
Mapping species abundance by a spatial zero-inflated
Poisson model: a case study in the Wadden Sea, the
Netherlands
Olga Lyashevska1, Dick J. Brus2 & Jaap van der Meer1

1Department of Marine Ecology, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands
2Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700AA Wageningen, The Netherlands

Keywords

Benthic species, count data, generalized

linear spatial modeling, spatial correlation.

Correspondence

Jaap van der Meer, Department of Marine

Ecology, NIOZ Royal Netherlands Institute for

Sea Research, P.O. Box 59, 1790 AB Den

Burg, Texel, The Netherlands.

Tel: +31(0) 222 369 357;

Fax: +31(0) 222 319 674;

E-mail: jaap.van.der.meer@nioz.nl

Funding Information

The work was supported financially by a

WaLTER project (http://www.walterwadden

monitor.org) Waddenfonds, Provinces of

Fryslan and Noord Holland (Grant/Award

Number: WF209902).

Received: 6 August 2015; Revised: 23

November 2015; Accepted: 24 November

2015

Ecology and Evolution 2016; 6(2):

532–543

doi: 10.1002/ece3.1880

Abstract

The objective of the study was to provide a general procedure for mapping spe-

cies abundance when data are zero-inflated and spatially correlated counts. The

bivalve species Macoma balthica was observed on a 5009500 m grid in the

Dutch part of the Wadden Sea. In total, 66% of the 3451 counts were zeros. A

zero-inflated Poisson mixture model was used to relate counts to environmental

covariates. Two models were considered, one with relatively fewer covariates

(model “small”) than the other (model “large”). The models contained two

processes: a Bernoulli (species prevalence) and a Poisson (species intensity,

when the Bernoulli process predicts presence). The model was used to make

predictions for sites where only environmental data are available. Predicted

prevalences and intensities show that the model “small” predicts lower mean

prevalence and higher mean intensity, than the model “large”. Yet, the product

of prevalence and intensity, which might be called the unconditional intensity,

is very similar. Cross-validation showed that the model “small” performed

slightly better, but the difference was small. The proposed methodology might

be generally applicable, but is computer intensive.

Introduction

Over the last decades, ecologists developed a variety of

methods for making habitat-suitability maps, also known

as species distribution maps (Guisan and Thuiller 2005).

First, a statistical model is constructed using survey data,

which are measured at a limited set of locations in space.

At each sampling location, the presence–absence of a par-

ticular species is scored and environmental data are mea-

sured. The statistical relationship between the presence–
absence as the response variable and environmental char-

acteristics as the steering variables is often described by a

generalized linear model with a binomial error structure

and a logit link. For marine benthic invertebrates two

examples of such studies are those by Ysebaert et al.

(2002) and Ellis et al. (2006), who modeled the probabil-

ity of occurrence of macrobenthic species in relation to

environmental variables in the Schelde estuary, the

Netherlands, and the Whitford estuary, New Zealand.

Spatial correlation is sometimes but not often taken into

account (Dormann 2007). Machine-learning methods

form an alternative modeling approach, but one that is

not discussed here. The next step is to use the calibrated

model to predict the probability of occurrence of the spe-

cies at sites where the presence–absence data are lacking,

but where environmental information is available. Often

environmental data have full spatial coverage, for exam-

ple, when they are derived from weather or other physical
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models, and thus allowing for the construction of a habi-

tat-suitability map covering the entire area of interest. If

spatial correlation is included in the model, predictions

are partly based on knowledge of the local environment

and partly on the presence–absence data in the neighbor-

hood. A recent overview of methods for making habitat-

suitability maps is provided by Franklin and Miller

(2009).

Much less work has been done on the construction of

species abundance maps, which do not just show the

probability of occurrence, but predict the abundance of

the species in terms of numerical or biomass density, that

is in terms of number of organisms or total biomass per

surface area (Gaston 2003). Abundance maps give much

more detailed information than the presence–absence
maps and are often to be preferred. Our research group,

for example, aims to understand large-scale movements

and site choices of foraging avian predators on intertidal

marine mudflats in response to among other things prey

availability (van der Meer and Ens 1997; van Gils et al.

