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Simple Summary: In order to keep dairy cows under satisfactory health and welfare conditions, it is
very important to monitor the animals in their living environment. With the support of technology,
and, in particular, with the installation of sensors on neck-collars, cow behavior can be adequately
monitored, and different behavioral patterns can be classified. In this study, an open and customizable
device has been developed to classify the behaviors of dairy cows. The device communicates with a
mobile application via Bluetooth to acquire raw data from behavioral observations and via an ad hoc
radio channel to send the data from the device to the gateway. After observing 32 cows on 3 farms
for a total of 108 h, several machine learning algorithms were trained to classify their behaviors. The
decision tree algorithm was found to be the best compromise between complexity and accuracy to
classify standing, lying, eating, and ruminating. The open nature of the system enables the addition
of other functions (e.g., localization) and the integration with other information sources, e.g., climatic
sensors, to provide a more complete picture of cow health and welfare in the barn.

Abstract: Monitoring dairy cattle behavior can improve the detection of health and welfare issues for
early interventions. Often commercial sensors do not provide researchers with sufficient raw and
open data; therefore, the aim of this study was to develop an open and customizable system to classify
cattle behaviors. A 3D accelerometer device and host-board (i.e., sensor node) were embedded in a
case and fixed on a dairy cow collar. It was developed to work in two modes: (1) acquisition mode,
where a mobile application supported the raw data collection during observations; and (2) operating
mode, where data was processed and sent to a gateway and on the cloud. Accelerations were
sampled at 25 Hz and behaviors were classified in 10-min windows. Several algorithms were trained
with the 108 h of behavioral data acquired from 32 cows on 3 farms, and after evaluating their
computational/memory complexity and accuracy, the Decision Tree algorithm was selected. This
model detected standing, lying, eating, and ruminating with an average accuracy of 85.12%. The
open nature of this system enables for the addition of other functions (e.g., real-time localization of
cows) and the integration with other information sources, e.g., microenvironment and air quality
sensors, thereby enhancing data processing potential.

Keywords: cattle behavior; decision tree algorithm; model training; Internet of Things; precision
livestock farming
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1. Introduction

Nowadays, the potentialities of technology and Internet of Things (IoT) are hitting
the agricultural and livestock sectors. The support of technology and the concepts of
Precision Livestock Farming (PLF) have a huge potential for the progress of livestock
farming and they can trigger efficiency improvements, wastes reduction, and environmental
sustainability improvements [1]. Similarly, IoT can transfer and store huge amounts of data
collected by on-farm sensors [2]. This facilitates data processing and knowledge acquisition,
and improves the support for decision-making processes and real-time interventions and is,
therefore, very promising. Indeed, one of the primary goals of PLF is to use data to support
the decision-making process [3,4] and, thereby, ensure farm animal health and welfare. The
behavior of dairy cows provides valuable insights in their health and welfare, and, therefore,
its monitoring is a key element in PLF and is well documented in the literature [2,5]. Many
studies can be found on the use of sensors to monitor cow behavior [6–8], including the time
they spend in activities such as lying, standing, feeding, ruminating, and grazing [9–12],
or to detect illnesses [13], estrus events [14,15], or heat stress [16,17]. Different types
of wearable accelerometers are available and can be mounted on cows to monitor their
behavior; the most common are mounted on legs or on neck-collars [18], while some
alternatives are placed on the back [19] or on ears [20]. Whereas many studies have
focused on detecting single behaviors with high accuracy [8,21–23], comparatively few
attempts have been made to classify multiple behaviors [24]. Capturing the main behaviors
of dairy cattle provides more insight into their daily activity patterns. The daily time
budget is indeed the most informative behavioral measure for evaluating the health and
welfare status of dairy cows [25] and the effect of the barn microenvironment on cow
behavior [26,27]. Therefore, efforts to estimate the daily time budget through classifying as
many behaviors as possible, would result in improved cow welfare monitoring.

For improving the categorization and classification capabilities of sensors, much re-
search has been conducted using the advanced statistics of machine learning and deep learn-
ing. Frequently, support vector machine algorithms [28] and decision tree algorithms [19,24]
are used, which can achieve high classification accuracies (>80–90% accuracy). Interestingly,
Arablouei et al. [21] developed a tri-axial accelerometer that classified the behaviors directly
on the device to avoid the post-hoc analysis, thereby reducing computational complexity.

Although many advancements have been made in the field of PLF and IoT, some
improvements are still needed for adapting sensors and IoT technology to on-farm moni-
toring. The collection and storage of big data, data compression and interpretation [21],
the simplification of sensor’ structures and of behavioral classification algorithms, and the
identification of the most adequate communication channels for rural areas (Bluetooth,
LoRa, ZigBee, etc. that are Low Power Wide Area Networks—LPWANs) [29] are among
the most important aspects to enhance. In addition, efforts have focused on avoiding false
positive and false negative alerts, extending the battery lifespan, and increasing the amount
and frequency of data to be stored [8,14,30]. Finally, making systems open can increase
the potential of sensors, thereby satisfying a larger group of users. Commercial systems
often include black boxes (systems of which the input and output are known, but not their
internal functioning) and this complicates the data use and validation [18,23], especially for
research purposes. Moreover, commercial devices usually prevent to stream high frequency
acceleration data and only provide lumped information on the behavior, typically every
few hours. In addition, they are commonly characterized by limited real-time connection
possibilities, and only provide data on few behaviors, depending on their installation
position [18]. With open systems, the integration of data between different technologies
and sensors could increase significantly, allowing to create large databases with enhanced
potential for data processing and decision making.

