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Abstract: The surface plasmon resonance (SPR) biosensor has become a powerful analytical tool for
investigating biomolecular interactions. There are several methods to excite surface plasmon, such as
coupling with prisms, fiber optics, grating, nanoparticles, etc. The challenge in developing this type
of biosensor is to increase its sensitivity. In relation to this, graphene is one of the materials that is
widely studied because of its unique properties. In several studies, this material has been proven
theoretically and experimentally to increase the sensitivity of SPR. This paper discusses the current
development of a graphene-based SPR biosensor for various excitation methods. The discussion
begins with a discussion regarding the properties of graphene in general and its use in biosensors.
Simulation and experimental results of several excitation methods are presented. Furthermore, the
discussion regarding the SPR biosensor is expanded by providing a review regarding graphene-based
Surface-Enhanced Raman Scattering (SERS) biosensor to provide an overview of the development of
materials in the biosensor in the future.

Keywords: biosensors; surface plasmon resonance; graphene

1. Introduction

Graphene, the mother of all carbon materials, has opened a new era in technological
development because of its unique properties. Graphene is a single layer of carbon atoms
with a 2D hexagonal crystal lattice and is the thinnest and strongest material that has
existed to date [1]. Various and unique new properties can be generated by shaping the
graphene layer into 0D buckyballs, 1D nanotubes, and 3D graphite [2]. This property
makes graphene suitable for applications in various fields, including drug delivery [3],
energy storage [4], bioimaging [5], and biosensors [6].

The Surface Plasmon Resonance (SPR) biosensor is a type of biosensor which is very
powerful for detecting and determining the specificity, affinity, and kinetic parameters
of macromolecular bonds. The working principle of this biosensor uses metals such as
gold (Au), silver (Ag), and aluminum (Al) to excite surface plasmon waves which are very
sensitive to changes in the refractive index on their surface [7]. Various macromolecular
bonds have been detected such as protein–protein, protein–DNA, enzyme–substrate or
inhibitor, receptor drug, membrane lipids–proteins, proteins–polysaccharides, and cell—or
virus—proteins [8].

The sensitivity of the SPR biosensor is simply defined as the ratio between the shift in
wavelength or angle and the change in the refractive index on the sensing surface. This
sensitivity is influenced by many factors depending on the excitation method chosen. For
the prism coupled SPR biosensor, the sensitivity of the SPR is influenced by the type of
prism, metal and wavelength used. Islam et al. reported that for the angle investigation
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mode, the SPR structure has the best sensitivity with a gold metal with a thickness of
50 nm [9]. For the fiber coupled SPR biosensor with an investigation mode in the form of
wavelength, of the four types of metals investigated, the highest sensitivity is gold (Au),
silver (Ag), copper (Cu) and aluminum (Al), respectively [10]. For grating coupled SPR
biosensor, the sensitivity is influenced by the shape of the grating, the period of the grating,
the height of the grating, and the wavelength. Cao et al. reported that in the wavelength
range of 600–1000 nm for the angular investigation mode, the best sensitivity belongs to
the first diffraction order [11].

The challenge in biosensor development is to detect analytes with small molecular
weight and extremely diluted concentrations [12]. At this molecular weight and concen-
tration, conventional biosensors are not able to detect it. Therefore, the development
direction of the SPR biosensor is increasing the sensitivity to reach this limit. Several ways
have been done and one of the most popular is by exploiting the unique properties of
graphene [13]. In this review, the authors summarize the latest developments regarding
the graphene-based SPR biosensors. There are several sensing methods discussed in this
review, including prism-based, fiber-optic-based, grating-based, nanoparticle-based, and
SERS-based SPR biosensors. The discussion was started by presenting a brief theory and
continued by presenting the results obtained regarding the graphene-based biosensor, both
simulation, and experiment. These results include the sensitivity and detection accuracy
obtained due to the presence of graphene in the SPR biosensor.

2. Graphene and Its Properties

Graphene is an allotrope of carbon and is intrinsically a zero-gap semiconductor
(semimetal). Graphene band structure has a linear energy dispersion and gives rise to
two cones crossing at the Dirac point [14]. There are three common forms of graphene,
namely graphene oxide (GO), reduced graphene oxide (rGO), pure graphene, and carboxyl-
GO (Figure 1). These three forms of graphene exhibit different properties due to their
different molecular structural arrangements [15]. GO is composed of a graphene layer
with functional groups containing active oxygen on its surface such as carboxyl (–COOH),
alkoxy (C–O–C), hydroxyl (–OH), and carbonyl (C–O) groups. The presence of functional
groups in GO makes it hydrophilic and highly dispersible in water. However, the functional
group breaks the sp2 bond in the crystal plane which will make GO non-conductive and
has lower mechanical properties than graphene [16]. rGO can be produced by removing the
functional groups from the GO and will restore the mechanical and electrical conductivity
properties of the graphene layer [17]. The presence of functional groups in rGO makes it
quite dispersible in water. Briefly, the physical properties of graphene are shown in Table 1.
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Table 1. Physical properties of graphene [15].

Physical Properties Graphene Oxide
(GO)

Reduced Graphene
Oxide (rGO) Pure Graphene

Tensile strength ∼ 0.13 GPa Unknown ∼ 130 GPa
Elastic modulus 23− 24 GPa 250± 150 GPa 1000 GPa

Elongation at break 0.6% unknown 0.8%
Electrical

conductivity Non conductive ∼667 S/m ∼1000 S/m

Dispersibility in
water Highly dispersible Moderately

dispersible Not dispersible

Some of the special properties of graphene which make this material very promising to
be developed in biosensors in the future, among others, are due to its high electron mobility
and high surface to volume ratio. The electron mobility in graphene is ~200,000 cm2/Vs.
This mobility can still be triggered by applying a gate voltage, making it possible to build
graphene-based biosensor with high response speeds. The detection capability of the
graphene-based biosensor is still possible to increase to a single molecule by utilizing the
surface atoms in the graphene layer [18,19]. Specifically, in the SPR biosensor, the number
of graphene layers in plasmonic metal can be controlled so that it is possible to control
the SPR response and sensitivity [20]. The presence of graphene can also serve to protect
plasmonic metals from oxidation so that their performance is more stable [21,22].