2015). For such purpose, abundance maps of the relevant

prey species are much more informative than the pres-

ence–absence maps only. Prey presence alone is no guar-

antee that a bird can achieve an intake rate that is

sufficient to meet its energetic demands. For some taxa,

however, the uncertainty of abundance data might be

much higher than those of incidence data, which makes

abundance maps more uncertain. This is not the case for

benthic data which are sampled with a core and, there-

fore, contain exact counts. So far, very few abundance

maps of marine benthic invertebrate have been published.

One of the few examples are maps by Huang et al.

(2014), who mapped infaunal benthic species of the

Carnarvon shelf of western Australia using random forest

decision tree model.

One reason for the paucity of abundance maps is of

course that for many species absolute abundance is hard

to measure. Estimation of abundance of mobile species

often require costly mark-recapture studies. This problem

does, however, not hold for marine benthic invertebrates

that are more or less sessile, at least during the adult

stage. These species are usually sampled by a grab or core

with a fixed surface area, allowing the measurement of

absolute abundance at the sampled locations. But for

these species, statistical issues that are involved and which

are far from trivial may have hampered the making of

abundance maps. First of all, the count data often contain

many more zero observations than, for example, occur

for data that follow a Poisson distribution. The data are

said to be zero-inflated (Lambert 1992; Tu 2006). Second,

the count data are often spatially correlated. Ignoring

these issues may lead to less accurate estimates and pre-

dictions (Latimer et al. 2006). Both issues have been

tackled separately (Crist 1998; Fletcher and Sumner 1999;

Potts and Elith 2006), but very few studies deal with both

issues simultaneously (Recta et al. 2012; Boyd et al.

2015).

These latter studies can be considered as extensions of

the older geostatistical methods (Cressie 1993) that were

entirely based on the assumption of Gaussian-distributed

data. Diggle et al. (1998, 2002), Zhang (2002), and Chris-

tensen & Waagepetersen (2002) introduced the idea of

generalized linear spatial models (GLSM). Older geostatis-

tics, which forms a basis of the kriging predictor, assumes

that the data are generated by a model which says that

each observation is the sum of a mean effect that may

depend upon covariates, a stationary Gaussian process

where the covariances between the data depend on the

geographic distances between the locations, plus a mutu-

ally independent normally distributed error. The GLSM

embed the kriging methodology within a more general

distributional framework, analogous to the embedding of

the Gaussian linear model for mutually independent data

within the framework of the generalized linear model

(Diggle et al. 1998). In the context of abundance map-

ping, the observed counts are, for example, mutually

independent, Poisson-distributed random variables, with

expectations that are related via a log-link to covariates

plus realizations of a stationary Gaussian process where

the covariances depend as in the classical case on the geo-

graphic distances between the locations.

Zero-inflation has been modeled in two different ways,

and in both cases, it is assumed that the data are gener-

ated by two underlying, but different processes. For the

zero-inflation Poisson mixture model (Lambert 1992), the

first process determines whether the observed data point

is either a true-negative observation, which may also be

called a true zero, or not. This process is modeled by a

Bernoulli model, where the probability of a true zero pi
may depend upon the (environmental) covariates. If the

outcome is not a true zero, then the observed count is

generated by, for example, a Poisson process, where the

mean li may also depend upon covariates, but not neces-

sarily in the same way as the Bernoulli parameter pi. This
implies that an observation is either a true zero, with

probability pi, a Poisson zero, with probability

ð1� piÞexpðliÞ or it takes a nonzero (Poisson) value.

Poisson zeros may be called false-negative observations or

false zeros.

The other approach is the so-called Hurdle model

(Cragg 1971). Again the first process is a Bernoulli model,

but the second is not a Poisson process. The conditional

distribution that is conditional on a positive Bernoulli

outcome is described by a truncated Poisson distribution,

without the possibility of a zero outcome. So, in this

model, all zero observations are true zeros. In the context
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of species abundance mapping the Bernoulli model may

be thought to indicate whether the environment is or is

not suitable for the species. The Poisson or truncated

Poisson then describes the probability distribution of the

counts if the environment is suitable.

