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Background: Like most of the world, the United States’ public health and economy are impacted by the
COVID19 pandemic. However, discrete pandemic effects may not be fully realized on the macro-scale. With
this perspective, our goal is to visualize spread of the pandemic and measure county-level features which
may portend vulnerability.
Methods: We accessed the New York Times GitHub repository COVID19 data and 2018 United States Cen-
sus data for all United States Counties. The disparate datasets were merged and filtered to allow for visuali-
zation and assessments about case fatality rate (CFR%) and associated demographic, ethnic and economic
features.
Results: Our results suggest that county-level COVID19 fatality rates are related to advanced population age
(P < .001) and less diversity as evidenced by higher proportion of Caucasians in High CFR% counties (P <
.001). Also, lower CFR% counties had a greater proportion of the population reporting has having 2 or more
races (P < .001). We noted no significant differences between High and Low CFR% counties with respect to
mean income or poverty rate.
Conclusions: Unique COVID19 impacts are realized at the county level. Use of public datasets, data science
skills and information visualization can yield helpful insights to drive understanding about community-level
vulnerability.
© 2020 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All

rights reserved.
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In December 2019, an unknown form of pneumonia was identi-
fied in Wuhan Province China which ultimately heralded emergence
of the COVID19 pandemic. Since that time, spread of SARS-CoV-2
resulted in over 14 million individuals infected and over 600,000
deaths worldwide.1,2 At present, COVID19 has spread to every conti-
nent on Earth except for Antarctica.2,3 In the United States (US), the
first confirmed COVID19 case was reported by a team in Snohomish
County Washington.4 In the ensuing 7 months, the US reported over
3.8 million infections and over 140,000 deaths.2 Given the totality of
health and economic devastation levied by COVID19, tremendous
energy has been invested towards understanding features which
could predict individual and community impact.5-10

Understanding community vulnerability with COVID19 is impor-
tant and may enable pre-emptive and ongoing interventions to stem
public health and economic crises.11-13 However the explosion of
data about COVID19 has led to much debate and skepticism around
best measures for analysis and assessment of impact.14 Measuring
severity, which is the disease’s ability to cause death, is key to devel-
oping appropriate public health responses for reducing the spread of
infection. The 2 most commonly used severity metrics are infection
fatality ratio and case fatality rate (CFR). In order to accurately mea-
sure infection fatality ratio, the total number of disease related infec-
tions and deaths must be known. This typically involves serological
testing of a random population sample to estimate the true number
of infections. However, in the US widespread serological testing of
the population was not accomplished at the time of our analysis,
making it an inappropriate measure for COVID in this study. CFRs on
the other hand can be calculated by taking the number of confirmed
COVID deaths and dividing it by the number of confirmed cases.
Despite these limitations, CFRs can be easily calculated with accessi-
ble aggregate cases and death counts making them a practical mea-
sure of severity early-on in an epidemic. Once widespread disease
reporting is in place, CFR% can reasonably be used.15-18 With wide-
spread US testing and reporting of COVID19 cases, we used assess-
ment of CFR% across US counties coupled with US Census data to
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visualize and evaluate regional differences in COVID impact. Our
analysis was focused on 4 months of pandemic activity (March to
June 2020) for US Counties. Here we show pandemic spread via CFR%
Fig 1. (A-D) Each panel shows US Counties visualized by relative scale CFR% for the specified
and right-side panels show CFR% for counties with case counts about the National median. H
shown above each map. CFR, case fatality rate.
visualized across US counties stratified by both CFR% and case bur-
den. Additionally, we show relevant Census-mined data attributes
associated with high and low CFR% counties.
month. Left side panels display all available counties within the CFR% range (0.1-99.9)
orizontal bar-scale shows relative CFR% as plotted from 0 - 10 relative. County numbers
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METHODS

Dataset extraction & creation

We extracted US county data about the COVID19 pandemic from
the New York Times Github repository (https://github.com/nytimes/
covid-19-data) and American Community Survey 5-year Estimates
Detailed Tables (2013-2018) census data about county-level demo-
graphics, economic factors and ethnicities (https://www.census.gov).
Data was extracted on July 6, 2020. Using JupyterLab through the
Anaconda distribution (v. 2020.02) Python version 3.8.3 with Pandas
(version 1.0.5) we merged and filtered the final dataset for analysis.
Our code is available here (https://github.com/nlrider/COVID-Public-
Health-Data). Unique counties with a CFR% between 0.1 and 100 and
a Federal Information Processing Standard (fips) code were analyzed
for the last date of each month studied (March to June 2020).