3. Graphene-Based Prism Coupled SPR Biosensor

The history of the prism-coupled SPR biosensor dates back to the results of Ritchie’s
research in the 1950s. At that time, Ritchie introduced the surface plasmon in detail [23].
From these results, finally Otto in 1968 studied a prism combined with SPR which was
based on attenuated total reflection (ATR) [24]. This sensing configuration developed by
Otto is known as the Otto configuration and is shown in Figure 2a. In the Otto configuration,
the prism and the plasmonic metal are separated by a gap in the order of micrometers. The
performance of the SPR biosensor in this configuration is influenced by the air-gap distance
between the plasmonic metal and the prism [25]. Due to the difficulty of controlling the gap
between the prism and the plasmonic metal, Kretschmann upgraded the Otto configuration
as shown in Figure 2b. The plasmonic metal is between the analyte and the prism [26]. Due
to the ease of fabrication of SPR structures, the Kretchmann configuration is currently the
most common and widely used configuration for SPR sensing applications [27].
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configuration. (c) The dispersion curve for a surface plasmon mode shows the momentum mismatch problem between the
free space photon (kphoton, gree line) and surface plasmon modes (kSP, red line). (d) Dispersion relation of surface plasmon
with photon. (e) The same effect of momentum-supply can be achieved by corrugating the metallic surface in the so-called
prism-coupled SPR. The resonance is by using evanescent wave produced in attenuated total reflection (ATR).
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The surface plasmon is a quantum plasmonic oscillation produced by the interaction
between photons and free electrons possessed by metals. Resonance occurs when the sur-
face plasmon (SP) wave vector matches the incident light wave vector [1,27]. Theoretically,
the SP wave vector can be obtained from Maxwell’s theory. Applying the appropriate
boundary conditions, the wave vectors of the surface plasmon are:

Ksp =
ω

c

√
εmεd

εm + εd
(1)

and the wave vector of incident light is:

Kx =
ω

c
√

εp sin θi (2)

where εp, εm, and εd indicate the dielectric constant of the prism, metal, and dielectric,
respectively, while θi indicates the incident angle. Resonance can be achieved by changing
the incidence angle and it can be predicted mathematically by the following equation [28]:

θres = sin−1

(
1
√

εp

√
εmεd

εm + εd

)
(3)

where θres indicates the resonance angle and in some literature it is called the SPR angle.
The dispersion relation of the SPR biosensor coupled with the prism is shown in Figure 2.
It can be seen that by using the refractive index material np, the incident light propagation
constant k is capable of coupling the SP wave vector at the intersection point representing
the resonance conditions.

A number of studies, both simulations and experiments, have been carried out to
obtain a good performance SPR biosensor. In a simulation study, the Fresnel equation and
the transfer matrix method (TMM) can be used to determine reflectance in multilayer SPR
structures [29]. From the resulting SPR spectrum, the performance of the SPR biosensor
coupled with a prism can be evaluated through the value of sensitivity (S), detection
accuracy (DA), and quality factor (QF). These three values must be as high as possible to
get the best performing biosensor. Sensitivity (S), detection accuracy (DA), and quality
factor (QF) can be determined by the following equation:

S =
∆θSPR
∆nBio

(4)

DA =
∆θSPR

FWHM
(5)

QF =
S

FWHM
(6)

In the above equation, ∆θSPR shows the shift in the SPR angle, ∆nBio shows the change
in the refractive index of the sensing medium, and FWHM shows the full width at half
maximum [30].

The effect of adding a graphene layer to the prism-based SPR on its performance was
described by Wu et al. in 2010 and Choi et al. in 2011. Wu et al. investigated the effect
of adding a graphene layer to the gold surface (Figure 3a). At the same refractive index
change (∆nBio = 0.005), the SPR angle shifts in conventional biosensors and graphene
monolayer-based biosensors were 0.26 and 0.266, respectively. The results of calculations
by Wu et al. also show that the graphene on gold SPR biosensor with a graphene (L) layer is
(1 + 0.025 L) × γ (where γ > 1) times more sensitive than conventional gold SPR biosensors.
However, adding more layers of graphene to the gold will widen the SPR curve. This
will result in difficult reading of the SPR angle during the experiment so that there will be
potential for reading errors [31].
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Choi et al. investigated the effect of the graphene layer on a different metal, namely
silver (Figure 3b). Increasing the number of graphene layers results in a higher reflectance
at the SPR angle and a shallower SPR curve. In addition, a decrease in sensitivity due to
an increase in the number of graphene layers cannot be avoided. However, it should be
noted that the presence of a graphene monolayer and bilayer in the SPR biosensor results
in a remarkable increase in SPR sensitivity. In this structure, the SPR sensitivity is 3.5 and
2.5 times higher than that of conventional gold-based SPR biosensors [32].

The results of Wu et al. and Choi et al.’s research inspired other researchers in the
field of SPR biosensors. Maharana et al. compared chalcogenide and silicon prisms in
an SPR biosensor composed of gold and a graphene monolayer (Figure 4a). The results
obtained show that the biosensor accuracy is up to 100% compared to the silica-based SPR
biosensor [33]. In the same year, Verma et al. added a material with a high refractive index,
namely silicon (Si), to the graphene-based SPR structure (Figure 4b). The results obtained
show that the best performance is owned by the SPR biosensor with gold (40 nm)/Si
(7 nm)/bilayer graphene. In this structure, the shift in the SPR angle is more than twice
that reported by Wu et al. [34]. In 2014, Ryu et al. also investigated the effect of GO on
SPR sensitivity through simulations and experiments on structures composed of gold,
GO, and SiO2 as a spacer layer between gold and GO. The results obtained show that
the SPR biosensor coupled with GO has an SPR angle shift of 13% than the conventional
structure [35].
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Another method that can be used to improve the performance of the SPR biosensor is
long-range surface plasmon resonance (LRSPR). LRSPR is a development of conventional
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SPR biosensor by adding a dielectric buffer layer (DBL) with a low refractive index such
as Fluoride, Cytop, and Teflon. When applied for sensing purposes, LRSPR will exhibit
a narrower and deeper resonance dip and allow it to penetrate deeper into the analyte
due to less loss than conventional SPR biosensor. There are two types of LRSPR structures,
namely the common LRSPR (DBL is between the prism and the metal) and the symmetric
LRSPR (the metal is sandwiched between two DBLs) [36].