So far, all abundance mapping that tackled both zero-

inflation and spatial correlation, used the Hurdle model.

Both Recta et al. (2012), and Boyd et al. (2015) used a

GLSM such as proposed by Diggle et al. (1998, 2002),

Zhang (2002), and Christensen (2004), but in combina-

tion with the Hurdle model instead of a pure Poisson

model. Recta et al. (2012) mapped the Colorado potato

beetle and Boyd et al. (2015) Peruvian anchoveta, a small

pelagic fish species. We prefer the use of the zero-infla-

tion Poisson mixture model above the Hurdle model.

Grabs or cores have a small surface area compared to the

size of the organisms and even when environmental con-

ditions are perfectly suitable, it is possible to encounter

no animals in the core.

We use the GLSM in combination with the zero-infla-

tion model to relate counts to environmental variables

that are known to affect abundance, such as silt content,

median grain size and altitude. The model is used for pre-

diction and mapping the abundance of a benthic inverte-

brate, the Baltic tellin Macoma balthica, in the Dutch

Wadden Sea. This small bivalve species is one of the pre-

ferred prey items of the hundred thousand of shorebirds

that use the Wadden Sea, our study area, as a stopover

site or wintering ground and for which the Wadden Sea

is so famous. Following Christensen (2004), we use Mar-

kov chain Monte Carlo (MCMC) simulation and Markov

Chain maximum likelihood (MCML) for parameter esti-

mation. Unlike Recta et al. (2012) and Boyd et al. (2015),

we do not use a Bayesian approach. After the parameter

estimation step, we use conditional Gaussian simulation

to simulate a large number of realizations conditioned on

the original data. Finally, we assess the performance of

the model through a leave-one-out cross-validation. See

the Materials and Methods section for technical details.

To summarize, the objective of this study was to map

the abundance of a bivalve species, using zero-inflated

and spatially correlated survey data, and to quantify the

accuracy of the map. For this, we fit a generalized linear

spatial model in combination with a zero-inflation model

to relate counts to environmental variables.

Materials and Methods

Study area and data

The study area comprises the Dutch part of the Wadden

Sea, an UNESCO world heritage area and an European

protected habitat reserve consisting of sand barrier

islands, salt marshes, intertidal and subtidal mudflats, and

gullies.

This area is monitored yearly in the synoptic intertidal

benthic surveys (SIBES) monitoring program (Bijleveld

et al. 2012; Compton et al. 2013). The monitoring net-

work consists of 3451 permanent locations on intertidal

mudflats at the nodes of a 500 m grid. The square grid is

supplemented by 578 locations. These locations were

selected by first selecting 578 of the 3451 gridpoints by

simple random sampling without replacement. Then, at

each selected gridpoint, one point was selected at 250 m

distance from the gridpoint, in a direction randomly cho-

sen from the four directions defined by the gridlines (Bij-

leveld et al. 2012). The total sample size was 4029

locations.

A total of 92% of sampling locations was accessed by

boat, the remainder by foot. At sampling locations

accessed by boat, two cores were taken from the seafloor

to a depth of 25 cm and bulked into a composite sample

(combined area of 17.3 cm2). At sampling locations

accessed by foot, a single core was taken (17.7 cm2).

The samples were analyzed in laboratory. All large

organisms (e.g., bivalves) were identified to species level,

and all small organisms (e.g., crustaceans) were identified

to the finest taxonomic level possible. For all species, bio-

mass and numerical densities were recorded. Sediment

texture data (mass fraction of silt, median grain size) were

measured with a particle size analyser.

The data that we used here consist of counts of a

bivalve species, the Baltic tellin (M. balthica), which is

one of the five most dominant species in the study area

(Beukema 1976) (Fig. 1). We used the counts of 2010

(Fig. 2).

In mapping the abundance of M. balthica, we used the

most important determinants of habitat structure, being

sediment texture characteristics (mass fraction of silt and

median grain size) and altitude (Amsterdam Ordnance

Datum, Rijkswaterstaat1). To be used as a predictor in

Figure 1. Macoma balthica.
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mapping, the covariate must be known everywhere in the

study area. Therefore, the mass fraction of silt and med-

ian grain size were interpolated using by inverse distance

weighting algorithm in ArcGIS 10.0. ESRI 2011. ArcGIS

Desktop: Release 10. Redlands, CA: Environmental Sys-

tems Research Institute.

