suc) (used to generate mitochondrial ROS). By contrast, M2 macrophages (M2Mφ) maintain an
intact TCA and favour oxidative metabolism that is fuelled by the uptake of fatty acids, glutamine and glucose. Neutrophils primarily use glycolysis fuelled
by glucose uptake and internal glycogen stores, and have very low OXPHOS
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will become depleted at such sites of bacterial infection. Indeed,
reduced glucose levels are reported in patients with bacterial
meningitis47. Therefore, it is likely that at sites of infection, the
increased utilisation of glucose and glutamine by bacteria or
virally infected cells will affect responding immune cells through
decreased nutrient availability in the local immune
microenvironment.

Beyond the competitive utilisation of glucose and glutamine,
the levels of other nutrients can be manipulated within immune
microenvironments. Tumours can deplete amino acids, such as
arginine and tryptophan, from the tumour microenvironment by
expressing catabolic enzymes or by recruiting cells that express
such enzymes. In this regard, arginine can be consumed by the
enzymes iNOS, often expressed in tumour cells48,49, and by
arginase, expressed by tumour-associated fibroblasts and macro-
phages (TAMs)50. Arginine is important for T and NK cell
responses and arginine depletion in the tumour microenviron-
ment has been shown to inhibit anti-tumour T cells respon-
ses8,51–54. Additionally, tryptophan can be depleted by the
enzyme Indoleamine 2,3-dioxygenase (IDO), which is often
highly expressed in tumour cells or in tumour-associated cells
such as tolerogenic DCs50,55. IDO-mediated inhibition of T and
NK cells is due to a combination of tryptophan depletion and the
production of the metabolite kynurenine, which impacts the
function of NK and T cells, at least in part, through acting upon
the aryl hydrocarbon receptor (AhR)56. Originally, IDO was
described as an innate mechanism of host defence against
infection57. The effects of IDO activity on the local distribution of
tryptophan and kynurenine is implicated in growth inhibition of
certain bacteria, parasites and viruses58,59. The activity of IDO at
these sites of infection will, therefore, also have implications for
immune cells including T cells and NK cells.

Similarly to tumours, pathogens also utilise mechanisms to
deprive immune cells of arginine as part of their immune evasion

strategies. For example, Helicobacter pylori bacteria express
arginase to deplete the local microenvironment of arginine and in
doing so prevent iNOS-expressing macrophages from producing
anti-microbial nitric oxide (NO)60. Low levels of systemic argi-
nine and reduced NO production are also a feature of severe
malarial infection61.

Therefore, there are multiple mechanisms that can result in the
depletion of glucose and various amino acids in pathological
immune microenvironments, and this can result in altered
immune function and response to tumours or infection.

It is clear that tumours and pathogens compete with immune
cells for nutrients as part of their immune evasion strategies, but
equally there can be competition for nutrients between different
immune cells, which may also be a normal physiological
mechanism for regulating immune responses. Certainly, there are
immunological situations where immune cells with elevated
metabolism and nutrient demands compete with each other for
the available fuels, such as within inflammatory lymph nodes
where there is a rapid increase in the number of activated
immune cells, or within the germinal centres where there is a
concentration of metabolically active B cells and T follicular
helper cells. Perhaps the best example where competition for
nutrients between immune cells can play a role in shaping
immune responses comes from studying DC–T cell interactions.
There is evidence that an antigen-presenting DC can become
starved of nutrients, such as glucose, due to competitive nutrient
uptake by neighbouring cells, in particular activating CD8
T cells25. Interestingly, glucose deprivation of DC can result in
increased DC proinflammatory outputs, including the expression
of interleukin-12 and costimulatory molecules, which leads to
enhanced CD8 T cell responses25.