Wu et al. investigated LRSPR on graphene in 2016. They investigated three different
metals (Al, Ag, and Cu) with Cytop as their DBL. The structure of the SPR investigated was
common LRSPR, which was composed of 2S2G prism/Cytop/metal/graphene/analyte.
Figure 5 is the SPR spectrum for the standard SPR and LRSPR structures. Figure 5a shows
the spectrum in Al metal, Figure 5b shows the spectrum in Cu metal, and Figure 5c shows
the spectrum in Ag metal. In the three different metals, the LRSPR spectrum shows a shape
with a very small FWHM compared to the standard structure. The FWHM of the LRSPR
and SPR biosensors are 0.0115◦ and 0.1408◦ for Al-graphene based configurations, 0.0099◦

and 0.1869◦ for Cu-graphene based configurations, 0.0123◦ and 0.3854◦, respectively, for
Ag-graphene based configurations. This shows that LRSPR has succeeded in reducing
FWHM and enhancing the accuracy of the SPR biosensor [37].
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Apart from simulation studies, experimental studies on graphene for SPR biosensors
have also shown very fast progress and development. In a group led by prof. Chiu, the
experiment was started in 2012. The research was started by investigating the performance
of the SPR biosensor integrated with loop-mediated isothermal amplification (LAMP) on
single-layer GO and rGO with cystamine (Cys) as a linker to detect tuberculosis bacterial
DNA (TB DNA) (Figure 6a). To determine the resulting performance, three different sensing
surfaces were fabricated, namely Cys-linker, Cys-GO, and Cys-rGO. Figure 6b shows the
SPR response after the TB DNA was injected into each sensing surface. If we look at the
SPR response, two important results are obtained from this experiment. First, the Cys-GO
sensing layer has the best sensitivity because it has a higher SPR angle shift. Second, the
Cys-GO sensing layer has excellent stability. After the sensing layer was regenerated with
NaOH, the baseline did not decrease. The presence of the -COOH group on GO results
in a very strong covalent bond between the developed substrate and TB DNA [38]. The
effect of the number of GO and rGO layers on SPR sensitivity was also investigated by
Chung et al. GO with different number of layers was fabricated by alternative dipping of
gold substrate in positive and negatively charged GO solutions. Meanwhile, the rGO layer
was obtained by reducing GO using hydrazine. From several structures investigated, the
three-layer GO based chip showed the best performance. The resulting SPR sensitivity for
this structure was 150.38 ◦/RIU which was 3.45% higher than the bare gold substrate [39].
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detection of tuberculosis bacterial DNA (TB DNA). (b) SPR response on Cys-GO, Cys-rGO, and Cys-linker sensing surface
(adapted with permission from Reference [38], copyright SPIE).

Chiu et al. (2014) used a previously studied to study the interaction between antibody
(BSA) and antigen (anti-BSA). Figure 7a shows the biomolecular bonding mechanism
between BSA and anti-BSA and Figure 7b shows the response of the SPR biosensor. At
all detected anti-BSA concentrations (75.75 nM, 151.51 nM, and 378.78 nM), the GO-based
SPR biosensor showed a higher response. Specifically, at the anti-BSA concentration of
75.75 nM, the SPR angle shift in the GO-based SPR structure was 1.4 times higher than that
of the conventional structure; whereas at the highest concentration (378.78 nM), the SPR
angle shift was up to two times higher than that of conventional structure. These results
indicate that the GO-based SPR structure has a better performance than conventional
structures [40].
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Chiu et al. also conducted an experimental study of other structures, namely GO-
based structures that functionalized with –COOH (GO–COOH chip) as an immunosensor
to detect non-small cell lung carcinoma via cytolerayin 19 (CK19) (Figure 8a). Biomolecular
interactions between CK19 and anti CK19 at different concentrations were measured in real
time to obtain sensorgram data for each fabricated chip. Based on sensorgram data, the
GO–COOH-based SPR chip has a shorter response time than conventional chip. In addition,
functionalization of –COOH on GO resulted in a better detection limit of 0.001–100 pg/mL
(Figure 8b).
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The use of graphene for biomolecule detection has also been carried out by other
research groups. He et al. used a fabrication method for the growth of graphene layers on
cooper foil developed by Li et al. to construct an SPR biosensor for the purpose of detecting
serum folate biomarkers [42]. The specific recognition of FAP is based on the interaction
between the integrated folic acid receptors via the buildup of π on the graphene-coated
SPR chip and the FAP analyte in serum. To block non-specific interactions on the SPR chip,
human serum (HS) is mixed with bovine serum albumin (BSA). Figure 9a shows the SPR
response at different FPA concentrations ranging from 10 fM to 1 pM. Based on this SPR
response, a linear range was obtained up to a concentration of 500 fM. In this range, the
correlation coefficient R2 is 0.999 and the relationship between the FPA concentration and
the SPR response can be determined as 1.62 + 25.85 × [FAP]. In addition, the manufactured
chips also have excellent reproducibility. Over the twenty-day time span, there was no
significant change in the SPR signal. A sensor interface with a long lifetime was obtained
in this experiment (Figure 9b) [43].

Figure 9. (a) SPR response at different FAP concentrations from 10 fM to 1 µm. (b) Repeatability of FAP detection for
20 days using the same sensor (adapted with permission from Reference [43], copyright Elsevier).

Omar et al. developed an SPR biosensor based on the rGO–Polyamidoamine (rGO-
PAMAM) composite that functioned with amines to detect and measure the dengue virus.
Gold film is inserted into succinimidyl undecanoate (DSU) solution to form a self-assamble
monolayer (SAM) which functions for chemisorption of biomolecules through amide
relations. After SAM was formed, rGO-PAMAM was deposited on the gold surface using
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the spin coating method and followed by immobilization of specific antibodies for DENV 2
E-Protein via EDC/NHS using the same method. From this experimental scheme, the SPR
chip formed is called the Au/DSU/rGO-PAMAM/Ab chip.

Figure 10 shows the calibration curve and selectivity of a fabricated SPR chip. The cali-
bration curve was obtained based on the shift in the SPR angle at different concentrations of
DENV 2 E-Proteins from 0.08 pM to 1 pM. The linear range is obtained in this concentration
range with the correlation coefficient R2 is 0.92577. The selectivity of the SPR chip was also
tested by detecting other types of antigens, namely DENV E-proteins and ZIKV E-proteins.
Based on Figure 10b, the shift of SPR angle in a solution of DENV E-proteins and ZIKV
E-proteins is very much smaller when compared to DENV 2 E-Proteins; whereas in both
antigens the sample concentration was 10 pM and in the DENV 2 E-Proteins solution was
0.1 pM. From this experiment, it can be concluded that the sensitivity and selectivity of the
sensor are very good with a detection limit of 0.08 pM [44].