The histogram of the abundance data (Fig. 3) shows

strong positive skew (coefficient of skewness 8.64), and a

spike at zero. Sixty-six percent of the counts are 0, so the

data are clearly zero-inflated. The long right tail indicates

overdispersion (average count 1.39, variance 24) ESRI

2011. ArcGIS Desktop: Release 10. Redlands, CA: Envir-

onmental Systems Research Institute.

Overview of mapping procedure

1. The mapping procedure starts with a full specification

of the multivariate distribution of the count data. We

chose a zero-inflated Poisson mixture model with

submodels for the logit-transform of the prevalence

parameter p of a Bernoulli distribution and the log-

transform of the intensity parameter l of a Poisson

distribution. Both submodels are generalized linear

spatial models, that is the sum of a linear combina-

tion of covariates describing a spatial trend (fixed

effect) and a multivariate normal distributed error

term with spatial correlation as a function of the dis-

tance between points (random effect).

2. The model was calibrated by assuming first that the

error terms are spatially independent. The calibrated

nonspatial model was then used to create two data

sets, one data set with indicators for the presence/ab-

sence of the species, and a smaller data set with

counts for sampling locations with indicator value

one in the first data set. Each of the data sets was

then used to calibrate a submodel. Both submodels

were calibrated by Markov chain Monte Carlo

(MCMC) simulation of transformed model parame-

ters p and l at the sampling locations, followed by

Monte Carlo maximum likelihood estimation of the

regression coefficients and variogram parameters.

MCMC and MCML were repeated three times to

obtain stable model parameter estimates. The final

parameter estimates of each submodel were used to

simulate 100,000 or 50,000 transformed model

parameter values per sampling location.

3. Then, for each set, 100 simulated model parameters

were interpolated (predicted) one by one to the nodes

of a fine square grid by simple kriging with an exter-

nal drift and backtransformed. This resulted in 100

maps with predictions of p and 100 maps with pre-

dictions of l. By pixel-wise averaging of the 100

parameter maps, the ultimate map with predicted

model parameter was obtained. Finally, the ultimate

maps with predicted p and predicted l were multi-

plied pixel by pixel, to give a map of the expected un-

conditional counts.

The following sections provide details of the various

steps.

The spatial zero-inflated Poisson mixture
model

Commonly used models for zero-inflated count data are

the zero-inflated negative binomial mixture model

(ZINB) and the zero-inflated Poisson mixture model

(ZIP) (Lambert 1992; Agarwal et al. 2002). The latter,

which is used in this paper, is given by

PðYi ¼ yÞ ¼
pi þ ð1� piÞexpð�liÞ y = 0

ð1� piÞ expð�liÞlyi
y! y = 1,2,3,...

(
(1)

where Yi is the count at location i, pi the probability of a

Bernoulli zero at location i, and 1� pi is the probability

of a Poisson count, either zero or non-zero. The intensity

(mean number of individuals) of the Poisson process at

location i is li. The first part of the model is the overall

probability of zero (Hilbe and Greene 2007).

The parameters pi and li at location i are random vari-

ables modeled by the following submodels:

logitðpiÞ ¼ log

�
pi

1� pi

�
¼ xTB;ibB þ gB;i

logðliÞ ¼ xTP;ibP þ gP;i

(2)

with xB;i and xP;i vectors with covariates at location i, bB
and bP vectors with regression coefficients, and gB;i, gP;i
error terms of the spatial trend. Note that the model

parameters can be modeled by different sets of covariates.