In this context, the goal of this study was to develop an open and customizable sys-
tem that permits to evaluate, categorize, and classify a wide variety of cattle behaviors.
The aim was to use algorithms with low computational and memory complexity in order
to have long lasting sensors on farms with satisfactory behavior classification accuracy.
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Furthermore, efforts were made to have short intervals for behavior recognition, an ex-
tended battery lifespan and a direct classification of behaviors on the device to avoid
post-processing and reduce the amount of data to store and send to the gateway. These
behavior classification sensors are part of a larger project that is focused on the development
of an integrated system for the monitoring of the entire barn environment, thus, also includ-
ing microenvironmental and air quality aspects. The sensors could also be used for other
concurrent functions like the real-time location of cows. The cow behavior sensors were,
therefore, also developed to fit within the architecture of this larger system. Furthermore,
a cloud dashboard was developed to allow front-end users to monitor the collected data
remotely and in real-time, enabling them to check on the barn and the animals 24 h/7 d.

This article describes: (i) the sensor developed for classifying the behavior of dairy
cows; (ii) the data collection performed on three dairy cattle farms to train and validate the
algorithm; and (iii) the model description and validation.

2. Materials and Methods
2.1. Device Description

A custom device has been designed based on the dual-channel EFR32BG13 Blue Gecko
SiP by Silicon Labs [31], featuring two radio channels with integrated power amplifier and
balun and a 40 MHz Cortex M4 core with 512 KB of flash memory and 64 KB of RAM.
The selected accelerometer is the Bosch BMA400 ultra-low power MEMS [32] with 1 KB of
internal hardware FIFO, an accuracy of 1 mG on a range of±2 G, and a power consumption
of 14.5 µA at full speed.

The complete device (sensor node) is shown in Figure 1 and is based on a 35 × 45 mm
System-on-board (SoB) integrating the components just described and a host-board housing
the power supply circuitry and the battery holder. This decoupling choice has been made
because this device is just one of a larger family of sensors, which are included in an
integrated system, for monitoring a variety of aspects in a dairy cow farm. The complete
system (host, SoB, and antennas) is mounted in a 100 × 75 × 22 mm plastic case with
IP67 rating.

Animals 2022, 12, x  3 of 21 
 

to have long lasting sensors on farms with satisfactory behavior classification accuracy. 

Furthermore, efforts were made to have short intervals for behavior recognition, an ex-

tended battery lifespan and a direct classification of behaviors on the device to avoid post-

processing and reduce the amount of data to store and send to the gateway. These behav-

ior classification sensors are part of a larger project that is focused on the development of 

an integrated system for the monitoring of the entire barn environment, thus, also includ-

ing microenvironmental and air quality aspects. The sensors could also be used for other 

concurrent functions like the real-time location of cows. The cow behavior sensors were, 

therefore, also developed to fit within the architecture of this larger system. Furthermore, 

a cloud dashboard was developed to allow front-end users to monitor the collected data 

remotely and in real-time, enabling them to check on the barn and the animals 24 h/7 d. 

This article describes: (i) the sensor developed for classifying the behavior of dairy 

cows; (ii) the data collection performed on three dairy cattle farms to train and validate 

the algorithm; and (iii) the model description and validation. 

2. Materials and Methods 

2.1. Device Description 

A custom device has been designed based on the dual-channel EFR32BG13 Blue 

Gecko SiP by Silicon Labs [31], featuring two radio channels with integrated power am-

plifier and balun and a 40 MHz Cortex M4 core with 512 KB of flash memory and 64 KB 

of RAM. The selected accelerometer is the Bosch BMA400 ultra-low power MEMS [32] 

with 1 KB of internal hardware FIFO, an accuracy of 1 mG on a range of ±2 G, and a power 

consumption of 14.5 μA at full speed. 

The complete device (sensor node) is shown in Figure 1 and is based on a 35 × 45 mm 

System-on-board (SoB) integrating the components just described and a host-board hous-

ing the power supply circuitry and the battery holder. This decoupling choice has been 

made because this device is just one of a larger family of sensors, which are included in 

an integrated system, for monitoring a variety of aspects in a dairy cow farm. The com-

plete system (host, SoB, and antennas) is mounted in a 100 × 75 × 22 mm plastic case with 

IP67 rating. 

 

Figure 1. Picture showing the internal section of the sensor node. 

This node benefits from a double working mode: it is suited for both raw data acqui-

sition and normal in-field operation. The data acquisition mode is required to collect data 

on behavioral patterns for training the algorithm and is useful to check the sensor while 

in operation. Instead, the normal in-field operational mode is aimed at monitoring the 

behavior of cows continuously and automatically once the algorithm has been developed, 

implemented in the device firmware, and deployed on the SoB. Figure 2 shows a sche-

matic description of the two operating modes, further detailed in the sections below. 

Figure 1. Picture showing the internal section of the sensor node.

This node benefits from a double working mode: it is suited for both raw data acquisi-
tion and normal in-field operation. The data acquisition mode is required to collect data
on behavioral patterns for training the algorithm and is useful to check the sensor while
in operation. Instead, the normal in-field operational mode is aimed at monitoring the
behavior of cows continuously and automatically once the algorithm has been developed,
implemented in the device firmware, and deployed on the SoB. Figure 2 shows a schematic
description of the two operating modes, further detailed in the sections below.
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mode on the left side and the normal mode on the right side).

