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Highlights Impact and Implications

� Intestinal Reg4 deletion is prone to high-fat-diet-

induced liver steatosis in mice.

� Intestinal Reg4 deficiency increases intestinal fat
absorptionwith AMPK signalling activation in mice.

� REG4 inhibits fat uptake in intestinal epithelial cells
via altering AMPK activation.

� Serum REG4 levels are reduced with liver steatosis
progression in children with obesity.
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Hepatic steatosis is a key histological feature of non-
alcoholic fatty liver disease, which is the leading
chronic liver disease in children leading to the devel-
opment of metabolic diseases; however, little is known
about mechanisms induced by dietary fat. Intestinal
REG4acts as anovel enteroendocrinehormone reducing
high-fat-diet-induced liver steatosis with decreasing
intestinal fat absorption. REG4may be a novel target for
treatment of paediatric liver steatosis from the
perspective of crosstalk between intestine and liver.
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Background & Aims: Regenerating gene family member 4 (REG4) is a novel marker for enteroendocrine cells and is selec-
tively expressed in specialised enteroendocrine cells of the small intestine. However, the exact roles of REG4 are largely
unknown. In this study we investigate the effects of REG4 on the development of dietary fat-dependent liver steatosis and the
mechanisms involved.
Methods: Mice with intestinal-specific Reg4 deficiency (Reg4DIEC) and Reg4-floxed alleles (Reg4fl/fl) were generated to
investigate the effects of Reg4 on diet-induced obesity and liver steatosis. Serum levels of REG4 were also measured in
children with obesity using ELISA.
Results: Reg4DIEC mice fed a high-fat diet demonstrated significantly increased intestinal fat absorption and were prone to
obesity and hepatic steatosis. Importantly, Reg4DIEC mice exhibit enhanced activation of adenosine monophosphate-activated
protein kinase (AMPK) signalling and increased protein abundance of the intestinal fat transporters, as well as enzymes
involved in triglyceride synthesis and packaging at the proximal small intestine. Moreover, REG4 administration reduced fat
absorption, and decreased the expression of intestinal fat absorption-related proteins in cultured intestinal cells possibly via
the CaMKK2-AMPK pathway. Serum REG4 levels were markedly lower in children with obesity with advanced liver steatosis
(p <0.05). Serum REG4 levels were inversely correlated with levels of liver enzymes, homeostasis model assessment of insulin
resistance, low-density lipoprotein cholesterol, and triglycerides.
Conclusions: Our findings directly link Reg4 deficiency with increased fat absorption and obesity-related liver steatosis, and
suggest that REG4 may provide a potential target for prevention and treatment of liver steatosis in children.
Impact and Implications: Hepatic steatosis is a key histological feature of non-alcoholic fatty liver disease, which is the leading
chronic liver disease in children leading to the development of metabolic diseases; however, little is known about mechanisms
inducedbydietary fat. IntestinalREG4actsasanovelenteroendocrinehormonereducinghigh-fat-diet-induced liver steatosiswith
decreasing intestinal fat absorption. REG4may be a novel target for treatment of paediatric liver steatosis from the perspective of
crosstalk between intestine and liver.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
With the growing epidemic of childhood obesity, 55–80% of
obese children present with fatty liver, which has been the
most common cause of chronic liver diseases in the paediatric
population worldwide.1–3 Fatty liver (hepatic steatosis) is
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referred to as excess fat accumulation in hepatocytes and
comprises a continuum of liver conditions, from simple non-
alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis
(NASH).4 However, the pathogenesis of fatty liver in paediatrics
has not been fully understood. It is reported that de novo
lipogenesis in the liver, flow of the plasma fatty acid pool with
adipose tissue, and excessive dietary fatty acids from the in-
testine are three main ways to produce fat in the liver.5 Indeed,
studies recently showed that intestinal-derived or absorbed
fatty acid flux to hepatocytes was an important issue as about
15% of fatty acids incorporated into triglycerides in the liver
originated from intestinal absorption or were found in in-
dividuals with non-alcoholic fatty liver disease (NAFLD).6–8 It
thus hypothesised that the absorption of dietary fatty acid in
the intestine might be involved in the onset or pathogenesis of
paediatric fatty liver.
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Fig. 1. Intestinal-specific Reg4 deficiency aggravates obesity and liver steatosis in mice. (A) Representative male and female Reg4fl/fl mice and Reg4DIEC mice fed a
high-fat diet (HFD) for 14 weeks (top). Body weight (BW) was measured weekly (bottom) (male Reg4fl/fl mice n = 11 mice and Reg4DIEC mice n = 10; female Reg4fl/fl