The error terms gB;i, gP;i at any location i are random

variables. The probability distribution of the error terms

at all locations in the study area was modeled as

Figure 2. Empirical species abundance map of Macoma balthica. At

many locations (yellow dots) the counts equal zero, thus assuming

Gaussian distribution is inappropriate.
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gB
gP

� �
�N 0

0

� �
;

CB 0
0 CP

� �� �
(3)

with CB and CP covariance matrices. So note that we

assumed that the Bernoulli and Poisson error terms were

independent. For both random error terms we further

assumed isotropy, so that the covariance of the error

terms at any two locations was modeled as a function of

the distance h between the two locations. For instance, for

the Bernoulli error terms, the covariance was modeled as

CBðhÞ ¼ r2BqBðh;/BÞ þ s2B (4)

with r2B the partial sill, /B the range (distance parameter),

s2B the nugget, and qB the correlation function, for

instance exponential or spherical (Webster and Oliver

2007).

The two submodels in eqn 2 are generalized linear

mixed models, as they are the sum of a linear combina-

tion of covariates describing a spatial trend (fixed effect)

and a spatially correlated error term (random effect).

Such models are also referred to as generalized linear geo-

statistical models, or generalized linear spatial models

(Diggle and Ribeiro 2007). Following Diggle and Ribeiro

(2007), hereafter the sum of the trend and error term,

representing the transformed model parameter, is referred

to as the signal S, for instance SB;i ¼ xTB;ibB þ gB;i. For

convenience, all the parameters in one model, including

the type of correlation function, are collected in a vector:

hB ¼ ðbB;/B; s
2
B; r

2
B; qBÞ and hP ¼ ðbP;/P; s

2
P; r

2
P; qPÞ.

We considered two sets of covariates: a model with a

minimum set of covariates (model “small”) and a model

with more covariates (model “large”). Model “small” rep-

resented the effect of tidal elevation (altitude) and sedi-

ment (silt and silt squared). These two types of covariates

are usually the most important in macrobenthos–environ-
ment relationship (see e.g., van der Meer 1991). In model

“large,” the covariates were silt, median grain size, alti-

tude, longitude, latitude, and quadratic terms of silt, med-

ian grain size, and altitude. All covariates were scaled

(demeaned and divided by standard deviation) to reduce

correlation between the linear and the quadratic term, to

improve mixing of MCMC algorithm, and to stabilize

estimated parameters.

Model calibration

The model was calibrated by the following procedure.

0

1000

2000

50 10 15

Species abundance

C
ou

nt
s

Figure 3. Histogram of counts of Macoma

balthica. To avoid clumping at the origin, the

horizontal axis was truncated at 15. A total of

79 observations were outside of the scale with

the maximum value of 84.
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1. Calibrate the zero-inflated Poisson mixture model as

discussed above, but assume for the time being that

both error terms gB and gP are spatially independent;

2. Use the predictions of the model obtained in step 1

to classify each zero count in the data set either as a

Bernoulli or a Poisson zero;

3. Calibrate the Bernoulli and Poisson submodels sepa-

rately, but now accounting for spatial dependence.

In step 1, the parameters of the zero-inflated Poisson

mixture model, the regression coefficients bB and bP were

estimated by maximum likelihood. For this we used R-

package (R Core Team 2014) pscl, function ze-
roinfl (Zeileis et al. 2008).

To classify a zero count either as a Bernoulli zero or a

Poisson zero (step 2), we used the ratio of the probability

of a Bernoulli zero to the total probability of a zero:

pi
pi þ ð1� piÞexpð�liÞ

(5)

Each zero observation was independently classified as a

Bernoulli zero with a probability proportional to this

ratio. If a zero observation was classified as a Poisson

zero, then it was also automatically classified as a Ber-

noulli one. This way two data sets were constructed: the

Bernoulli data set (4026 observations) and the Poisson

data set (1450 observations). The Poisson data set was

smaller than the original data set, as Bernoulli zeros were

not included.