Calculating CFR% & county descriptive statistics

CFR% was calculated by dividing the total number of COVID-19
suspected or confirmed deaths by the total number of confirmed
COVID cases. The cumulative numbers of deaths and cases were
included per month. We excluded counties with a CFR of 0 or 100
that had active case counts as these extremes in CFR were suspicious
for under or over reporting outcomes.

Data visualization & inferential statistics

From the list of unique counties with a CFR% between 0.1 and 100,
we assessed median case count per month per county. We then visu-
alized both the total number of counties available at end of each
month and also counties above the median by relative scale CFR%
Fig 2. Horizontal bar chart depiction of states and corresponding county counts within the h
fatality rate.
(Fig 1A-D). County level data visualization was done with plotly
(v. 4.8.2) in JupyterLab for available counties by fips codes at monthly
time intervals reported on the last date of each month.

Descriptive statistics for each monthly time capsule was per-
formed in JupyterLab using Pandas (Supplemental Tables 1-4).

Taking all counties with a CFR% between 0.1 and 100 (ie, exclud-
ing CFR = 0 and CFR = 100), high CFR counties as of June 30, 2020
were defined by a county with a CFR% at or above the upper quartile
(>6.25%). Low CFR counties as of June 30, 2020 were defined by a
county with a CFR% falling below the upper quartile (6.25% or lower).
Subsequent significance testing for county data as of June 30, 2020
was performed with STATA version 12.1 Welch’s t-tests were used to
determine whether or not there was a significant difference in the
mean values of variables of interest (NYT COVID and US Census Fea-
tures) between high and low CFR counties, as this method of testing
accounts for unequal variances between the 2 groups (Table 2) Rank
of US states by number of high or low CFR counties as of June 30,
2020 were plotted and sorted using Tableau (v.2020.2; Figs. 2 and 3).

RESULTS

Data extraction from the New York Times COVID19 GitHub repos-
itory (https://github.com/nytimes/covid-19-data) revealed 3,060
unique fips reflecting the same number of counties and associated
COVID data. Filtering data to include counties with a CFR% between
0.1%-100% reduced this number of unique counties to 1996. This
number of counties was the total available for our 4-month analysis,
however pandemic data available at each monthly time interval var-
ied as shown in Table 1. For each month interval assessed, an increase
in the number of counties available for analysis is noted in alignment
with the expansion of the pandemic. Similarly, the median per
county case count increased and was paralleled by deaths across the
ighest US National quartile (ie, CFR% > 6.25). States sorted in descending order. CFR, case
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Fig 3. Horizontal bar chart depiction of states and corresponding county counts within the lower 3 US National quartiles (ie, CFR% ≤ 6.25). States sorted in descending order. CFR,
case fatality rate.

Table 1.
Aggregate county-level COVID19 statistics by month studied

March April May June

County count (n) 496 1453 1755 1,951
Mean per county case count (n) 339 722 1007 1,337
Median per county case Count(n) 55 88 144 228
Mean per county death count (n) 8 43 59 65
Mean county CFR (%) 7.1 6.3 5.3 4.6
Counties >median case Count/month (n) 244 724 876 974
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4 months assessed (244-974 cases/county). However, slope of the
increase in case counts and deaths reported was not identical as
noted by the gradual trend down in CFR% from end of March to end
of June (7.1%-4.6%) as seen in Table 1.

Progression of the pandemic by CFR% at the last date of each
month is shown in Figure 1 with the associated high-case counties
plotted according to CFR%. The left-side map in each panel shows
total cases for counties that met our criteria by CFR%; whereas, the
right-side map shows CFR% for counties with case counts above the
US median. The CFR% scale is arbitrary and only shows relative differ-
ences.