mice n = 11 and Reg4DIEC mice n = 10). (B) Gross, haematoxylin and eosin (H&E) and Oil Red O (ORO) imaging of livers of male Reg4DIEC and Reg4fl/fl mice fed a HFD for
14 weeks (male mice, each group n = 11). (C) The contents of hepatic triglyceride (TG) and phospholipid were determined in male Reg4DIEC and Reg4fl/fl mice fed a
low-fat diet (LFD) or HFD for 14 weeks (LFDmale Reg4fl/fl mice n = 12, Reg4DIEC mice n = 12; HFDmale Reg4fl/fl mice n = 9 – 10, Reg4DIEC mice n = 10). (D, E) Oral glucose
tolerance test (OGTT) and insulin tolerance test (ITT) of Reg4DIEC and Reg4fl/fl mice fed a HFD for 8 weeks (male mice, Reg4fl/fl mice n = 10 and Reg4DIEC mice n = 10). All
data are mean ± standard deviation (SD). Linear mixed model for A, two-way variance (ANOVA, or mixed model, multiple comparisons) analysis for A; unpaired two-
tailed Student t test with Welch’s correction analysis for C; Two-way ANOVA analysis for D and E. n.s., not significant, *p <0.05, **p <0.01, ***p <0.001.
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Regenerating gene family member 4 (REG4), a member of the
calcium-dependent (C-type) lectin superfamily, is predominantly
expressed in gastrointestinal tract tissues including the colon,
small intestine, stomach, and pancreas.9,10 It has been reported
that aberrant expression of REG4 is associated with several dis-
eases including gallbladder carcinoma, gastric cancer, colon
cancer, pancreatic cancer, prostate cancer, and inflammatory
bowel disease.11–16 Single-cell messenger RNA sequencing
recently revealed REG4 is a novel marker for enteroendocrine
cells,17,18 a rare population of hormone-producing intestinal cells.
However, the exact role of Reg4 in the enteroendocrine cell has
not been reported to date. In this study, we conditionally
knocked out intestinal Reg4 in mice and investigated the roles of
Reg4 in the high-fat diet (HFD)-induced fatty liver. We found that
intestinal-specific Reg4 deletion aggravated HFD-induced liver
steatosis by increasing the fatty acid uptake.
Materials and methods
High-fat diet-induced obesity in mice
For diet-induced obesity studies, 4–6-week-old male and female
Reg4DIEC and Reg4fl/fl mice were placed on a 60% HFD or 10% LFD
(Bofan Biological Technology, Shanghai, China) for 8–14 weeks.
Body weight and food intake were measured weekly. All animals
used in this study received human care and the study protocols
comply with the institution’s guidelines. All animal experiments
were reviewed and approved by the Institutional Animal Care
and Use Committee of the Xin Hua Hospital, School of Medicine,
Shanghai Jiao Tong University (XHEC-F-2022-009).

Children with obesity
A total of 52 overweight/obese children (46 boys and six girls)
and 21 age-matched controls (12 boys and nine girls) were from
Xin Hua Hospital Affiliated to Shanghai Jiao Tong University
School of Medicine, Shanghai, China. The children with obesity
were identified according to the BMI cut-off points for over-
weight and obesity in Chinese children and adolescents aged
7–17 years. Written consent forms were obtained from the par-
ents of all participants. The study protocol was reviewed and
approved by the Ethics Committees of Xin Hua Hospital, School
of Medicine, Shanghai Jiao Tong University (XHEC-D-2022-010).

Statistical analysis
The statistics are presented as mean ± standard deviation (SD).
ANOVA or the Student t test was used to compare differences
between groups. Correlations between serum REG4 and serum
biochemical indexes were tested using the Spearman rank cor-
relation test. The level of statistical significance was set at 0.05.

Detailed protocols are provided in the Supplementary
material.
Results
Intestinal-specific Reg4 deletion is prone to HFD-induced liver
steatosis
As shown in Fig. S1A, the quantitative real-time PCR (qRT-PCR)
showed that Reg4 mRNA was exclusively expressed in
the gastrointestinal tract, including stomach, intestinal
mucosa, but not in the liver (Fig. S1A). In proximal intestine of
JHEP Reports 2023
mice, the colorimetric in situ hybridisation (CISH) assay
indicated that Reg4 mRNA was selectively expressed at
crypts and villus (Fig. S1B). Immunofluorescence staining
showed that Reg4 protein was located mainly in the epithelial
cells of the bottom or middle of the villus (Fig. S1C). The REG4
protein was also observed in the human small intestine
(Fig. S1D).