The next step is to calibrate the parameters of the two

submodels, using either the Bernoulli data or the Poisson

data, accounting for spatially dependent error terms. Such

models are referred to as generalized linear spatial models

or generalized linear geostatistical models. We provide

only a brief explanation of the calibration of a GLSM, for

details we refer Diggle et al. (1998) and Christensen

(2004). In short, it can be shown that the likelihood of

the model parameters assembled in the vector h� (h�)
stands for either hB or hP can be written as:

Lðh�Þ / Eh0
f ðSjhÞ
f ðSjh0Þ

����y
� �

(6)

with h0 the vector with initial estimates of the model

parameters, Eh0 the expectation over the density of the

signal S given the observations and the model parameters

h0, f(S|h) the probability density of the signal S given the

vector with model parameters h, and f ðSjh0Þ the probabil-
ity density of S given the vector h0 with initial estimates

of the model parameters. In words, the likelihood of the

model parameters is proportional to the expectation of

the ratio of two densities. The maximum likelihood esti-

mate of h can therefore be found by maximizing this

expectation. The expectation is approximated by simulat-

ing a large sample of signals at the sampling locations by

Markov chain Monte Carlo (MCMC), computing for

each sample the ratio of densities, and averaging:

LmðhÞ � 1

J

XJ

j¼1

f ðSjjhÞ
f ðSjjh0Þ (7)

with J the number of simulated signals S. This sample

average of ratio of densities is maximized by generating a

series of vectors with model parameters.

The MCMC simulation was performed with R-package
geoRglm, function glsm.mcmc (Christensen and

Ribeiro 2002). This package uses the Langevin–Hastings

algorithm for MCMC simulation (Papaspiliopolous et al.

2003). We have tuned the MCMC simulation by means

of the proposal variance such that the realized acceptance

rate in the both processes was approximately 55% which

was close to the optimal acceptance rate of 60% men-

tioned by Christensen (2004).

The Poisson process required 100,000 simulations until

convergence was reached, from which we discarded the

first 100 (burn-in), and sampled every 100th from the

remaining simulations (thinning). For the Bernoulli pro-

cess, the number of simulations was 50,000, while burn-

in and thinning values were the same. We investigated

the performance of MCMC algorithms through postpro-

cessing of the simulation results with R-package coda,

function create.mcmc.coda (Plummer et al.

2006). We plotted the following convergence diagnostics:

trace plot, autocorrelation plot, density plot, and Geweke

plot. All diagnostics plots showed good convergence (not

presented here).

Spatial prediction

After simulation of the signals at the sampling locations

using the final model parameter estimates, the first 100

(after removing first 100 and thinning) simulated signals

per sampling location were used one by one in spatial

prediction at the nodes of a square grid with a spacing of

100 m. This resulted in 100 maps of predicted Bernoulli

signals and 100 maps of Poisson signals. For prediction

simple kriging with an external drift was used. The pre-

dicted signals were backtransformed by second-order Tay-

lor expansion (Christensen and Ribeiro 2002).

Cross-validation

The quality of the maps was quantified by leave-one-out

cross-validation. Each time, a simulated signal at a single

sampling location i is hold back and the signals at the

remaining n�1 sampling locations are used to predict the

value of signal i.
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Based on the results of cross-validation, two groups of

quality measures were calculated for validation of qualita-

tive (predicted prevalence p, expressed either as 0 or 1

using a threshold of 0.5) and quantitative (predicted

intensity l and predicted unconditional intensity) maps.

For predicted prevalence, the quality measures were

overall accuracy, user’s accuracies, and producer’s accura-

cies (Brus et al. 2011). These are derived from a 2 by 2 con-

fusion matrix in which the rows indicate the prediction and

the columns the observation (Fig. 4). The overall accuracy,

defined as the proportion of correct observations, equals to

(a+d)/(a+b+c+d). User’s accuracies, defined as the propor-

tion of the two types of predictions that are correct, equal

to a/(a+b) and d/(c+d). Producer’s accuracies, defined as

the proportion of the two types of observations that are

correctly predicted, equal a/(a+c) and d/(b+d).
For predicted intensity and predicted unconditional

intensity, the quality measures were mean error (ME) and

mean squared error (MSE). The ME is defined as the mean

difference between the predicted and observed values,

whereas the MSE is defined as the mean squared difference.

Results

Modeling

The estimated variogram parameters showed that the

model “small,” with only silt, silt squared, and altitude as

explanatory variables, had a smaller nugget in relation to

the partial sill and a larger range than the model “large,”

which had median grain size, median grain size squared,

and geographic coordinates as extra covariates (Table 1).

This holds for both the Bernoulli and the Poisson process.