2.1.1. Acquisition Mode

While in the acquisition mode, the sensor node streams data over a Bluetooth channel
to a mobile application that has been designed for this purpose (Figure 3). The application
plots the data in real time and provides a set of buttons indicating the behaviors to be
identified (e.g., standing, lying, ruminating, walking, etc.). By pressing one of the buttons,
an identifier indicating the behavior is injected into the real-time stream of acceleration.
This results in a “decorated” acceleration time series constituted by tuples of the form
(Xt, Yt, Zt, and Bt) where Xt, Yt, and Zt indicate the accelerations and Bt the behavior. This
requires the presence of a trained observer that classifies the behavior and enters it in this
mobile application.
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Figure 3. Mobile application for the data acquisition. The upper part shows the real-time 3-axis plot
and the bottom part shows the buttons to be pressed by observers. The “start logging” and “stop
logging” buttons can be pressed to start and stop the recording of data and the buttons with the
behaviors (stand up, up + ruminate, eating, walking, lay down, down + ruminate, drinking, other)
can be pressed to enter the behavior classification.
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Due to this operating mode and the interaction with the mobile application, the
data collection is simplified, and its reliability improved. It is worth noting, though, that
this operating mode requires a significant communication bandwidth (approximately
1.6 kbit s−1) which, in turn, implies a continuous Bluetooth connection with the mobile
application, leading to a relatively high-power consumption (up to 1 mA, depending on the
output transmission power). On a battery-operated device, with a 3.6 V, 2450 mAh lithium-
thionyl-chloride primary cell, this power consumption corresponds to less than 3 months
of operation, which is suited for data acquisition, but unacceptable for normal operation.

2.1.2. Normal Operating Mode

During the normal operating mode, the device does not use the Bluetooth communica-
tion channel but an ad-hoc 2.4 GHz radio channel with a custom lightweight time-slotted
protocol for the communication with a gateway, also designed for this purpose. Although
it does not transmit, the device advertises on the Bluetooth channel to make it reachable for
configuration and for over-the-air firmware updates, again through the mobile application.

The data acquisition, processing, and classification in the normal mode is performed
on the device as shown in Figure 2, and the device interacts directly with the gateway
through the custom 2.4 GHz channel. The results of the classification are sent to the gateway.
Since the processed information has a size of approximately 50 bytes, and the radio channel
exhibits a (maximum) bandwidth of 38.4 kbit/s, the entire information can be transmitted
in a burst of 10–15 ms, with a sending frequency of 10 min. For the remaining time, the
2.4 GHz transceiver can be switched off. This approach ensures an extremely low power
consumption, in the order of 65 µA, corresponding to a maximum lifetime of approximately
3 years.

2.2. Data Collection on Farms
2.2.1. Farms Description

The data collection through the acquisition mode of the sensor nodes was conducted
on three dairy cattle farms located in Northern Italy, in the province of Cremona (Lombardy
region). The area is part of the Po Valley, which is a vast flat area that is highly urbanized
and has a high livestock intensity. The monitored barns host Italian Holstein dairy cows
in a loose-housing system with free stalls and straw or solid digestate as litter. In the first
barn, the monitored building is oriented NE–SW on the long side of the building, with the
feeding alley located on the SW side. There are shading curtains to protect the feed and the
animals from solar radiation. The barn structure is relatively old and has openings on all
sides, a roof with insulating materials and a ridge opening. The barn is equipped with a
forced ventilation system above the lying area and with sprinklers above the feeding area
(the latter were installed in July 2021). The monitored section of the barn has three lines of
cubicles, a total area of 808 m2 and hosts about 90 lactating cows. Cows are milked twice
a day (at 8 a.m. and 8 p.m.) and the whole milking routine lasts about 2 h. The feed is
distributed once a day, around 8.30 a.m.

The second barn is oriented NE–SW on the long side, with the feeding alley SW-
oriented. There are moving shading curtains to protect the feed and the animals from solar
radiation. The barn was built in 2018. It is fully open on all sides and has a ridge opening
and insulation materials on the roof. The barn is equipped with a forced ventilation system
above the lying area and sprinklers above the feeding area. The monitored section has two
lines of cubicles and a total area of 2121 m2. On average, 145 lactating cows are housed in
this area. They are milked twice a day (at 4 a.m. and 4 p.m.) with a milking routine that
lasts about 1 h per session. The feed is distributed twice a day, at 9 a.m. and 5 p.m.

The third farm has a NW–SE orientation on the long side, with a feeding alley located
on the NW side. There are lateral walls on the side of the feed alley and on the two short
sides. The barn is equipped with a forced ventilation system above the lying area and
with sprinklers above the feeding area. The monitored section of the barn has two lines of
cubicles and a total area of 1785 m2. About 120 lactating cows are housed in this area. They
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are milked twice a day (at 3 a.m. and 3 p.m.) with a milking routine that lasts about 1 h per
session. The feed is distributed twice a day from May to September (at 7 a.m. and 6 p.m.)
and once a day in the colder season (from October to April, 7 a.m.).

2.2.2. Installation of the Sensor Nodes and Behavioral Observations

For the data collection, i.e., behavioral observations, two prototype sensor nodes were
built and fixed on two neck collars. These collars had a weight at the bottom to keep the
nodes in place. The node was fixed with screws and protecting tape on the upper right part
of the collar, at about one third of its length. This position was chosen to allow detecting
the movements of the dairy cows also during ingestion-related behaviors (i.e., ruminating,
feeding, drinking). These collars were mounted on two cows at a time that were randomly
selected from the herd on the day of observation. Figure 4a shows the sensor nodes fixed
on the collars and Figure 4b shows the positioning of the collar on the neck of a dairy cow.
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For the data collection, continuous behavioral observations were performed by trained
observers who scored the behavior of the cows both on a manual protocol and on the
developed mobile application. The list of behavior categories is reported in Table 1.

In detail, the manual protocol included the registration of the cow identification
number (cow ID), the date and name of the observer, plus the exact time of the day and the
indication of the observed behavior (see Table 1). A blank space for notes was also available.
At the same time, all behaviors were registered on the mobile application by clicking on the
appropriate button for the behavior classification, which allowed to match the behavioral
observation with the accelerometer measurements, as described in Section 2.1.1. This was
done immediately when the observer noted a change in behavior. Each cow was followed
by one observer for 2 to 6 h (until the cow had shown all behaviors of interest). At the end
of the day, the collars were removed. The same operation was replicated for 22 days, until
data was collected from 32 different cows in total from the three farms (18, 6, and 8 cows
per farm, respectively). This process of data collection allowed training the algorithm with
a variety of animals and in different farm and management conditions. In total, 108 h of
observations of behavior patterns were collected.
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Table 1. Ethogram of the studied cow behaviors. Class refers to the encoded button that was pushed
during observations and to the identification of the behavior during the algorithm development.