To investigate the entero-endocrinal roles of Reg4, we initially
depleted the intestinal-specific Reg4 (Reg4DIEC). As shown in
Fig. S2, small intestine length, villus height, and crypt number in
Reg4DIEC mice did not differ from the Reg4fl/fl littermates that
were fed a standard diet (10% kcal from fat) (Fig. S2A and B).
When challenged with a HFD (60% kcal from fat), body weight
was higher in both male and female Reg4DIEC mice compared
with that of Reg4fl/fl mice (Fig. 1A). After 14 weeks of HFD feeding,
almost all the fat pads from Reg4DIEC mice were significantly
larger and heavier than those in Reg4fl/fl mice (Fig. S3A and C).
H&E staining revealed that the adipocytes of the inguinal fat,
gonadal fat, mesenteric fat, and retroperitoneal fat depots in
Reg4DIEC mice were significantly larger than those in Reg4fl/fl mice
(Fig. S3B and D). As indicated in Fig. 1B, more severe liver stea-
tosis was observed in Reg4DIEC mice than in Reg4fl/fl mice as
illustrated by H&E and Oil Red O staining (Fig. 1B and Fig. S4A).
The higher levels of hepatic triglycerides and phospholipids were
detected in livers of Reg4DIEC mice than those in Reg4fl/fl mice
(Fig. 1C). Moreover, the Reg4DIEC mice had slightly higher levels of
liver enzymes alanine transaminase (ALT) and aspartate amino-
transferase (AST) in serum (Fig. S4B). The inflammatory genes
including the interleukin-6 (Il6) and interleukin-1-beta (Il1b)
increased in the livers of Reg4DIEC mice than those in Reg4fl/fl

mice, but it did not reach significance (Fig. S4C). Moreover,
Reg4DIEC mice showed a decrease in glucose tolerance and insulin
sensitivity compared with Reg4fl/fl mice when subjected to an
oral glucose tolerance test (OGTT) and insulin tolerance test (ITT)
(Fig. 1D and E).
Intestinal Reg4 deficiency increases intestinal fat absorption
with AMPK signalling activation
When mice were given a HFD for 14 weeks, fasted overnight,
and re-fed with HFD for 1 h, faecal triglyceride content was
decreased by about 40% in Reg4DIEC compared with that of
Reg4fl/fl mice (Fig. 2A, left), whereas proximal intestinal tri-
glyceride content was increased significantly in Reg4DIEC mice
(Fig. 2A, right). Consistently, after the mice were gavaged with
olive oil, Oil Red O staining and transmission electron micro-
scope (TEM) analysis showed increased number and larger fat
droplets in the mucosa of the proximal intestine of Reg4DIEC

mice (Fig. 2B and Fig. S5). We further analysed the expression of
the main components that are responsible for fat uptake in the
proximal small intestine. The triglyderide synthesis enzymes
and proteins, including acyl CoA: monoacylglycerol
acyltransferase-2 (MOGAT2), diacylglycerol O-acyltransferase 2
(DGAT2), and fatty-acid-binding protein 2, intestinal (FABP2),
were expressed at higher levels at the proximal small intestine
of Reg4DIEC mice compared with that of Reg4fl/fl mice (Fig. 2C and
D). The triglyceride chylomicron packaging and formation pro-
teins microsomal triglyceride transfer protein (MTTP) and tail-
interacting protein 47 (TIP47) increasingly expressed at the
proximal small intestine of Reg4DIEC mice (Fig. 2C and D).
3vol. 5 j 100700
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Fig. 2. Intestinal-specific Reg4 deficiency increases intestinal fat absorption. (A) Triglyceride (TG) contents were quantified in proximal intestines and faeces
from Reg4DIEC and Reg4fl/fl mice following overnight fast and high-fat diet (HFD) re-fed (male mice, n = 6). (B) Representative images of Oil Red O (ORO) staining
(male mice, n = 5) and transmission electron microscope (TEM) analysis (male mice, n = 3) of proximal intestines from Reg4DIEC and Reg4fl/fl mice with fed a 4-day
HFD, fasted overnight, and followed by HFD re-fed for another 1 h. (C) Western blotting of the extracts of proximal small intestine isolated from male and female
Reg4DIEC and Reg4fl/fl mice after 4-day HFD feeding. Mice were fasted overnight and re-fed with HFD for 1 h. The expression levels of liver kinase B1 (LKB1),
phosphorylated-LKB1 (P-LKB1), Calcium/calmodulin-dependent protein kinase 2 (CaMKK2), phosphorylated- CaMKK2 (P-CaMKK2), adenosine monophosphate-
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Moreover, the fatty acid transporting proteins cluster of differ-
entiation 36 (CD36) and fatty acid transport protein 4 (FATP4)
were also upregulated in the proximal small intestinal mucosa
of Reg4DIEC mice (Fig. 2C and D). Adenosine monophosphate-
activated protein kinase (AMPK) is a critical regulator of
cellular and whole-body energy homeostasis mediating the
function of a variety of hormones and controlling fat absorp-
tion.19–21 AMPK can be directly phosphorylated on Thr172 by its
major upstream AMPK kinases, liver kinase B1 (LKB1) and
calcium/calmodulin-dependent protein kinase kinase 2
(CaMKK2).22,23 In the proximal small intestinal mucosa of mice,
the phosphorylated-AMPK, phosphorylated-LKB1 as well as
phosphorylated-CaMKK2 were enhanced in Reg4DIEC mice
compared with Reg4fl/fl mice fed on a HFD (Fig. 2C and D).