Figure 10. (a) Calibration curve or SPR angle shift at different DENV 2 E-Protein concentrations, (b) The response of the
SPR chip to different antigens (DENV 2 E-Protein, DENV E-protein, and ZIKV E-protein) (adapted with permission from
Reference [44], copyright MDPI).

The prism-coupled SPR biosensor is a popular platform and is used in many detection
cases. The preceding discussion describes several approaches that have been investigated to
improve the performance of SPR biosensor. Table 2 below shows the resulting performance
of the various types and structures of analytes.
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Table 2. Comparison of the sensitivity of graphene-based prism coupled SPR biosensor with relevant work based on
experiment results.

SPR Structure Target Linear Range Sensitivity Ref.

BK7/Au/WSe2/Graphene - 1.3–1.38 178.87◦/RIU [45]
BK7/ZnO/Au/Graphene Bacteria 1.33–1.4 187.43◦/RIU [46]

Prism/TiO2/ZnO/Au/MoS2/GO - 1.3–1.38 210.75◦/RIU [47]
BK7/Ag/BaTiO3/Graphene - 1.338–1.353 257◦/RIU [48]

N-FK51A/Au/Graphene Glucosa 1.338–1.405 275.15◦/RIU [49]
Au/graphene Anticholera toxin 0.004–4 ng/mL - [50]
Au/graphene Folic acid protein 5 fM 25.85/M [43]

Au/GO/COOH Anti-BSA 0.01 pg/mL 450.67 m/[µg/mL] [51]
Au/GO hCG protein 0.065–250 nM 38.34 m/nM [52]

Au/GO/COOH CK19 protein 0.001–100 pg/mL 4.83 m/[pg/mL] [41]
Au/GO/COOH Anti-PAPP-A2 0.01–104 pg/mL 8.34 m/[pg/mL] [53]

Au/graphene Glycerol 1.33–1.36 179.79◦/RIU [54]

4. Graphene-Based Fiber Coupled SPR Biosensor

The propagation of light in optical fiber also works based on total internal reflection
(TIR). The prism in the prism-based SPR biosensor functions to produce TIR on the metal–
prism surface. For this reason, the prism can be replaced with a core from an optical fiber
to form a fiber-optic-based SPR biosensor [55]. The sensing surface of an optical fiber can
be formed by removing a small portion of the fiber to be coated with a thin layer of metal.
A polychromatic light source is launched from one end of the optical fiber and the other
end measures the transmitted light [56]. Resonances occur at specific wavelengths and
biomolecular interactions can be identified by shifting the resonant wavelengths. Several
parameters that affect the performance of the SPR biosensor for this platform are the length
of the sensing region and the diameter of the fiber core.

Simulation of the effect of graphene on conventional optical fiber SPR biosensors
carried out by Fu et al. in 2012. Fu et al. investigated the sensitivity changes in fiber clading
with sensing medium N = 5 mm, gold thickness 40 nm, number of graphene layers N = 5,
diameter of fiber cores. D = 50 micrometers, and the refractive index of fiber core and
clading are 1.451 and 1.45, respectively. The complete experimental scheme is shown in
Figure 11a. Figure 11b shows the SPR spectrum of the simulation results which shows the
relationship between the sensing surface refractive index and the SPR wavelength shift. At
three different refractive indexes (1.33, 1.35, and 1.37), the SPR biosensor with graphene
showed a higher wavelength shift than without graphene. This suggests that the presence
of graphene in fiber-optic-based biosensors can also increase SPR sensitivity [57].

Figure 11. (a) Experimental scheme of the SPR biosensor coupled with fiber optic. (b) SPR spectrum at the refractive index
of 1.33, 1.35, and 1.37 (top: without graphene, bottom: with graphene) (adapted with permission from Reference [57],
copyright IEEE).
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Another research group, Zhou et al. investigated the effect of single layer graphene on
SPR sensitivity in end reflection optical fibers with a coroless fiber diameter of 600 microm-
eters and a silver thickness of 40 nm (Figure 12a). The results showed that in the refractive
index range from 1.3411 to 1.3737, the SPR sensitivity without and with graphene was
2657 nm/RIU and 3091 nm/RIU, respectively [58]. The simulation results reaffirm that
graphene in conventional optical fibers is proven to increase sensor sensitivity.

Figure 12. (a) Schematic diagram of an end reflection optical fiber with graphene. (b) SPR reflectance and sensitivity
spectra were generated in structures without (left) and with graphene (right) (adapted with permission from Reference [58],
copyright Elsevier).

Zhuo et al. have also succeeded in confirming the simulation results obtained through
experiments. The sensing part (about 10 mm) of the probe was immersed in acetone to
soften the clading layer so that the clading layer on the sensing part could be removed
easily. After that, the sensing part was coated with Ag film by chemical method and
followed by transferring graphene on the optical fiber. Briefly, the transferring process
begins by immersing the PMMA/graphene/Cu film in ferric chloride (FeCl3) to etch the
Cu foil, placing the PMMA/graphene film on the sensing surface, heating the graphene
and removing PMMA by immersing the sensing probe in acetone. The fabricated probes
are then tested by detecting NaCl with different concentrations. At the same concentration
change, the shift in the SPR wavelength for graphene-based optical fibers shows a higher
shift (Figure 13). Based on the fitting curve data, the sensitivity for probes without and
with graphene were 4.05 nm/% (2487.7 nm/RIU) and 6.417 nm/% (3936.8 nm/RIU),
respectively [58].
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Figure 13. The SPR reflection spectrum at different concentrations of NaCl solution on sensing probes: (a) without graphene
and (b) with graphene (adapted with permission from Reference [58], copyright Elsevier).