Class Behavior Description

1 Standing

The cow has at least 3 legs resting without moving the body.
It includes head movements and interactions with other
animals. There may be small movements that do not
significantly change the position, covering less space than
the animal’s body length. The cow does not ruminate.

2 Lying
The body is in contact with the bottom of the cubicle. The
cow can move its head and interact with other animals. The
cow does not ruminate.

3 Standing and
ruminating

Like standing, but in addition the cow ruminates.
Ruminating: sequence consisting of regurgitating a bolus,
followed by chewing the cud and then swallowing the
masticated cud.

4 Lying and
ruminating Like lying, but in addition the cow ruminates.

5 Eating
Sequence consisting of lowering the head to the feed, taking
a bite, chewing and swallowing. Short interruptions and
interactions with other cows may occur.

6 Drinking The cow has its head in the drinking trough and
drinks water.

7 Walking
The cow changes position with a movement in a defined
direction, covering at least a space equal to the animal’s
body length.

8 Other
Other behaviors that do not fit in any of the previous
categories (specification of the behavior was noted
down manually).

2.3. Development of the Algorithm
2.3.1. Methodological Approach

The methodology adopted for the behavior identification is structured into several
steps as shown in Figure 5 and described in the following paragraphs. After the collection
of data (accelerations and behaviors), the steps were: windowing, feature extraction (for
accelerations), class definition (for behaviors), classifier learning, and then scoring through
the developed and validated model.
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Figure 5. Methodological flow for the development and validation of the model for behavior
identification.

The acceleration data from the acquisition mode are sampled at 25 Hz, with a res-
olution of 12 bit on a range of ±2 G, i.e., with a resolution of 1 mG. Associated to the
accelerometric data, the algorithm takes as input the classification of the behaviors ob-
served during the data collection, as described in Section 2.2.

Therefore, the accelerations and behaviors that have been collected synchronously
using the custom sensor node and the mobile application have been combined, as shown in
an example in Figure 6. The top plot shows the accelerations in mG on the three axes over
time and the bottom plot reports the (encoded) behavior, resulting from the observation.
On the Y-axis, the behavior classes from 1 to 8 (see Table 1 for the detailed description)
are reported.
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2.3.2. Behavior Windowing and Class Definition

From here on, the input acceleration data will be indicated as At = (Xt, Yt, Zt) and
expressed in units of G and the raw behavior data will be indicated as Bt and expressed as a
discrete variable. The behaviors (B1, B2, . . . , B8) that have been considered—and encoded
with the integers 1 to 8—are reported in Table 1, i.e.: standing (1), lying (2), standing and
ruminating (3), lying and ruminating (4), eating (5), drinking (6), walking (7), and other (8).

Since the behavior of the cows changes much more slowly with respect to the frequency
at which the acceleration is sampled, it was decided to split the signals in fixed-length
observation windows. However, deciding the duration of the windows is not trivial and
can only be conducted experimentally, trading off the granularity of the observations that
should be modeled and the accuracy and reliability of the estimation model. Different
durations have been considered, namely, 5, 10, 20, 30, and 60 min. Experimental results
showed that the best tradeoffs are obtained for 10 and 20 min. In these cases, the distribu-
tions of accelerations associated to the different behaviors are well distinguishable and, at
the same time, the time resolution of the model is quite detailed. In fact, it is 3 to 12 times
finer grained than similar commercial systems. The finer grained model, with a windowing
of 10 min, has finally been preferred.

While dynamic and statistical features of the acceleration signals can be easily de-
fined and computed, the association of one single, prevailing behavior seems to be too
simplistic. For this reason, a more complex criterion has been adopted. First, for each
window, behavior-frequency pairs (bi, fi) are computed and sorted in descending frequency
order, i.e.,:

[(b1, f1), (b2, f2), . . . , (b8, f8)]

where b1 is the most frequent behavior and b8 is the least frequent. It was decided to
characterize a window with two classes, C1 and C2, associated with the two most relevant
behaviors, according to the following rules. The first class is always defined as the most
frequent, thus:

C1 = b1
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The second class, if appearing with a “significant” frequency (i.e., >40% of the time),
is chosen to be b2. However, if this class is not frequent enough, it is ignored. The second
class is defined as:

C2 =

{
b2 f2 ≥ fmin
b1 f2 < fmin

where fmin defines the minimum frequency of a behavior to be considered significant. This
approach leads to 64 classes that can be associated to each window, namely:

(1, 1), (1, 2), . . . , (1, 8), (2, 1), (2, 2), . . . , (8, 8)

Although much more representative of the actual behavior, a classification into
64 classes is extremely complex and would require a huge number of observations and
probably lead to rather complex models. It is important, though, to highlight that the
distribution of behaviors is not uniform, as the daily time budget of cows is predominantly
occupied by some of the behaviors, in particular lying, eating and ruminating [25].