It is well established that T lymphocytes greatly increase
nutrient uptake in response to antigen stimulation through up-
regulating the expression of nutrient transporters. This is
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Fig. 3 Competition for nutrients between immune cells. Antigen-presenting dendritic cells (DC) can be found at the centre of cell clusters consisting of
numerous different types of activated immune cells, including CD8 T cells, CD4 T cells, NK cells and plasmacytoid dendritic cells (pDC), with elevated
nutrient uptake rates that will compete for nutrients (blue dots). Depending on the number of clustering cells surrounding an antigen-presenting DC,
nutrients may be available (left panel) or depleted (right panel) in the immediate surrounding microenvironment due to competitive uptake. Nutrient
starvation will have consequences for the DC including the inactivation of mTORC1 signalling, which has been linked to increased proinflammatory DC
functions
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critically important in the generation of effector cells; indeed
T cells lacking certain glucose or amino acid transporters fail to
differentiate into effector cells. During activation, CD8 T cells
cluster around antigen-presenting DCs within the lymph node62–
64. These clustering T cells can potentially deplete the nutrients
from the microenvironment surrounding the DCs (Fig. 3). In
support of this, co-cultures of clustering CD8 T cells can inacti-
vate the nutrient-sensitive mammalian Target of Rapamycin
Complex 1 (mTORC1) signalling pathways in the interacting
DCs25 (Fig. 3). In fact, antigen-presenting DCs can be found at
the centre of cell clusters consisting of numerous different types
of activated immune cells with elevated nutrient uptake rates in
addition to CD8 T cells, including NK cells, CD4 T cells and
pDC65–68. Therefore, it is tempting to speculate that starvation of
DCs, and the resultant increase in DC outputs, is a physiological
mechanism for the regulation of DC-induced T cells responses, a
scenario where nutrients are acting as an immunological signal
(Fig. 3). This is an interesting concept that remains to be formally
tested.

Competition for nutrients between T cells has also been pro-
posed as a mechanism for the selection of T cells that recognise
antigen with high affinity69. Compared with those from low-
affinity TCR, high-affinity TCR-antigen interactions induce a
more robust and sustained metabolic response, with increased
expression of glucose transporters and glycolytic genes70.
Therefore, it is suggested that high-affinity T cell clones could
outcompete their low-affinity counterparts for nutrients leading
to nutrient starvation and apoptosis of these low-affinity T cell
clones69. It is easy to imagine other situations where neigh-
bouring immune cells would compete for nutrients in similar
ways. For example, during B cell germinal centre responses, a
solitary follicular helper T cell is surrounded by a large number of

activating B cells with elevated nutrients demands. However, the
inability to visualise nutrient abundance at the single-cell level
represents a technical barrier that currently limits further
exploration of nutrients as important immunological signals.

Consequences of altered nutrient availability: signalling and
immune outputs
Nutrient-restrictive microenvironments will directly impinge
upon metabolic pathways in immune cells, but will also impact
upon nutrient-sensitive signalling pathways important in
immune regulation. Glucose and glutamine can impact multiple
signalling pathways that are integral to the control of immune
responses (Fig. 4). AMP-activated protein kinase (AMPK) is an
indirect glucose sensor that becomes activated when ATP, or
glycolytic intermediate fructose-1,6-bisphosphate, levels are
decreased due to glucose restriction71. In effector T cells, AMPK
can be activated within an hour of being placed in low con-
centrations of glucose72,73. Glutamine is also important for ATP
production in effector T cells and AMPK can be activated by
glutamine restriction in these cells73. AMPK negatively regulates
the mTORC1, an important metabolic regulator with widespread
roles in controlling immune cell functions72–74 (Fig. 4). Roles for
mTORC1 include shaping T cell differentiation, controlling NK
cells differentiation and effector function, and regulating the
function of antigen-presenting DCs74 (Fig. 5). Therefore, the
consequences of altered AMPK/mTORC1 signalling due to glu-
cose restriction will include the inhibition inflammatory T cell
and NK cell responses while promoting TReg differentiation
(Fig. 5).

Interestingly, fructose-1,6-bisphosphate is not the only glyco-
lytic intermediate that impacts important immune signalling
pathways. Phosphenolpyruvate (PEP), another glucose
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(GlcNAc) that is important in sustaining the expression of the transcription factor cMyc. Decreased levels of amino acids in general will lead to the
activation of general control nonderepressible 2 (GCN2). The product of IDO-mediated Trp metabolism, kynurenine (Kyn), can promote signalling through
the aryl hydrocarbon receptor (AhR). NFAT nuclear factor of activated T cells
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metabolite, can affect Ca2+ signalling and the activation of the
nuclear factor of activated T cells (NFAT) transcription factor in
antigen-stimulated T cells (Fig. 4). PEP represses sarco/ER Ca2
+-ATPase (SERCA) activity, which is responsible for Ca2+

reuptake into the ER; therefore, PEP prolongs cytosolic Ca2+

signalling and NFAT nuclear activity. T cells stimulated through
the T cell antigen receptor in low glucose conditions, such as
tumour microenvironments, have reduced PEP levels, reduced
cytosolic Ca2+ signalling and less nuclear NFAT, leading to
defective T cell activation27.