Another optical fiber type for SPR biosensor applications is photonic crystal fiber
(PCF). Li et al. investigated an H-formed photonic crystal fiber SPR biosensor with U-
shaped grooves open structure for refractive index sensing. PCF biosensors are composed
of two layers of air holes in a hexagonal layout. The center air outlet can lower the effective
RI from core guiding mode to in phase with plasmon mode. There are two large air holes
in the first layer, leading to the phenomenon of strong birefringence and a highly polarized
light connection with the metal dielectric interface. In this investigation, the designed
structure has a gap between two air holes Λ = 2 µm, dc/ Λ = 0.5, d1/ Λ = 0.5, d2/ Λ = 0.9,
d3/ Λ = 0.8, tAg = 40 nm, and tgraphene = 4.08 nm, where dc, d1, d2, d3 are the diameter of
the air holes in PCF, and the tAg and tgraphene show the thickness of the silver and graphene
layers, respectively. In simple terms, the schematic of the investigated PCF biosensor
is shown in Figure 14a. Figure 14b shows the biosensor response at different refractive
indications from 1.33 to 1.41. Based on the results of the fitting curve, in this refractive
index range there are two slopes which indicate the sensitivity of the biosensor. The first
sensitivity was 2770 nm/RIU in the refractive index range from 1.33 to 1.36, and the second
sensitivity was 6057 nm/RIU in the refractive index range from 1.36 to 1.41 [59].

Figure 14. (a) Schematic of the designed Ag–Graphene coated photonic crystal fiber (PCF)–SPR sensor. (b) The relationship
between the resonant wavelength and the analyte’s refractive index varies from 1.33 to 1.41 (adapted with permission from
Reference [59], copyright MDPI).

The last configuration is optical fiber with a nano-structured coating to produce the
localized surface plasmon. One of the studies using this configuration was carried out by
Huang et al. in 2019. Huang et al. used a multimode fiber-single mode–multimode (MMF–
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SMF–MMF) structure coated with a graphene-metal hybrid for temperature sensor. The sen-
sor sensitivity was further enhanced by the addition of core-shell gold–silver nanoparticles
(Au@AgNPs) modified with polydimethylsiloxane (PDMS) as a material for temperature
sensing. PDMS is a material with a high thermo-optical coefficient (−4.5 × 10−4/◦C) and
its refractive index decreases with increasing temperature [60]. Briefly the probe fabrication
process is shown in Figure 15a. Figure 15b shows the biosensor response at different tem-
peratures. As the temperature increases, the SPR wavelength shifts to a smaller wavelength.
The SPR wavelength shifted from 871.41 nm to 798.60 nm when the temperature changed
from 30 ◦C to 110 ◦C. The repeatability of the biosensor was also tested through heating
and cooling processes. Based on the fitting curve in Figure 14c, the correlation coefficient
R2 is 0.993 which indicates the biosensor has good repeatability. From the slope obtained
from the fitting process, the sensitivity of the MMF–SMF–MMF structure with graphene-
gold-Au@Ag NPs-PDMS is −1.02 nm/◦C [61]. The sensitivity of this structure is higher
than PDMS-long period fiber gratings coated with PDMS (0.2554 nm/◦C) [62], graphene
quantum dots-coated hollow core fiber (0.1237 nm/◦C) [63], and Multimode Fiber—Fiber
Bragg Grating—Multimode Fiber (MMF-FBG-MMF) structure (0.172 nm/◦C) [64].
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Figure 15. (a) SPR probe fabrication process. (b) SPR transmittance spectrum at different temperatures from 40 ◦C to
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The previous discussion describes four configurations in the SPR fiber-optic-based
biosensor and papers relating to the use of graphene in each configuration. Table 3 below
shows a summary of research results related to the SPR biosensor which is coupled with a
graphene-based optical fiber.
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Table 3. A summary of selected papers regarding graphene-based optical fiber coupled SPR biosensor.

Fiber optic Type Structure Target Sensitivity and Limit
of Detection (LOD) Ref.

Side polished optical fiber Au/graphene ssDNA 1039.8 nm/RIU and
10−12 M [65]

Plastic clad silica fiber Au/graphene BSA 6500 nm/RIU [66]
Plastic clad silica fiber Au/graphene BSA 7.01 nm/(mg/mL) [66]

End reflection optical fiber Ag/graphene NaCl solutions 3936.8 nm/RIU [58]

U-bent plastic optical fiber Graphene + Ag
nanoparticles Glucosa solutions 700.3 nm/RIU [67]

MMF-PCF-MMF sensor Au+graphene+SPA anti-human IgG 4649.8 nm/RIU [68]
D-shaped fiber Cr/Au/MoS2/graphene Glucosa 6708.87 nm/RIU [69]

Note: SPA: The staphylococcal protein A.

5. Graphene Based Grating Coupled SPR Biosensor

The SPR biosensor coupled with a grating as shown in Figure 16 has been an important
pioneer in the SPR configuration. This grating configuration was first introduced by Wood
in 1902 [70]. To obtain plasmon and photon resonance, both the wave vector and the
effective refractive index of the guided wave must meet the following equation [71,72]:

k(m)
sp = kx,photon sin θi ±m kgrating =

2π

λ
np sin θi ±m

2π

P
(7)

and
ne f f = nb sin θres ±m

λ

P
(8)
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In the above equation, kx,photon, kgrating, and ksp show the wave vector of incident
light, grating, and surface plasmon, respectively. Next, nb, mth, and P show the refractive
index of the medium, the diffraction order and the grating period, respectively. For the
sub wavelength grating-mediated interactions between surface plasmon and analytes, the
following momentum matching relation is preserved:

k(m)
sp =

2π

λ
np sin θres ±m

2π

P
=

2π

λ

√
εmεD,e f f

εm + εD,e f f
(9)