It seems that including these extra covariates reduced the

spatial structure of the error term variance. The range of

the estimated variogram was larger for the Bernoulli pro-

cess, although the difference was small for the model

“large.” Correlation between explanatory variables was

not too large, with the maximum of �0.84 between silt

and median grain size.

The estimated regression parameters for the variables

silt, silt squared, and altitude were nevertheless rather

similar for the two models and point to a unimodal rela-

tionship with silt for both prevalence and intensity. The

optimum was reached at approximately 30% silt content.

Both response variables increased with increasing altitude

(Fig. 5).

The differences in twice the log-likelihood equaled 5.7

for the Bernoulli model and 19.1 for the Poisson model ,

and when compared to 1
2 v

2
a¼0:05;df¼5 which is 5.5, it

appears that the model “large” should be preferred in

both cases.

Spatial prediction

Predicted prevalences and intensities, calculated as the

mean of 100 realizations of backtransformed Bernoulli

and Poisson signals, showed more or less the same range

(A) An example (B) Model ‘small’ (C) Model ‘large’
Figure 4. Confusion matrices (A) An example

(B) Model “small" (C) Model “large".

Model “small" Model “large"

Bernoulli Poisson Bernoulli Poisson

Constant �0.765 0.485 �0.501 0.201

Silt 0.819 0.587 0.514 0.896

Median grain size – – �0.079 0.248

Altitude 0.551 0.280 0.544 0.361

Silt squared �0.523 �0.222 �0.487 �0.259

Median grain size squared – – �0.202 0.094

Altitude squared – – 0.043 0.149

North – – �0.021 0.583

East – – 0.129 �0.043

q (correlation function) Spherical Spherical Spherical Spherical

r2 (partial sill) 0.145 0.429 0.042 0.306

s2 (nugget) 0.164 0.417 0.207 0.507

/ (range, m) 21121 3414 4294 2603

Table 1. Parameters for the Bernoulli and

the Poisson processes estimated with the

MCML approximation to the likelihood for

model “small" and model “large".
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for the two models, but the averages differed slightly. For

the model “small,” predicted prevalence ranged between

0.02 and 0.87 (mean 0.35, SD 0.19), and for the model

“large,” from 0.05 to 0.83 (mean 0.39, SD 0.15). Intensity

ranged between 0.50 and 48 (mean 2.55, SD 2.11), and

from 0.22 to 47 (mean 2.36, SD 2.25) for, respectively,

the models “small” and “large.” Visual comparison of the

prevalence and intensity maps confirmed that the model

“small” predicts lower mean prevalence and higher mean

intensity (Fig. 6).

Yet, the product of prevalence and intensity, the

unconditional intensity, was very similar. The predicted

Figure 5. Predicted prevalence (A) and intensity (B) for model “small" in relation to explanatory variables silt and altitude.

Figure 6. Predicted prevalence for model “small" (A) and model “large" (B) and predicted intensity for model “small" (C) and model “large"

(D). Average of 100 realizations.
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unconditional intensity varied between 0.01 and 35.38

(mean 1.11, SD 1.59) for model “small” and between 0.03

and 29.81 (mean 1.10, SD 1.51) for model “large.” The

maps of predicted unconditional intensity were indeed

very similar (Fig. 7A,B). The coefficient of variation of

predicted unconditional intensity, defined as a ratio of

the standard deviation to the mean (on the basis of 100

realizations) varied between 0.04 and 0.46 (mean 0.24, SD

0.07) for model “small” and between 0.01 and 0.40 (mean

0.19, SD 0.07) for model “large” (Fig. 7C,D). This sug-

gests a lower precision in model “small” and confirms

that the model “large” should be preferred.

To show that the observed difference between the mod-

els was not due to the randomized allocation of zero

observations to either true or false zeros, the entire estima-

tion and prediction procedure was repeated three more

times. Correlation coefficients calculated for prevalences,

intensities, and unconditional intensities for both models

were high (Table 2). Mean variance of prevalence within

models was considerably smaller (0.0007 and 0.0003, for

model “small” and “large,” respectively) than between

models (0.004). Similar results were obtained for intensity

and unconditional intensity. As for intensity, variance

within models was 0.1 for model “small” and 0.07 for

model “large,” whereas variance between models was 0.3.