Secondly, the distribution of the 64 combined classes shows that during a single
window, cows tend to show a single behavior with a much higher probability than two
different behaviors. Figure 7 shows such a distribution where the frequency f (C1, C2) of
the class (C1, C2) is represented at the point of the x-axis encoded as 10 · C1 + C2.
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Since some class pairs are visibly rare (frequency less than 0.01), a “lumped” version
of the classes can be defined as:

(
Ĉ1, Ĉ2

)
=


(8, 8) C1 ≥ 6
(C1, 8) f(C1,C2)

< flow
(C1, C2) otherwise

where flow = 0.01.
This results in the following reduced set of lumped classes:

• (C1, C1), (C1, C5), (C1, C8)
• (C2, C2), (C2, C4), (C2, C8)
• (C3, C3), (C3, C8)
• (C4, C2), (C4, C4), (C4, C8)
• (C5, C1), (C5, C5), (C5, C8)
• (C8, C8)

Following these criteria, the behavior pairs including drinking (6), walking (7), and
others (8) cannot be distinguished in the available dataset.
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According to the criteria described above and assuming the probability fmin =0.6, a
classification (C1, C1) is interpreted as follows:

• C1 for at least 60% of the time, certainly
• C1 for at least 80% of the time with a probability of 68%
• C1 for at least 90% of the time with a probability of 55%
• C1 for at least 99% of the time with a probability of 39%
• and a classification (C1, C2) shall be interpreted as follows:
• C2 for at least 40% of the time
• C1 for a longer time than C2

2.3.3. Feature Extraction
Acceleration Windowing

As discussed in the previous paragraph, a time window Tw of 10 min has been
chosen as a good compromise between the granularity of cow behavior over time and the
estimation accuracy.

The sampling frequency adopted for the accelerations is fs = 25 Hz is much higher
than the significant dynamics of the animals, because these were found to fall approximately
below 5 Hz during some preliminary tests, as is shown in the analysis in the frequency
domain reported in Figure 8.
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Each of these windows is, therefore, composed of 25 · 60 · 10 = 15, 000 triaxial samples
At = (Xt, Yt, Zt) with t = [0; 14, 999].

Based on previous experience in acceleration signal analysis, a set of 23 features
has been defined and computed for each window using Matlab software [33]. However,
computing the features on the raw input data will lead to values that are strongly influenced
by “noise”, i.e., by accidental accelerations due to the poor fixing of the sensor with respect
to the body of the animal and to all unpredictable and unwanted movements due to contact
with structural elements of the barn or with other animals. To strongly reduce these effects,
accelerations have been processed in “sub-windows” of a duration of Tsw = 5 s according to
the following equations. Firstly, average (AAVE,k), average of the absolute value (AABS,k),
and standard deviation (ASTD,k) of the acceleration per each axis and per each sub-window
have been calculated as:

AAVE,k =
1

fs ·Tsw
∑

fs ·Tsw ·(k+1)−1
t= fs ·Tsw ·k At

AABS,k =
1

fs ·Tsw
∑

fs ·Tsw ·(k+1)−1
t= fs ·Tsw ·k |At|

ASTD,k =
[

1
fs ·Tsw

∑
fs ·Tsw ·(k+1)−1
t= fs ·Tsw ·k (At − AAVE,k)

2
]1/2
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With k =
[
0; Tw

Tsw
− 1
]
= [0; s− 1] = [0; 119]. This first step leads to three new time-

series per each 10-minute window constituted by s = Tw/Tsw = 600/5 = 120 samples.
Then, each windowed measure has been normalized as (AN, AVE,k) :

AN,AVE,k =
AAVE,k

max
k=[0;s−1]

|AAVE,k|

And similarly for the other series AABS,k and ASTD,k.
The new three three-dimensional series, i.e., these nine series, are the starting point for

the statistical features defined for classification. Two statistical features, the generic scalar
component of any of the above normalized timeseries (indicated with VN,k) and the value
of the corresponding, non-normalized time series (indicated with Vk), are computed as:

VSTD =
[

1
s ∑s−1

k=0 V2
k

]1/2

VMAX = max
k=[0;s−1]

|Vk|

where VSTD stands for the standard deviation of the scalar component V and VMAX is the
maximum value of V. This process leads to the definition of a total of 18 features.

In addition to these features, the dynamic features Vector Body Dynamic Acceleration
(VeBDA) and Overall Body Dynamic Acceleration (OBDA) have been also computed:

VeBDA = 1
s ∑S−1

k=0

∣∣∣∣AAVE,k
∣∣∣∣2

OBDA = 1
s ∑S−1

k=0

∣∣AAVE,k − AAVE
∣∣

Three other features have finally been considered relevant and potentially repre-
sentative of periodic behaviors such as walking, ruminating and eating: the correlation
coefficients among all pairs of axes (X, Y and Z), namely, ρXY = ρ(XN,AVE,k, YN,AVE,k),
ρXZ = ρ(XN,AVE,k, ZN,AVE,k) and ρYZ = ρ(YN,AVE,k, ZN,AVE,k), where the correlation coeffi-
cients are defined as the diagonal element of the cross-correlation matrix:

ρ(A, B) =
cov(A, B)

σAσb

In conclusion, 23 features have been considered and computed for each time-window.

Features Reduction

The features described above are all suggested by the nature of the phenomenon, but
their statistical independence needed to be evaluated to reduce the computation complexity
of the problem and to avoid overfitting in the model learning phase. Therefore, a cross-
correlation matrix, was computed and features with a correlation index above 0.75 were
discarded. The cross-correlation matrix is reported in Figure 9. The 10 features indicated in
yellow survived the reduction process. When more options were available for choosing
sets of features, symmetry, and homogeneity were favored.