State level county assessments are shown in Figures 2 and 3.
Figure 2 shows the county counts for each state sorted in descending
order within the high CFR% category (CFR% > 6.25; upper quartile).
Figure 3 shows state-level county counts of those within the bottom
3 quartiles (CFR% ≤6.25). Figure 4 shows all available state data with-
out lower or upper boundaries for case count as of July 6, 2020.

Descriptive aggregate COVID19 statistics per month studied are
shown in Table 1. Table 2 shows significance testing across socioeco-
nomic, demographic and ethnic county features in comparing top
quartile counties with those in the bottom 3 quartiles. From this
analysis we found that significant, normalized differences between
High CFR% and Low CFR% counties included more of the following in
high CFR% counties: % of population over 16 years of age, % of popula-
tion above 62 years of age, % of population over 25 years of age with
a high school degree, % of population reporting as Caucasian. We also
noted significantly higher numbers of the following in Low CFR%
counties: total and % of population reporting as Asian, total and % of
population reporting as Pacific Island Native and/or Hawaiian as well
as total and % of counties reporting 2 or more races.
DISCUSSION

Spread of COVID19 across the US has been rapid and hot spots
such as New York City, Seattle Washington, New Orleans Louisiana
and Los Angeles California emerged early and can be seen in our
mapped data (Fig 1A1 and 2).19,20 We note persistence of “hot spot”
High CFR% counties within the Northeast, the Gulf Coast region, the
Upper Midwest and Desert Southwest, Southern California and the
Pacific Northwest (Fig 1: progression from A to D). Mean CFR values
for the 4 months analyzed gradually decreased over time (7.1 in
March to 4.6 in June). According to the WHO, in the beginning of out-
breaks surveillance tends to be focused on the more symptomatic
patients who seek care while individuals with mild, unsymptomatic
forms of the illness go undetected, which can lead to the overestima-
tion of the CFR. As testing and surveillance increase, the CFR generally
decreases, which corresponds with our findings.18 We do see such a
dynamic occur via the 4-month time course (Table 1). Also, the reduc-
tion of mean county CFR% shown in Table 1 from March to June
reflects a sharp rise in mean case count over the timespan.

Interestingly, our visualizations show that High CFR% US counties
are not isolated to urban regions (Fig 1A-D, Fig 3). Rather, wide



Fig 4. Plot of all available US County CFR% data (n = 3,060) without case count filter. Color range in relative scale 0-10 as of July 6, 2020. CFR, case fatality rate.

Table 2.
Comparison of high and low CFR counties socio-demographic features

County Feature CFR Class Mean (STD) P value

Total population Low 159,128 (438,503) .007
High 117,591 (226,235)

Population below poverty line Low 22,539 (66,667) .003
High 14,570 (29,438)

% Population below poverty line Low 15.9 (0.17) .222
High 15.6 (0.30)

Total population >16 years of age Low 129,470 (354,037) .01
High 97,621 (186,687)

% Population >16 years of age Low 82.8 (5.9) .001
High 83.9 (5.7)

Unemployment rate Low 6.1 (2.5) .52
High 5.9 (2.6)

Total population >62 years of age Low 29,365 (73.066) .1
High 24,800 (45,203)

% Population > 62 years of age Low 21.4 (4.9) <.001
High 23.5 (4.5)

Median income (USD) Low 53,006 (14,964) .97
High 52,982 (15,809)

Population >25 years of age and HS graduate Low 28,585 (66,645) .07
High 24,008 (40,751)

% Population >25 years of age and HS graduate Low 23.3 (6.2) <.001
High 25.2 (5.7)

Population with college degree Low 21,505 (65,331) .06
High 16,850 (38,256)

% Population with college degree Low 10.2 (4.1) .95
High 10.2 (4.2)

Total Caucasian population Low 116,080 (271,635) .03
High 93,703 (16,829)

% Population Caucasian Low 81.5 (17.6) <.001
High 84.8 (17.9)

Total black population Low 21,520 (71,286) .01
High 14,496 (45,623)

% Population black Low 13.7 (17.6) .1
High 12.1 (18.2)