Finally, as for unconditional intensity, variance within

models was 0.03 for model “small” and 0.02 for model

“large,” whereas variance between models was 0.09.

Figure 7. Predicted unconditional intensity for model “small" (A) and model “large" (B) and coefficient of variation of predicted unconditional

intensity for model “small" (C) and model “large" (D). Average of 100 realizations.

Table 2. Correlation coefficients for predicted prevalence, intensity,

and unconditional intensity.

Minimum Maximum Mean

Prevalence (“small") 96.5% 99.7% 98.4%

Prevalence (“large") 98.5% 99.4% 99.0%

Intensity (“small") 96.9% 99.1% 97.9%

Intensity (“large") 99.4% 99.4% 99.0%

Unconditional intensity (“small") 97.8% 99.6% 98.9%

Unconditional intensity (“large") 98.9% 99.7% 99.35%

Table 3. Estimates of overall accuracy, user’s accuracy and producer’s

accuracy for predicted prevalence (p).

Model “small" Model “large"

Overall accuracy 71.3% 67.3%

User’s accuracy (1) 63.7% 63.8%

User’s accuracy (0) 74.1% 68.7%

Producer’s accuracy (1) 47.1% 44.8%

Producer’s accuracy (0) 84.9% 82.6%
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Cross-validation

Figure 4b,c show confusion matrices used to calculate the

accuracy measures for the predicted prevalence. Apart from

one case, the accuracy measures were slightly higher for the

model “small” (Table 3). Producer’s and user’s accuracies

for outcome 0 were higher than for the outcome 1.

For the predicted intensity, the model “small” per-

formed worse than the model “large.” However, for the

unconditional intensity, the model “small” performed bet-

ter again (Table 4).

Discussion

Using a spatial zero-inflated Poisson mixture model, we

neither had to make the unreliable assumption of Gaus-

sian data as in the older geostatistical methods nor that

of spatial independency as in GLM. Practical implementa-

tion of the model, however, comes at a price. Diggle et al.

(1998) acknowledge that MCMC parametrization is criti-

cal to implementation of GLSM successfully, and MCMC

is a computer-intensive analysis. The same holds for the

MCML estimation of regression coefficients and vari-

ogram parameters. Computational time for the present

4029 data locations and 115,023 prediction locations was

approximately 72 h using R, version 3.1.2 (2014-10-31)

on a x86_64-pc-linux-gnu platform with 8 cores.

The zero-inflated Poisson mixture model assumes two

processes: a Bernoulli and a Poisson. The effect of envi-

ronmental covariates on the Bernoulli process was similar

to that reported by Ysebaert et al. (2002). Namely, the

prevalence of M. balthica was highest at shallow areas in

muddy sediment (median grain size slightly smaller than

100 lm or a silt content of about 35%). The effect of

environmental covariates on the Poisson process was sim-

ilar to that on the Bernoulli process, but such result may

not necessarily hold for other studies.

As we mentioned earlier, unlike Recta et al. (2012);

Boyd et al. (2015) who applied zero-truncated Poisson,

we allowed for two sources of zeros: true (Bernoulli)

zeros and false (Poisson) zeros. These false zeros can be

attributed to imperfect detection and are, therefore,

unavoidable in field studies (Wenger and Freeman 2008).

Recta et al. (2012); Boyd et al. (2015) took a fully Baye-

sian approach, but our approach is non-Bayesian. In the

absence of any prior knowledge about parameters and

agreement on how to construct noninformative priors

informative priors are difficult to elicit (Christensen

2004), thus making a Bayesian approach less suitable.

To conclude, our study demonstrates a useful methodol-

ogy that allows to construct species abundance maps for

zero-inflated and spatially correlated data. The application

is not limited to bivalve species only, and can be readily

extended to any species that demonstrate similar distribu-

tional properties. Finally, future studies might compare our

approach with recent methods such as Integrated Nested

Laplace Approximation (Rue et al. 2009) that are supposed

to be faster than the route we have chosen.
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