In addition to fueling glycolysis and OXPHOS, glucose and
glutamine are also used for generation of uridine diphosphate N-
acetylglucosamine (UDP-GlcNAc); this is the substrate for O-
GlcNAcylation, which is the reversible addition of N-acet-
ylglucosamine (GlcNAc) to proteins on serine or threonine
residues by O-linked N-acetylglucosaminyltransferase (OGT). O-
GlcNAcylation is dependent on the supply of both glucose and
glutamine in T cells, suggesting that OGT and O-GlcNAcylation
are important nutrient-sensing mechanisms in these cells9.
Indeed, OGT is reported to be essential for normal T cell
development, activation and clonal expansion9,75. Mechan-
istically, a number of signalling molecules that are important for
T cell function are found to be O-GlcNAcylated, including c-Myc,
NFAT and nuclear factor-κB9,75,76. This protein modification has
not yet been studied in depth in other immune cell subsets.

Apart from glutamine, other amino acids also control
numerous signalling pathways that are important for immune
function. For example, the activity of mTORC1 is acutely sensi-
tive to the levels of a number of amino acids including leucine,
arginine and glutamine77. In addition, the transcription factor c-
Myc is also regulated by amino acid availability. cMyc protein has
a very short half-life in lymphocytes and sustained expression of
cMyc is only possible in cells that have high rates of amino acid
uptake and protein synthesis6,9,19,78. cMyc plays a crucial role
during the activation and differentiation of T cell subsets and also
of other lymphocytes including B cells and NK cells (Fig. 5)
11,19,78,79. Moreover, the serine/threonine protein kinase General
control nonderepressible 2 (GCN2) is a direct sensor of low

cellular amino acid levels, and is activated through binding to
uncharged transfer RNA (tRNA) (Fig. 4)80. GCN2 activity has
been linked to the functions of various immune cells. In DCs,
GCN2 activation results in enhanced antigen presentation to CD8
cells81. Conversely, GCN2 activity in gut antigen-presenting cells
restrains excessive Th17 responses, with mice deficient of GCN2
developing stronger Th17 responses and more severe colitis in an
induced colitis model82. IDO suppresses T cell responses, at least
in part, by depleting tryptophan levels, leading to the activation of
GCN2 within the T cell (Fig. 4). Activation of GCN2 in CD8
T cells results in proliferative arrest and anergy, while activation
of GCN2 in CD4 T cells can lead to the generation of regulatory
T cells (Fig. 5)83,84.

The challenge of in vivo metabolic analysis
In vitro or ex vivo metabolic analyses have helped bring forth
advances in our understanding of the metabolic phenotypes
adopted by immune cells. While these studies have been extre-
mely informative, the reported metabolic phenotypes may not be
recapitulated in vivo. The metabolic phenotypes of immune cells
are dependent on the supply of the relevant fuels such as glucose
and glutamine, which are certainly less abundant in vivo than in
culture conditions used in the laboratory. The consequence of a
limiting supply of these fuels in vivo, within discrete immune
microenvironments will be the restriction of metabolic pathways
and the alteration of nutrient-sensitive signalling pathways that
affect immune cell fate and function. However, our under-
standing of when and where nutrients are available in vivo is
severely hampered by the lack of research tools to measure
nutrient distribution at the single-cell level. Therefore, elucidating
how nutrient supply affects the metabolism, signalling and thus
function of immune cells in diverse and complex immune
microenvironments remains a significant challenge for the
immunometabolism field.
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Fig. 5 Immunological consequences of changes in nutrient signalling. Activation of AMP-activated protein kinase (AMPK) or inhibition of mammalian
Target of Rapamycin Complex 1 (mTORC1) signalling promotes the differentiation of regulatory T (TReg) cells over effector T cell subsets (TE), inhibits
natural killer (NK) cell functions, and increases the proinflammatory outputs of dendritic cells (DC). Loss of cMyc expression inhibits the functions of TE
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CD8 T cell function, and enhances the function of DC. Kynurenine (Kyn)-mediated aryl hydrocarbon receptor (AhR) signalling promotes the differentiation
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