It is worth noting that, as an a posteriori confirmation of the correctness of the feature
selection approach, the considered models were trained both with the full set and the
reduced set, obtaining an average accuracy of 86.4% in the former case and 85.7% in the
latter. Since this difference in the resulted accuracy was very small, the reduced set can be
used, benefitting simplicity, without losing accuracy.
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2.3.4. Classifier Learning

The classification problem of each single window can be expressed as:

C =M(F) =M(F1, F2, . . . , F10)

where F = [F1, F2, . . . , F10] is the vector of the features associated to a certain 10-min
window and C = {1, . . . , 8} is the class estimated by the model M. It is worth recalling that
the adopted original eight behavior classes do not always express disjoint behaviors but
are to some extent overlapping, as is the case of behaviors 1 and 3 (Standing, and Standing
and ruminating). To account for this circumstance, and, at the same time, to improve the
stability of the estimation, four different “class sets” have been defined and used to train
four different “basic classifiers”, namely:

• Classifier 1: S1 = { 1, 2, 3, 4, 5, 6, 7, 8 }
• Classifier 2: S2 = { (1, 2), (3, 4), 5, (6, 7, 8) }
• Classifier 3: S3 = { (1, 3), (2, 4), 5, (6, 7, 8) }
• Classifier 4: S4 = { (1, 2, 3, 4), 5, (6, 7, 8) }

Classifier 1 is the finer-grained classifier and potentially distinguishes all behavior
classes (1 to 8); classifier 2 distinguishes between non-ruminating (1, 2), ruminating (3, 4),
eating (5), and other behavior (6, 7, 8); classifier 3 distinguishes between standing (1, 3),
lying (2, 4), eating (5), and other behavior (6, 7, 8); and, finally, classifier 4 distinguishes
between eating (5), non-eating (1, 2, 3, 4), and other behaviors (6, 7, 8).

In addition to these basic classifiers, a class pair classifier model has also been trained.
This classifier named S_5 distinguishes the class pairs defined in Section 2.3.1, that is:

• Classifier 5: S5 = {11, 15, 18, 22, 24, 28, 33, 38, 42, 44, 48, 51, 55, 58, 88}
where each element indicates the two most frequent behaviors (indicated by coupling

behaviors 1–8) in a time window, in decreasing order.
The adopted learning procedure is based on Knime software [34] and is structured

as shown in the workflow reported in Figure 10. Firstly, all the features computed with
Matlab are loaded in the workflow, along with the actual behavior classifications S1 and S5;
then each vector of the dataset is enriched with the derived classes S2, . . . , S4 computed
starting from the classes in S1. A column filter is then applied to the input vectors to remove
unnecessary features according to the analysis described above.
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The dataset of all the reduced vectors is then fed to a partitioning node which divides it
into a learning set (upper path in Figure 10) and a test set (lower path in Figure 10) according
to a learning/test ratio of 75%/25% with stratified sampling with respect to the actual
behavior class. The learning set is then passed to the specific learner node (a decision tree in
the example of Figure 10) while the test set is passed to the predictor node, which performs
classification according to the model generated by the learner. Finally, the predictions are
evaluated by a scorer node and the results of the workflow, i.e., the model in PMML format,
the confusion matrix and the accuracy statistics, are saved to files for further analyses.

2.3.5. Combined Classifier

Decision tree models were trained for each of the five classifiers Si leading to five
different estimates s1 ∈ S1, s2 ∈ S2, . . . , s5 ∈ S5 of the actual behavior c ∈ C for each
10-min time window. To combine accuracy and specificity, a new estimator S6 has been
defined a-posteriori as the weighted combination of the five basic estimators according to
the following procedure. Let wi be the weight associated to the classifier Si. For each class
k ∈ {1, . . . , 8} the overall class weight W(k) is defined as the sum of the weight of each
classifier whose result contains the class k, that is:

W(k) = ∑5
i=1 ωi,k

where:

ωi,k =

{
wi i f k ∈ si
0 otherwise

The result of the new combined classifier S6 is then defined as the class k whose overall
weight W(k) is maximum, that is:

S6 = k |W(k) = max
k

W(k)

2.3.6. Model Validation

For the learning phase, a subset of all feature vectors was used, while the remaining
vectors were used for the testing. The overall number of feature vectors is 19,524, of which
75% were used for training and the remaining 25% for validation.

To select the models to be adopted, two crucial aspects were considered: the complexity
of application in terms of data memory and code memory requirements and the model
accuracy. The trained model, in fact, needs to be implemented on the sensor node, which is
a tiny microcontroller with less than 64 KB of flash memory and approximately 8 KB of
RAM memory available and delivering less than 100 MIPS.

Finally, a sensitivity analysis was carried out to confirm the adequateness of the
partitioning of the dataset for the model training and validation.
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3. Results
3.1. Observed Behaviors and Evaluations about the Feature Selection

Figure 11 shows the distribution of observed behaviors from the 32 monitored cows,
obtained by analyzing more than 100 h of observations. It can be noticed that the behavior
classes are far from being uniform, with classes 6 (drinking), 7 (walking), and 8 (other)
having very low frequencies (<5%).
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Figure 11. Results of the class frequency distribution from the observed dairy cows. Numbers on the
x-axis refer to the behavior classes: 1 = standing; 2 = lying; 3 = standing and ruminating; 4 = lying
and ruminating; 5 = eating; 6 = drinking; 7 = walking; 8 = other.

This result can be in part attributed to the part of the day in which the observations
took place; however, it is consistent with the average daily time budget of cows from
the literature [25] and with the fact that transitional behaviors such as walking, standing
up, or lying down, as well as other social or maintenance behaviors like drinking, are
less frequent and of short duration [18], making their identification through sensors and
algorithms quite complex. In this study, behavior observations were collected from 32 cows
in 3 farms; therefore, there was the influence of different farm management organization.
This variability, which is larger than in the majority of studies present in literature (i.e., less
than 10% of studies used more than 30 cows, according to the findings by Riaboff et al. [18]),
can have negatively influenced the accuracy of the algorithm while increasing its robustness.
Moreover, more than 40 h of behavioral observations are highly recommended in view of
robust predictions [35].

In this study, 108 h of behavioral observations from 32 cows were used, therefore, the
reported findings can be considered sufficiently robust. Moreover, the variability (three
farms) and size of the behavioral data ensures that the developed sensors can be widely
applicable. This is well above the minimum recommendation for optimal framework for
achieving good prediction performances using accelerometers (2 farms, 25 animals, 40 h)
as reported by Riaboff et al. [18].