The performance of the SPR-based grating biosensor is influenced by several factors,
including the shape of the grating, the operating wavelength, the period of the grating, the
type of metal, and the refractive index of the analyte [71]. Sadeghi and Shirani investigated
the performance of the graphene–gold ellipse grating SPR biosensor in the mid-infrared
region. The schematic diagram of the investigated biosensor is shown in Figure 17a. The
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initial parameters of the SPR biosensor are as follows: grating period (p) = 1500 nm,
perpendicular radius (T1) = 56 nm, gold thickness (h) = 10 nm, horizontal diameter (T2)
= 46 nm, and the height of the sensing medium (Ds) = 600 nm. Based on the profile of
the extinction curve at wavelengths from 1500 nm to 2500 nm, the peak extinction is at
a wavelength of 2001.2 nm. Figure 17b shows the electromagnetic distribution profile
at this wavelength. The intensity of the magnetic field increases exponentially with the
closer to the interface in the metal medium. However, the magnetic field decreases slowly
in the dielectric medium. Furthermore, the sensitivity of the biosensor is obtained from
the shift in peak extinction wavelength to changes in a certain refractive index (S =
∆λpeak/∆n). In the refractive index change ∆n = 0.001 from 1.333 to 1.334, the resulting
SPR biosensor sensitivity is 1450 nm/RIU. After the optimization process, the best SPR
sensitivity generated in this structure is 1782 nm/RIU [74]. Sadeghi and Shirani also
investigated the performance of the SPR biosensor on rectangular gratings. The resulting
sensitivity for this structure is 1180 nm/RIU [75].
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Figure 17. (a) A schematic diagram of graphene–gold grating. (b) The intensity distribution of the electromagnetic field
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In the mid infrared range, noble metal exhibits large ohmic losses due to its low
charge-carrier mobility and large permittivity [76]. Wei et al. simulated a conformal
graphene-decorated nanofluidic channel (CGDNC) based on surface plasmons at infrared
frequencies. The CGDNC schematic and transmittance spectrum at different refractive
indices are shown in Figure 18 below. The sensitivity at different period ∧, width W,
height H, and Fermi level E f is determined by the equation S = δλGSP/ δnd. The results
obtained show that at a period of 100 nm to 300 nm and a height of 20 nm to 100 nm,
the best sensitivity is owned by the structure with the highest period and height, namely
300 nm and 100 nm. The sensor sensitivities in these dimensions are 4356 nm/RIU and
3693 nm/RIU, respectively. On the other hand, if the sensitivity is investigated at different
Fermi width and energy, the best sensitivity is the structure with the smallest fermi width
and energy. At a width of 20 nm and a fermi energy of 0.1 eV, the sensitivity obtained
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was 6050 nm/RIU and 8004 nm/RIU, respectively [77]. The most important result of this
simulation shows that the sensor sensitivity can be actively increased by lowering the
Fermi energy level of graphene which can be done by adjusting the external voltage [77,78].
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In 2013, Reckinger et al. fabricated holey gold films with colloid nanosphere lithogra-
phy with grating parameter of 980 nm and holes diameter of 405 nm for ethanol detection.
The fabricated film was then confirmed based on a Scanning Electron Microscope image
(Figure 19a). Graphene is then grown on the gold surface to improve the biosensor’s
performance. To determine the resulting performance, ethanol is exposed to the sensor
interface coated and without graphene. The ethanol level detected was determined based
on the transmission peak shift as shown in Figure 19b. The transmission peaks shifted by
105 from 1460 nm to 1565 nm for bare metal and by 140 nm from 1475 nm to 1615 nm for
graphene-coated gold. The sensitivity of the graphene-coated sensor is improved with a
transmission peak shift 33% higher than that of bare gold [79].
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Wei et al. investigated the effect of graphene on LPG to detect methane. Long period
fiber grating (LPFG) with a grating period of 600 micrometers was fabricated by the writing
method of high frequency CO2 laser pulses. The dimensions of the sensing medium (L),
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fiber core diameter (D), and metal thickness (T) are shown in Figure 20a. Figure 20b
shows the relationship between methane concentration and resonance wavelength shift in
three different structures, namely LPFG, LPFG + Au, and LPFG + Au + graphene. In the
methane concentration range below 3.5%, the three structures have good linearity with the
correlation coefficients R2 of LPFG, LPFG + Ag, LPFG + Ag + graphene being 0.975, 0.995,
and 0.995. The sensitivity and detection limits obtained were 0.116 nm /% and 0.086% for
LPFG, 0.262 nm /% and 0.038% for LPFG + Ag, and 0.34 nm /% and 0.029% for LPFG. The
presence of graphene on the silver surface of LPFG can increase sensor sensitivity by 1.31
times that of bare silver LPFG [80].
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Although SPR biosensors coupled with gratings are pioneers in the field of SPR
biosensors, experimental studies related to the use of graphene for this platform are still rare.
Table 4 below shows some of the applications of this platform and the resulting sensitivity.

Table 4. A summary of selected papers regarding graphene-based grating coupled SPR biosensor.

Grating shape Structure Analyte Sensitivity Ref.

Rectangular Au/graphene dangerous gases 1180 nm/RIU [75]
Ellipse Au/graphene Biological cells 1782 nm/RIU [74]

Rectangular SiO2/graphene ssDNA 8004 nm/RIU [77]
Holey Au/graphene Ethanol - [79]

Long period fiber
grating (LPFG) Ag/graphene Methane 0.344 nm/% [80]

Rectangular Ag grat-
ing/Ag/graphene - 220◦/RIU [81]

6. Graphene-Based Nanoparticle Coupled SPR Biosensor

Another type of SPR biosensor is the SPR biosensor which uses nanoparticles as a
signal amplifier. Of the various types of nanoparticles, plasmonic nanoparticles are the most
preferred because of their properties that can produce localized surface plasmon resonance
(LSPR) which can increase local electromagnetic fields [82] and increase SPR response [83].
Gold nanoparticles (AuNPs) are recognized as the best material for immunoassay because
of their extraordinary properties such as easy reductive preparation, exceptional optical
property, water solubility, and significant bicompability. For silver nanoparticles (Ag
NPs), this material produces a sharper peak and can be used to increase the sensitivity of
the biosensor.
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Taking advantage of the unique properties of gold, silver and graphene, Zhang et al.
decorated gold or silver nanoparticles with graphene to detect mouse IgG. To be able to
capture the IgG mouse, the hybrid nanoparticles are functionalized with goat anti human
IgG. Next, solutions containing different concentrations of target human IgG are flushed
onto the sensing surface to evaluate the performance and detection limits of the system. Of
the three fabricated systems, Ag-graphene hybrid nanoparticles showed the best response
compared to Au-graphene hybrid nanoparticles and unmodified biosensors (Figure 21a).
The detection limits of Ag-Graphene and Au-Graphene are 0.15 µg/mL and 0.30 µg/mL,
respectively. The selectivity of the biosensor was also tested by detecting human IgG and
bovine IgG. There is no observable shift in the resonant wavelength (Figure 21b). This
demonstrates the selective binding of the system that was created with the IgG mouse [84].
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Figure 21. (a) SPR response at three different nanoparticles (Au film, Au-Gra, Ag-Gra). (b) The selectivity of the SPR
on three different analytes (human IgG, bovine IgG, and mouse IgG) (adapted with permission from Reference [84],
copyright Elsevier).

