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The role of the innate immune response in detecting RNA viruses is crucial for the establishment of proper
inflammatory and antiviral responses. Different receptors, known as pattern recognition receptors (PRRs), are present
in the cytoplasm, endosomes, and on the cellular surface. These receptors have the capacity to sense the presence of
viral nucleic acids as pathogen-associated molecular patterns (PAMPs). This recognition leads to the induction of
type 1 interferons (IFNs) as well as inflammatory cytokines and chemokines. In this review, we provide an overview
of the significant involvement of cellular RNA helicases and Toll-like receptors (TLRs) 3, 7, and 8 in antiviral
immune defenses.

1. Introduction

If a living organism wants to engage, control, and elim-
inate a pathogenic entity, it must first be able to detect
it. At first, this simple yet elegant paradigm might seem
easy enough to crack experimentally, but in retrospect, it
has been a central research question for more than 50
years now.

From the pioneering studies to identify interferon-
(IFN-) inducing compounds, to the discovery of Toll-like
receptors (TLR), RIG-I-like receptors (RLR), and the
cGAS-STING pathway, the quest to understand how pat-
tern recognition receptors (PRR) recognized pathogen-
associated molecular patterns (PAMP) has shed light on a
complex network of signaling pathways that are spatially
compartmentalized, mostly pathogen specific and highly/
tightly regulated.

In this review, we will focus on the significant contri-
bution of cellular RNA helicases and TLRs 3, 7, and 8 to
antiviral immune defenses.

2. The Classical RNA Helicases of Antiviral
Innate Immune Responses

In the wake of the discovery of TLRs, it was historically
postulated that antiviral immunity was mediated via TLR3
because this membrane-anchored receptor was essential
to trigger the production of type 1 IFNs and the activation
of IFN stimulated genes (ISGs) when challenged with
extracellular double-stranded RNA (dsRNA) poly(I : C),
as a viral surrogate [1]. However, further investigation
revealed that mouse TLR3−/− dendritic cells (BMDCs)
can produce high levels of IFNα when stimulated with
intracellular dsRNA suggesting the existence of another
type of RNA sensor, beside the TLRs, that would survey
the cytoplasmic space for pathogenic nucleic acids [2].
Further studies would identify RIG-I, MDA5, and LGP2;
all RNA sensors of what is now known as the RLR
signaling pathway.

The retinoic acid-inducible gene I (RIG-I) was first
identified as a cytoplasmic sensor that recognizes viral
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nucleic acids and triggers a signal to induce innate immune
responses during viral infection [3]. The protein comprises
two caspase-activation and recruitment domains (2CARDs)
at the N-terminal region, an RNA helicase domain, and a
C-terminal domain (CTD) (Figure 1(a)). In resting cells,
the CTD suppresses the N-terminal 2CARDs that are
responsible for the association with mitochondrial antiviral-
signaling (MAVS) (also called IPS-1, CARDIFF, and VISA)
and required for triggering downstream signaling (Figure 2)
[4]. After recognition of intracellular virus-derived RNA
(vRNA), the binding of the CTD to vRNA induces the
conformational change of the RIG-I protein, resulting in
the release of the 2CARDs and allowing the proteins to
assemble along the vRNA and to form a nucleoprotein fila-
ment. The released 2CARDs form a tetramer structure [5]
that functions as a core for CARD-containing MAVS aggre-
gation on the outer membrane of the mitochondria. RIG-I
activation is tightly regulated by posttranslational modifica-
tions (PTMs) such as phosphorylation and ubiquitination
[6, 7]. In resting cells, CK2, PKCα, and PKCβ protein kinases
phosphorylate RIG-I, which keeps them in an inactive closed
state to limit its activation (Figure 2) [8]. Upon viral infec-
tion, these PTMs are rapidly removed via two phosphatases
(PP1α and PP1β) to shift RIG-I conformation into an active
open state, which exposes its CARD domains and makes
them available for subsequent ubiquitination [9]. Exposed
CARDs are then targeted by TRIM25, Riplet, TRIM4, or