Total American Indian population Low 1,322 (4,888) <.001
High 707 (2,637)

% Population American Indian Low 1.4 (5.9) .8
High 1.4 (5.2)

Total Asian population Low 9,430 (56,395) .01
High 5,204 (18,778)

% Population Asian Low 1.9 (3.2) .01
High 1.5 (2.5)

Total Hawaiian native population Low 352 (2,915) <.001
High 47 (113)

(continued)
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Table 2. (Continued)

County Feature CFR Class Mean (STD) P value

% Hawaiian native Low 0.1 (0.4) <.001
High 0.04 (0.09)

Population with 2 or more races Low 5,563 (18,319) <.001
High 3,203 (6,689)

% Population with 2 or more races Low 2.6 (1.9) <.001
High 2.3 (1.5)

CFR, case fatality rate.
P value calculated with Welch's t test for unequal variances.
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distribution of high CFR% counties suggests that unique demo-
graphic, geographic or other features may affect county-level vul-
nerability. Our CFR% mapping, not surprisingly aligns with other
group’s work related to community risk.21,22 Additionally, an indi-
vidual state may have a significant number of both High and Low
CFR% Counties as shown in Figures 2 and 3. If we focus on the top
10 states with most High CFR% counties, we see that they represent
the Midwest, South East, South, and Northeast regions. Top 10 states
for Low CFR% county counts also overlap with the High CFR% group
in that Texas, Georgia, Mississippi, Indiana and Ohio are present in
both groups (Figs. 2 and 3). This underscores the notion that com-
munity vulnerability may be intrinsic and likely independent of cli-
mate, local governmental policy or even population density. It is
also important to note that a priori county-level risk and actual
CFR% are not uniformly aligned.

Our assessment of county-level features which may contribute
to higher or lower CFR% included Census information taken from
demographic, economic and ethnicity tables. From these, our data
suggest that a more diverse and younger population is better
able to weather COVID19 (Table 2). This census-based analysis on
an unbalanced set of counties with high CFR% (highest quartile)
with a CFR% >6.25 to that of the bottom 3 quartiles, shows that
predominantly Caucasian counties (% Caucasian) were found in
greater numbers within the High CFR% group. Conversely, coun-
ties with proportionally more Asians and Pacific Islander and/or
Hawaiian Natives were found in the Low CFR% group. We also
note that counties reporting as having a higher proportion of the
population representing 2 or more races, were more likely to be
in the Low CFR% county group. However, while looking at the
severity of COVID from a county lens is helpful for getting an
overall view of the COVID epidemic in the US it is not as effective
looking at the association between race and/or racial diversity
and COVID burden. These questions are better addressed at the
local or census tract level. Importantly, no differences were
observed between High and Low CFR% groups in their levels of
unemployment, median income or proportion of population
below the poverty line. Also, education level did not seem to dif-
fer in that college degree holders were in similar numbers across
both groups. While there were more high school diplomates over
age 25 years in the High CFR%, this may relate to risk associated
with age.

The COVID19 pandemic remains dynamic without clear evidence
for which communities or individuals may fare worse from the out-
set. Factors such as population health features, number of long-term
care facilities, prisons or other workplaces known to drive outbreaks
are important and were not addressed here.23-25 Also, analysis of a
comprehensive public health dataset is important for teasing out
community-level risks. However, no single or amalgamated resource
retrospectively analyzed will capture all needed features for com-
plete risk assessment. Lastly, some of our results are in contrast to
previously reported findings which show important regional ethnic
risk factors for outcomes in COVID19.26 Such differences may relate
to intrinsic reporting bias with US Census data as noted previously.27
CONCLUSION

In summary, we present an analysis of county-level CFR% via
merged COVID19 and US Census data. Our findings suggest that
younger and more diverse counties fared better over the 4 months
studied for the US COVID19 experience. We also find that community
risk level must be assessed at granularity level below that of the state
or region as scrutiny of specific population-level features may yield
greater insights for enabling population resiliency. Implementation
of policies and systems which foster prospective quality assessments
and enable rigorous analysis are needed for the US Healthcare System
and will likely need to be implemented at that level of detail.
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