Chiu et al. proposed a colorimetric LSPR immunoassay based on the AuNPs-GO hy-
brid to detect disease biomarkers and rapidly diagnose infectious diseases. The binding of
AuNPs-GO- anti-BSA to GO-BSA is detected by monitoring changes in optical absorbance
at a specific wavelength. Figure 22a shows the absorbance spectra at different anti-BSA
concentrations from 145 fM to 1.45 nM. There are two absorbance peaks at the wavelengths
of 540 nm and 760 nm. From this absorbance peak, a calibration curve is obtained which
states the relationship between the anti-BSA concentration and the shift in the absorbance
peak at the two peaks (Figure 22b). The detection limit for this sensor is 145 fM with a
linear range from 145 fM to 1.45 nM [85].
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The same structure was also applied to gas detection by Cittadini et al. They developed
gas sensor based on LSPR using rGO coupled with a gold monolayer. Gold monolayer was
fabricated by spinning gold colloids with a concentration of 15 and 30 mM at a speed of
3000 rpm for 30 s. The gold monolayer produced from gold colloids for a concentration
of 15 mM was indicated by L (AuL) and for a concentration of 30 mM indicated by H
(AuH). The two monolayers of gold are then coated with rGO by the spin method and
produce a sensing layer called AuL-rGO and AuH-rGO. The sensing layer was then tested
by exposing different gas types, namely H2 (10,000 ppm and 100 ppm), CO (10,000 ppm),
and NO2 (1 ppm). The results obtained indicate that the sensor shows a good and reversible
response with fast kinetics to H2 and NO2, while no response was detected to CO [86]. A
summary of the SPR biosensor coupled nanoparticles based-graphene is shown in Table 5.

Table 5. A summary of selected papers regarding graphene-based nanoparticle coupled SPR biosensor.

Technique Structure Analyte Sensitivity LOD Ref.

SPR two layers of GO-Au
NPs composite miRNA-141 - 0.1 fM [87]

LSPR Au NPs-GO-anti BSA hCG - 145 fM [85]

SPR
Au-(Au NPs-Graphene

nanohybrids)-anti
human IgG

mouse IgG 0.15 µg/mL [84]

LSPR Au NPs coupled with
GO NO2 - - [86]

SPR
Graphene-coated SPR

with Au nanostars
carrying ssDNA

ssDNA - 500 aM [88]

LSPR Au NPs/GO/uricase Uric acid 0.0082 nm/µM 206 µM [89]

7. Graphene-Based Plasmon Coupled Emission Biosensor

In 2003, Lakowicz et al. developed the SPR biosensor with a fluorescence technique
called surface plasmon coupled emission (SPCE) [90]. The working principle of this
biosensor is based on the fluorescence and plasmonic properties of the nanostructures. Flu-
orescence molecules are placed on a metal surface with a thickness of 20–50 nm [91]. Next,
a light source of a specific wavelength is directed through the prism (Figure 23a) or from the
sample side (Figure 23b) to excite the SP wave and high directional emission [91,92]. When
the analyte binds to the fluorescence molecule, an energy shift occurs in the fluorescence
spectrum. This shift is the basis for the application of SPCE for biosensor applications.
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Mulpur et al. engineered and investigated the SPCE properties of the graphene–silver
thin film stack as a function of the graphene thickness. Different types of graphene, both
single layer and multilayer, are fabricated by the CVD method compared to graphene
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which is fabricated by the chemical exfoliation method. The resulting graphene is then
grown on a silver surface using the spin coating method. Flourescence measurements were
carried out at a wavelength of 532 nm with a reverse Kretschmann (RK) configuration
(Figure 24a). Figure 24b shows the fluorescence intensity in different structures where the
exfoliated graphene-based substrate has the highest intensity. The fluorescence intensity at
EG is forty times that of the free space structure [94].
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coupling) interactions. (b) Enhancement plot displaying intensity of the SPCE of the different Ag–graphene (Single layer
graphene (SLG), bilayer graphene (BLG), few layered graphene (FLG), and exfoliated graphene (EG)) versus the intensity of
the free space emission (adapted with permission from Reference [94], copyright American Chemical Society).

Nanocubes (NCs) have a special edge structure and tip effect that can induce strong
localization and increased localized surface plasmons resonance fields. Therefore, Xie et al.
performed an enhanced fluorescence signal using silver nanocubes (Ag NCs) and GO on a
gold film. The SPCE signal is measured in the reverse kretschmann (RK) configuration at
a wavelength of 532 nm (Figure 25a). The results obtained showed that the fluorescence
intensity of the SPCE structure with AgNCs and GO had a signal intensity thirty times
higher than the structures without GO and NCs (Figure 25b) [95].
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Xie et al. amplified the SPCE signal in gold using GO and applied it to detect human
IgG. The fluorescence signal from SPCE was measured with a Reverse Kretschmann (RK)
configuration at a wavelength of 532 nm. The results obtained indicate that GO can increase
the fluorescence intensity up to seven times that of the SPCE structure without GO (SPCE
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(Au)) or twenty-five times that of the free space emission (FSE). Furthermore, different
human IgG concentrations were measured by SPCE (Au + GO) and SPCE (Au) and the
fluorescence intensity at each concentration was then measured. The results obtained
indicate that the linear relationship is shown in SPCE (Au + GO) with a wider range
compared to SPCE (Au) (Figure 26). At semilogarithmic coordinates, the linear relationship
and correlation coefficient R2 are 0.01–800 ng/mL and 0.993 for SPCE (Au + GO) and
1–100 ng/mL and 0.926 for SPCE (Au), respectively. The detection limits for SPCE (Au +
GO) and SPCE (Au) were 0.006 ng/mL and 0.15 ng/mL [96].
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The previous discussion describes the working principle of SPCE and the use of
graphene for this platform of biosensor. Until now, graphene has not been widely applied
to this platform. Table 6 below is a summary of the results of research related to graphene-
based SPCE.

Table 6. A summary of selected papers regarding graphene-based plasmon coupled emission biosensor.

Structure Enhancement Factor Fluorophore Ref.

Ag/graphene 40 RhB–PVA [94]
Au/GO 25 RhB–PVA [96]

Ag/single layer GO 112 R6G [97]
Au/Ag NCs/GO 30 AgNCs [95]

Ag/Gallium
arsenide/Ag/graphene/MoS2

4.772 - [98]

8. Graphene-Based SERS Biosensor

Raman spectroscopy is a vibration spectroscopy technique that measures the inelastic
scattering of light. The resulting Raman spectrum provides a specific fingerprint regarding
the molecular structure and material composition [99]. In biosensors, this fingerprint can
be used to directly identify an analyte and determine its level [100]. However, Raman
scattering is very weak and will not be seen especially when identifying organic molecules
which have high fluorescence. The presence of fluorescence can inhibit the identification of
molecules especially at very low concentration levels [101,102].