MEX3C for K63 ubiquitin linkage, which is essential to allow
its interaction with downstream adaptor protein MAVS
and for the production of type 1 IFN (Figure 2) [10–18].
To prevent its overactivation, RIG-I is actively targeted
by many cellular factors that inhibit K63 ubiquitination
(CYLD, USP1, and USP3) or tag it for proteasome degra-
dation via K48 ubiquitin linkage (RNF122, RNF125) [19–23].
Other PTMs, such as acetylation (HDAC6) and SUMOyla-
tion (P1AS2β, TRIM38, and SENP2), or direct association
of cellular proteins with RIG-I to disrupt its interaction with
MAVS (NLRC5, NLRX1), have also been shown to contribute
to RIG-I activation or repression. However, their overall con-
tribution to the canonical phosphorylation-ubiquitination
system remains to be elucidated [24–28]. Once activated,
RIG-I and MAVS interact via their CARD domains to form
prion-like aggregates that become the immune platform for
the phosphorylation of IRF3/NF-κB. This signaling relies
on the recruitment of many regulatory subunits (TRAF2,
TRAF5, TRAF6, and NEMO), which allows the phosphoryla-
tion of immune transcription factors via IKBKE, TBK1, and
IKK protein kinases, leading to their nuclear translocation
and the production of type 1 IFN with subsequent expression
of ISGs (Figure 2) [29–34]. Based on sequence homology
analysis, MDA5 and CARD-less LGP2 were identified as
putative vRNA sensors (Figures 1(b) and 1(c)). The three
proteins are collectively referred to as RLRs. Notably, these
proteins have a similar helicase superfamily II (SF2) ATPase
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Figure 1: The structure of PRR implicated in detecting vRNA. RLRs are composed of a C-terminal domain (CTD), helicase domains (Hel),
and two caspase-activation and recruitment domains (CARD-1, CARD-2) for (a) RIG-I and (b) MDA5, and only a CTD and helicase domain
for (c) LGP2. TLRs 3, 7, and 8 are composed of an extracellular domain (ECD), a transmembrane (TM) domain, and a toll-interleukin 1
receptor (TIR) domain. The ECD contains 23 leucine-rich repeats (LRRs) for (d) TLR3 and 26 LRRs for (e) TLR7 and (f) TLR8. TLRs 7
and 8 have a Z-loop in the ECD. TLR8 exists as a dimer in the resting state.
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domain and CTD that will prove to be essential for their
nucleic acid sensing function and distinguishing between
different RNAs.

3. RLR Distinction of RNA Ligands

RIG-I and MDA5 are RNA helicases that survey the
cytoplasm in search of PAMP (Figure 2). They have distinct
but overlapping pathogenic RNA preferences, which enable
differentiation of cytosolic self and nonself RNA. Initial
studies in mouse embryonic fibroblasts deficient for MDA5
(MDA5−/−) showed that they can initiate an antiviral
response when challenged with intracellular nonself RNA
molecules containing a triphosphate moiety at the 5′ region
(5′ppp) while RIG-I−/− cells cannot [35]. Moreover, when
the 5′ region is capped or is treated with calf intestinal
alkaline phosphatase to remove the phosphates, no
stimulations are observed [36]. These findings gave the first
evidence that RIG-I can recognize uncapped and phosphor-
ylated 5′ RNAs while MDA5 could not. Subsequent studies
showed that RIG-I is more likely to recognize short double-
stranded RNA (dsRNA) molecules while MDA5 is activated
by long dsRNA [12, 37, 38]. More recently, influenza U/A-