REG4 inhibits fat uptake in intestinal epithelial cells by
altering AMPK activation
Treatment of human intestinal epithelial cells (FHs 74 Int)
with oleate led to an increase in fatty acid uptake, which
was inhibited by human recombinant REG4 protein (Fig. S6A).
The REG4 treatment also reduced oleate-induced activation
of AMPK signalling (AMPK, LBK1, and CaMKK2) and the
expression of the main mechanism components of fatty acid
uptake (e.g. CD36, FATP4, FABP2) (Fig. S6B and C). We next
showed that knockdown of the CaMKK2 reduced the oleate-
mediated phosphorylation of AMPK (Fig. S7), which is consis-
tent with previous findings.24 Pharmacological inhibition of
AMPK with AMPK-specific inhibitor compound C significantly
reduced the oleate uptake and decreased the expression of
fatty acid absorption proteins (Fig. 3A–D). Similarly, REG4
treatment abolished the AMPK-pharmacological activator 5-
aminoimidazole-4-carboxamide-1-b-D-ribofuranoside (AICAR)-
induced oleate uptake and fat-absorption-related proteins
(Fig. 3A–D).

Serum levels of REG4 are reduced with liver steatosis
progression in children with obesity
Serum REG4 levels were markedly lower in children with
obesity, and continually decreased with liver steatosis progres-
sion (Fig. 4A and B). Serum REG4 levels were inversely correlated
not only with concentrations of ALT (r = -0.4583, p = 0.0018), AST
(r = -0.5223, p = 0.0003), and alkaline phosphatase (AKP; r =
-0.2948, p = 0.0521), but also with homeostasis model assess-
ment of insulin resistance (HOMA-IR, r = -0.4711, p = 0.0012), LDL
cholesterol (r = -0.5296, p =0.0002) and triglycerides (r = -0.3528,
p = 0.0118) levels (Fig. 4C).
Discussion
In this study, we demonstrate that intestinal Reg4 acts as an
enteroendocrine hormone protecting mice from high-fat diet-
induced liver steatosis via reducing intestinal fat absorption. First
of all, overall body weights and fat contents were significantly
activated protein kinase (AMPK), phosphorylated-AMPK (P-AMPK), cluster of diffe
fatty acid transport protein 4 (FATP4), diacylglycerol O-acyltransferase 2 (DGAT2
transfer protein (MTTP), and tail-interacting protein 47 (TIP47) were measured. (
Each group, n = 3. Unpaired two-tailed Student t test with Welch’s correction an

JHEP Reports 2023
increased in Reg4DIEC mice given a HFD. Second, the small in-
testine of Reg4DIEC mice dramatically increased fatty acid ab-
sorption and related protein levels as well as activation of AMPK
signalling. Importantly, we indicated that REG4 reduced intesti-
nal fat absorption at least in part via inhibiting the activation of
the CaMKK2-AMPK pathway.

REG4 recently has been identified as a novel marker for
enteroendocrine cells.17,18 but its role in digestion and energy
homeostasis is unknown. Here we reported that intestinal Reg4
deficient (Reg4DIEC) mice were susceptible to HFD-induced liver
steatosis characterised by increased hepatic fat accumulation and
insulin resistance. Because Reg4 has a highly restricted tissue
expression pattern, we indicated it is selectively expressed in the
intestinal tract, but it is hardly detected in the liver. Intestinal-
absorbed fatty acid from dietary has been identified as an impor-
tant source of liver fat accumulation.7,8 We thus hypothesise that
the intestinal Reg4 may protect against HFD-induced hepatic
steatosis via reducing intestinal fatty acid uptake. Indeed, Reg4DIEC

mice fed a HFD had an increase in proximal intestinal fatty acid
droplets. In in vitro experiments, REG4 treatment attenuated
oleate absorption in human small intestinal epithelial cells (FHs 74
Int). Taken together, our findings suggested that intestinal REG4
acted as an important enteroendocrine hormone to reduce fatty
acid uptake at the proximal intestine.