3.2. Training and Validation of the Model

Regarding the results of the model selection, several algorithms were trained and eval-
uated with respect to accuracy and complexity. These assessment results are summarized
in Table 2.

Among the evaluated algorithms, 3 had a low complexity in terms of computational
and memory requirements: Decision Tree, Multi-Layer Perceptron, and Probabilistic Neural
Networks. Among these, the Decision Tree (77−87%) outperformed the accuracy of Multi-
Layer Perceptron (65−79%) and Probabilistic Neural Networks (70−74%) in all four basic
classifiers. It presented low complexity and high accuracy; therefore, it was selected. In the
Decision Tree algorithm, the overall memory footprint of the code implementing the four
classifiers is 46 KB, with fewer than 400 bytes of RAM required. Furthermore, the execution
time needed for feature extraction and estimation is less than 500 ms, which is more than
acceptable in terms of energy consumption.
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Table 2. Model evaluation algorithms with the related accuracy (percentage of correctly classified
10-min time windows) and complexity of application (computational and memory requirements).

Model Reference Accuracy Complexity

Fuzzy Rules [36]

87–92%

Unfeasible
Support Vector Machines [37] Unfeasible
K-Nearest Neighbors [38] Unfeasible
Random Forest (large) [39] Critical
Ensemble Decision Tree (large) [40] Critical
Random Forest (small) [39]

75–90%
Medium

Decision Tree [41] Low
Multi-Layer Perceptron [42]

55–75%
Low

Probabilistic Neural Networks [43] Low
Naïve Bayes [44] Medium

Having selected the Decision Tree algorithm, the accuracy of the decision trees trained
for the five classifiers (see Section 2.3.4), S1, . . . , S5, is calculated and summarized in Table 3.
As expected, the accuracies of these estimates are the lowest for classifiers S1 (79.9%)
and S5 (69.3%), which were more specific (Classifier 1 distinguishes all behavior classes
and Classifier 5 considers the class pairs); instead, classifier S4, being less specific in the
classification of the behaviors (i.e., it distinguishes eating, non-eating and other), shows the
highest accuracy (91.0%).

Table 3. Model accuracy (percentage of correctly classified 10-min time windows) for the six classifiers.

Classifier S1 S2 S3 S4 S5 S6

Accuracy 79.9% 87.6% 82.0% 91.0% 69.3% 81.0%

Regarding the accuracy of the combined classifier S6, two different sets of weights have
been used: the first choice assumes all the weights to be equal to 1, while the second uses
the accuracies of the basic estimators (reported in Table 3) as weights. For this combined
classifier, the results achieved with the decision tree algorithm show an accuracy of 81.00%
and 81.05%, respectively, for the two sets of weights. This difference is very small and,
therefore, weights equal to 1 have been considered to obtain the classifier S6.

3.3. Sensitivity Analysis

Although the available dataset is large enough for the selected classifier model, a sen-
sitivity analysis has been performed to verify that a 75%/25% partitioning of the datasets
leads to stable models. To this purpose, different sizes of learning and test sets have been
used, leading to the results reported in Table 4.

Table 4. Model accuracy (percentage of correctly classified 10-min time windows) versus partitioning.

Classifiers
Partitioning

25%/75% 50%/50% 75%/25% 90%/10%

Classifier 1 74.6% 76.5% 79.9% 80.0%
Classifier 2 84.4% 85.6% 87.6% 88.0%
Classifier 3 77.3% 80.3% 82.0% 81.9%
Classifier 4 89.3% 89.7% 91.0% 90.2%
Classifier 5 63.2% 66.4% 69.3% 71.0%

From the table, it can be derived that increasing the size of the learning set above 75%
does not improve the accuracy in a relevant way. Therefore, the 75%/25% partitioning was
considered as the most adequate.
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Though the accuracy of the models is rather good (85.12%), it must be noted that the
choice of subdividing time into 10-min windows introduces an effect of quantization with
respect to the actual time spent by the cows in each of the considered behaviors.

To evaluate the accuracy over time of the combined classifier S6, 1950 time windows
from the test set have been considered. For each window, W, the actual time T(W, bi) spent
in a specific behavior, bi, is computed as the total number of samples associated with that
behavior, multiplied by the sampling period, that is:

T(W, bi) = ∆t ·∑Bt∈W δBt , bi

where δ is the Kronecker symbol and ∆t = 1/ fs = 40 ms is the sampling period. On the
other hand, the estimated time is simply 10 min for the estimated behavior of the considered
window and zero for all other behaviors.

The comparisons of the actual and the model-estimated behavioral patterns over time
are shown in Figure 12. The relative errors for the significant classes 1, . . . , 5 (classes 6, 7,
and 8 are very rare and not relevant for statistical analysis) are reported in Table 5. Overall,
the accuracy over time is 92.45%.
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Table 5. Relative error of the combined classifier for the relevant classes of actual and estimated behavior.