The latest development in analyte detection which utilizes Raman signals is the
surface-enhanced Raman scattering (SERS) technique. This technique, first introduced by
Fleischmann, Hendra, and McQuillan in 1973 [103], was accomplished by adding metal
nanostructures to increase the weak signal and reduce the risk of fluorescence interference
as illustrated in Figure 27 [104]. The increase in the Raman signal in this technique occurs
due to SPR, which is when the laser excitation energy is close the surface plasmon energy
of the metal substrate. This technique is called electromagnetic enhancement [105]. There is
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another technique in which the Raman signal does not depend on the substrate but on the
molecular analyte. By taking advantage of the increased probability of the Raman transition
when the analyte is absorbed, this technique is known as chemical enhancement [104–106].
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Figure 27. The principles behind Raman and Surface-Enhanced Raman Scattering (SERS) techniques (adapted with
permission from Reference [107], copyright Institute of Food Technologists).

Graphene has been shown to be a very outstanding SERS active substrate due to
its advantages over other traditional materials. By utilizing its large surface area and
superior adsorption capabilities, graphene can be utilized to extinguish photoluminescence
of fluorescent dyes and drastically eliminate the fluorescence background [108]. Xie et al.
developed a graphene substrate grown on SiO2/Si surfaces to suppress photoluminescence.
Graphene is fabricated by mechanical oxfoliation from graphite. Figure 28b shows the
Raman spectrum of rhodamine 6G (R6G) in aqueous solution (10 µM) and R6G in single
layer graphene. From the two spectra obtained, the graphene substrate showed a clearer
Raman signal without fluorescence background than the R6G solution. The photolumi-
nescence suppression effect is due to electron transfer and energy transfer between the
graphene and the R6G dye molecule [109]. In 2010, Ling et al. compared SERS substrate
based on graphene and SiO2/Si. To determine the performance of the two substrates,
R6G was deposited on the two substrates using a solution-soaking method. As shown in
Figure 28c, after solution-soaking, the Raman signal intensity of R6G on single layer
graphene was much stronger than on SiO2/Si substrate. In addition, the Raman signal in
single layer graphene can still be detected clearly even though the R6G concentration is as
low as 1 nM [110].
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graphene substrate, respectively (adapted with permission from References [109,110], copyright American Chemical Society).
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Graphene only supports chemical enhancement and does not support electromagnetic
enhancement due to its smooth surface and high optical transmission over the visible
range [111]. To overcome this shortcoming, one approach to obtain high performance
SERS substrates with chemical and electromagnetic enhancement is by fabricating the
substrate which is composed of graphene and metal nanoparticles [112]. Lin et al. studied
DNA hybridization by utilizing self-assembly of Ag NPs and SERS substrate based on
Ag NPs and graphene (Ag NPs–graphene) nanocomposites. AgNPs are modified with
non-fluorescent 4-mercaptobenzoic acid (4-MBA) which is a very efficient Raman probe for
DNA hybridization. Furthermore, automatic assembly can occur by functionalization of
Ag NPs-GO with DNA probes and Ag NPs with DNA targets. The experimental schematic
is shown in Figure 29a. As shown in Figure 29b, the detection limit of the SERS-based DNA
sensor was determined by measuring the SERS intensity with a variation of the target DNA
concentration up to a concentration of 1 pM. The characteristic peak at 1078 cm−1 can be
clearly observed. More importantly, the SERS intensity at 1078 cm−1 increases linearly with
the logarithm of the target DNA concentration in the range 10−6–10−12 M. The detection
limit obtained from this experiment is 10−14 M [113]. In addition to DNA hybridization
applications, the SERS substrate based on Ag and graphene nanocomposites has also been
utilized for sensing inorganic ions, dye molecules, and pesticides [114].
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The second metal type that is widely used as a SERS substrate is gold. One of the
advantages of this material is its higher stability than Ag NP. Possible interactions between
graphene and gold can occur in several ways including covalent bonds when graphene,
gold, or both are functionalized [115], non-covalent attachments in the form of π–π interac-
tions [116], and van der walls forces which may occur in unmodified graphene [117]. Until
now, the SERS substrate based on graphene and gold has been successfully fabricated using
self-assembly [116], electrochemical deposition [118], or in situ growth processes [119] and
has employed for biosensing cancer and cancer steam cells [120], multiplex DNA detec-
tion [121], or as Hg2+ sensors [122,123]. Table 7 below shows a summary of some of the
literature related to graphene-based SERS biosensors.
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Table 7. A summary of selected papers regarding the graphene-based Surface-Enhanced Raman Scattering (SERS) biosensor.

SERS Platform Probe Molecule Enhancement Factors
(EF) LOD Ref.

Graphene-encapsulated Ag NPs
decorated silicon nanowire R6G 107 - [124]

GO-Au NPs composites R6G 4.9 × 106 10−9 M [125]
GO-based Au hybrids R6G 1.2 × 107 10−7 M [126]

Graphene-Au nano-pyramid (tip)
hybrid structure R6G - - [127]

Au NPs arranged on GO R6G - 10−9 M [106]
Self assembly of Ag NPs into Ag

NPs-GO nanocomposites R6G - 10−14 M [113]

Au NPs/graphene/epoxy resin
nanosheet - 6.2 × 106 3.3 µM [128]

Graphene functionalized with
polyamidoamine dendrimers

decorated Ag NPs
- 8.3 × 104 1.43 pM [129]

9. Conclusions

Graphene and its derivatives have proven to be one of the best materials to enhance the
performance of SPR biosensors in many platforms. The simulation study of the graphene-
based SPR biosensor has been proven experimentally. To date, experimental studies have
reported that the graphene-based SPR biosensor is capable of detecting analytes up to nM
or ng/mL levels. Some researchers have also claimed that they were able to detect analyte
to smaller levels (fM or fg/mL and aM or ag/mL). This shows that graphene is a superior
material and is very promising in the development of SPR biosensors in the future.

One of the challenges in developing graphene-based biosensors is to reduce noise in
the detection process of very complex human samples such as in the form serum, plasma,
urine, and stool. Modification of the sensing surface is needed to reduce noise so that the
detection process is very selective and accurate. For the commercialization of graphene-
based SPR biosensors, a simple SPR chip fabrication method, which can control the chip
dimensions precisely and accurately in large quantities, is required. This is very important
to ensure the resulting performance is as desired.
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