There are several main components responsible for intestinal
fat absorption. The transporters including CD36 and FATP4 are
important mediators of long-chain fatty acids and their acyl-CoA
esters transportation.25,26 The triglyceride synthesis enzyme
levels of MOGAT2, FABP2, and DGAT2 determine the rate of MAG
uptake from the lumen into enterocytes in a cell-autonomous
manner.27,28 The proteins MTTP and TIP47 are responsible for
triglyceride chylomicron packaging and formation.29,30 Reg4DIEC

mice here had an increase in the protein level of the main
components responsible for intestinal fat absorption during
feeding with a HFD. Although the human intestinal epithelial
cells FHs 74 Int had reduced expression of these proteins after
treated with REG4 protein. Recent studies showed that activation
of AMPK could stimulate fatty acid uptake in intestinal epithelial
cells.21,24,31 We here showed that activation of AMPK and its two
upstream activators LBK1 and CaMMK2 increased in the prox-
imal intestinal mucosa of Reg4DIEC mice. In vitro, REG4 addition
inhibited oleate or AICAR-induced AMPK activation. AMPK has
been reported to facilitate fatty acid uptake by manipulating
CD36 expression and translocation.31,32 Knockdown of the
CaMKK2 but not LBK1 decreased oleate-stimulated AMPK acti-
vation, which is consistent with a previous study.24 Together,
these findings suggest REG4 reduces the fatty acid absorption
possibly by inhibition of CaMKK2-AMPK signalling.

With this population-based cross-sectional study, we showed
that decreased serum REG4 levels reflected the presence and the
degree of liver steatosis in children with obesity. Children with
more advanced steatosis had lower serum REG4 levels compared
with those with milder steatosis. Moreover, serum REG4 levels
rentiation 36 (CD36), acyl CoA: monoacylglycerol acyltransferase-2 (MOGAT2),
), fatty-acid-binding protein 2, intestinal (FABP2), microsomal triglyceride (TG)
D) Quantification of proteins in (C). b-Actin was used as an internal reference.
alysis for A and D; *p <0.05, **p <0.01, ***p <0.001.
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extracts of cells with above treatments for the adenosine monophosphate-activated protein kinase (AMPK), phosphorylated-AMPK (P-AMPK), cluster of dif-
ferentiation 36 (CD36), acyl CoA: monoacylglycerol acyltransferase-2 (MOGAT2), fatty acid transport protein 4 (FATP4), diacylglycerol O-acyltransferase 2
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Fig. 4. Serum REG4 levels were measured in children with obesity. (A) The serum REG4 levels in children with obesity and controls using ELISA. (B) The serum
REG4 levels in the children with obesity with different grades of liver steatosis (0–3) using ELISA. (C) The correlation of serum REG4 levels with levels of serum
liver function markers, homeostasis model assessment of insulin resistance (HOMA-IR), low-density lipoprotein cholesterol (LDL) and serum triglycerides (TG).
Unpaired two-tailed Student t test with Welch’s correction analysis for A; ordinary one-way ANOVA analysis for B; two-tailed Spearman’s correlation (non-
parametric) analysis for C. n.s., not significant, *p <0.05, **p <0.01, ***p <0.001.

=
(DGAT2), fatty-acid-binding protein 2, intestinal (FABP2), microsomal triglyceride (TG) transfer protein (MTTP), and tail-interacting protein 47 (TIP47). (D)
Quantification of proteins in (C). b-Actin was used as an internal reference. Independent experiment at least two times. Ordinary one-way ANOVA analysis for B;
*p <0.05, **p <0.01.
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were negatively correlated with levels of serum triglycerides,
liver function enzymes, and insulin resistance. Although there
were some limitations to our study, including a small sample size
and wide age range of the children, this study provides novel
data on obesity-associated liver steatosis and its association with
REG4 levels in serum.
JHEP Reports 2023
In conclusion, this study found that ablation of intestinal Reg4
contributed to hepatic steatosis possibly via AMPK mediating
increased intestinal fatty acid uptake. Serum REG4 levels were
reduced with liver steatosis progression in children with chil-
dren. REG4 may provide a potential target for prevention and
treatment for liver steatosis in children.
Abbreviations
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