Class
Identifier 1 2 3 4 5

Class Standing Lying Standing and
ruminating

Lying and
ruminating Eating

Error −19.94% 1.81% 25.00% 1.65% 0.29%

4. Discussion

In this study, an open sensor node was developed to classify multiple behavioral
patterns, i.e., standing, lying, standing and ruminating, lying and ruminating, eating, and
other (including walking and drinking), using one single sensor positioned on a neck
collar. This sensor could be used for acquiring data from behavioral observations by
using a mobile application working via Bluetooth, as well as for sending processed data
to the gateway via a dedicated radio channel. After the acquisition of 108 h of behavioral
data from 32 cows in 3 farms, several machine learning algorithms were trained. The
Decision Tree algorithm was selected due to its low computational and memory complexity,
and due to its satisfactory results in behavior classification, with an accuracy of 85.12%.
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Although walking and drinking could be encoded, their frequency was too small to be
identified by the algorithm. The same issue was raised by Vázquez Diosdado et al. [24]
who omitted walking, drinking, and brushing for a similar lack of data. The other classified
behaviors, instead, are those to which usually the highest interest is paid. For instance,
Riaboff et al. [18] reviewed studies on ruminants’ behaviors classification (including cows,
sheep and goats), and found that the most frequently predicted behaviors are eating and
grazing (if on pasture) (21.3% of studies), moving (walking, running, and searching, 18.8%),
standing (15.9%), and lying (13.0%). In general, most of the studies developed systems
that rely on single sensors to classify only a few behaviors with high accuracy (>80–90%),
comparable to what commercial sensors are offering. Vázquez Diosdado et al. [24] suggest
that when detecting more than a few (e.g., 2–3) behaviors with a single sensor, the prediction
accuracy of the models drops substantially. Considering that this system classified several
behaviors with a single sensor, the average accuracy of the classification model that has
been achieved in this study (85.12%) can be considered relatively high. As mentioned in
the introduction, classifying several main behaviors allows a better estimation of the time
budget of dairy cows and therefore results in more complete cow welfare monitoring.

The aim was to use the sensor node on the farm for a long period; therefore, the
methodological choices were aimed at increasing battery life by reducing the computa-
tional and memory complexity (25-Hz sampling frequency, 10-min time windows and
a 10-min frequency for sending data from the sensor to the gateway with the ad-hoc
2.4 GHz radio channel). These choices differ from the approaches of other studies, such
as of [19,30,45,46] who adopted much shorter time windows and achieved accuracies
>90–95%. Robert et al. [30] stated that 5-s time windows provide the best compromise
between accuracy and memory constraints. However, due to the need of applying robust
sensors that are able to function for a long time on the farm, the 10-min window was
preferred here as a better trade-off between model complexity and classification accuracy.
A similar approach to this study was adopted by Vázquez Diosdado et al. [24], who clas-
sified behavior of 6 cows with a 10-min window and a decision tree approach. Precision
and sensitivity were reported, rather than accuracy; therefore, direct comparisons cannot
be made. However, they obtained an overall model sensitivity and precision equal to
88% and 82%, respectively (for lying, 77% and 99%; standing, 88% and 55%; and feeding,
99% and 93%). They also highlighted the importance of developing simple behavioral
classification algorithms for Precision Livestock Farming (PLF) purposes. This facilitates
the computation, model training and validation process, as well as its use. Another similar
approach to this study was the one by Martiskainen et al. [28] who adopted support vector
machine (SVM) algorithms to identify a series of behaviors. They found an overall accuracy
>80% for the classes of standing, lying, ruminating, feeding, walking normally, and lame
walking, while a lower accuracy was found for the transitional behaviors of lying down and
standing up. However, SVM are much more complex in computation and were therefore
disregarded in this study.

Another aspect of this study that needs to be highlighted is that observing behaviors of
a large sample of animals (32 cows from 3 farms) and for a long time (108 h) allowed to train
a robust model. This sampling dimension is larger than in the major part of studies [18],
but it is very important. The accuracy of this decision tree model is, indeed, negatively
influenced by the large size and variability of the sample, but, on the other hand, this size
and variability also enhances its applicability in different livestock contexts.

The sensor node presented in this study and its conceptual data integration can
be interesting for: (1) the PLF purposes of continuous monitoring of single animals or
aggregated groups of animals to support the management and decision process of the
farmer; (2) remote data processing for long periods, which can allow assessments on
animals performances; and (3) finally, since this system is open and is characterized by
a low computational and memory complexity, it can become part of a larger integrated
monitoring system that can allow building large databases for improved data processing
and support to decision making. Such a system could also automatically monitor and
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regulate systems such as forced ventilation and scrapers in order to prevent undesired
conditions. This is a key point raised also by Fournel et al. [47].

In the future, this sensor node can be further improved by enhancing the classification
capabilities of behavior classes, such as drinking, estrus, respiration rate, and lame walking,
in order to integrate more information in a PLF environment. The sensor node can be
used also to identify the cows during milking in order to collect data on milk yield and
other parameters, such as milk characteristics and milking time. Linking the node to
milk production can give additional information on the relationship between productivity,
behavior, and environment. Moreover, due to the open nature of the system and its
multiple transmission protocol, a future enhancement of this system could be to integrate
the position of cows with indoor real time location systems, giving additional insights on
cow welfare. It could, for example, evaluate the preferential use of the different areas of the
barn and the aggregation of both milk and beef cattle.

5. Conclusions

This study deals with the development of a wearable 3D sensor node and an algorithm
based on a Decision Tree to identify a wide series of behaviors of dairy cows, i.e., standing,
lying, standing and ruminating, lying and ruminating, eating, and other. This algorithm
was trained and validated through different steps of machine learning techniques. It was
stored on a node sensor, embedded in a plastic case and then fixed on a dairy cow neck
collar. Even though the classification of many behaviors, the large sample size (32 dairy
cows in 3 livestock farms), low complexity, and 10-min time window may have lowered
the overall accuracy, they all improve the robustness and relevance of the system for on-
farm welfare monitoring. The model accuracy for the specific classes is 85.12%, which is
comparable with similar studies. The architecture of the sensor nodes and classification
system are open and customizable and aimed at a low application complexity and long
operation duration on the farm. Although the device has demonstrated to be effective in
identifying the main cow behaviors, there is still room for improvement by including other
behaviors, such as walking, estrus identification, lame walking, and drinking. The sensor
can also be an active part of a real-time geo-location system to determine how dairy or beef
cattle use the different areas of the barn. Finally, since this system is designed to be part of
a larger system that integrates both behavioral and microenvironmental data, it will enable
the automatic regulation of microenvironmental systems to avoid situations of potential
health and welfare risks in real time.
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