rich 3′ regions of viral RNA segments were shown to activate
RIG-I in a 5′ppp-independent manner via an unknown
mechanism (Table 1) [39]. This recognition might be medi-
ated by RIG-I’s helicase domain instead of the paradigmatic
CTD. Additional studies, such as examination of the crystal
structures of the full RIG-I/MDA5 proteins bound to vRNA,
are required to understand the fine molecular mechanisms
related to the vRNA and the sensor structural properties,
in order to have one unifying and comprehensive theory.
Nevertheless, the physical characteristics of RLR ligands
correlate exceptionally well with the type of viruses that
are recognized by RIG-I, such as Sendai virus (SeV), vesicular
stomatitis (VSV), influenza A (FLUA), and hepatitis C virus
(HCV), and by MDA5, such as encephalomyocarditis virus
(EMCV), norovirus, or murine hepatitis virus (MHV) (see
Table 1) [39–41]. In short, RIG-I can recognize viruses that
produce short and phosphorylated replication intermediates
through its CTD, whereas MDA5 tends to recognize long
vRNA molecules. Altogether, these data support the concept
that cytoplasmic RNA helicases are sensors of nonself RNA
and work together to ensure an optimal coverage of the full
spectrum of viral nucleic acids, including replication
intermediates and copy-back defective interfering (DI)
genomes. Furthermore, these observations emphasize the
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Figure 2: The pathways induced by RIG-I. Activation of RIG-I is regulated by many posttranslational modifications such as phosphorylation
and ubiquitination. In resting cells, inactive RIG-I is kept in a close conformation by PKCα. PKCβ and CK2 phosphorylate both CARDs and
CTD. Upon viral infection, PP1α and PP1β dephosphorylate RIG-I to allow the binding of viral RNA within its ATPase-helicase domain
which shifts RIG-I to an open conformation and allows the CTD to be ubiquitinated by Riplet. Once activated, TRIM25 allows for the
recruitment of K63-polyubiquitin chains via TRIM25 which allow RIG-I dimerization and recruitment to the adaptor protein MAVS. To
balance immune activation, CYLD, UPS1, UPS3, RNF122, and RNF125 actively antagonize RIG-I activation by the degradation of K63-
polyubiquitin chains and a switch to K48-polyubiquitin chains that tag RIG-I for proteasome degradation. This interaction allows for the
oligomerization of MAVS and the recruitment of regulatory subunits TRAF2, TRAF5, TRAF6, and NEMO. This signaling culminates with
the phosphorylation of immune transcription factors via IKBKE, TBK1, and IKK protein kinases, leading to their nuclear translocation and
production of type 1 IFN with subsequent expression of ISGs.
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importance of the 5′-triphosphate and dsRNA as molecular
patterns that enable RIG-I/MDA5 to distinguish pathogenic
from self RNA.

Now, how does the functioning of these RNA helicases
differentiate self RNA from pathogenic RNA leading to the
initiation of the RLR/MAVS antiviral signaling pathway?
As discussed before, in resting cells, RIG-I and MDA5 are
kept in a closed conformation (signal off) by their CTD.
Upon contact with vRNA molecules, it is proposed that an
ATP-dependent translocation along the dsRNA leads to the
high-affinity binding with the CTD to expose the 2CARDs
and to the promotion of the formation of stable RIG-I dimers
[42–44]. Importantly, the ATP-dependent translocation was
recently shown to contribute to the self versus nonself RNA
recognition, as the ATPase/translocase activity removes
RIG-I from abundant self RNA while locking it into the
nonself RNA motifs following translocation, and binding
it to the viral determinant such as 5′ppp, reducing back-
ground signaling and increasing sensitivity of vRNA detec-
tion [42, 44]. Following the recognition of the proper RNA
ligand, RIG-I signaling is activated and cells enter an antiviral
state characterized by the production of antiviral type 1 IFN
and ISGs (Figure 2) [29–32, 34, 45]. If RIG-I binds to non-
pathogenic RNA, it will be displaced by ATP hydrolysis to
prevent the recognition of endogenous RNA and avoid unin-
tentional signaling due to prolonged RNA binding. The lack
of proper ATP hydrolysis by RNA sensors, such as RIG-I and
MDA5, was recently linked to many genetic disorders whose
pathogenesis is caused by an upregulated type 1 IFN signal-
ing that leads to many autoimmune disorders such as
Aicardi-Goutières syndrome (AGS), Singleton-Merten syn-
drome (SMS), systemic lupus erythematosus (SLE), and type
1 diabetes [46]. These disorders are caused by nonsynon-
ymous point mutations located within the helicase/ATPase

domain of MDA5 and RIG-I that confer a constitutive
activation and implicate the aberrant sensing of nucleic
acids for the inappropriate production of type 1 IFNs
[47–50]. These studies emphasize the importance of a
functional SF2 helicase domain for the discrimination of
self and nonself RNA and the elicitation of an adequate
and controlled immune response.

4. RNA Helicases as Sentinels for Cytoplasmic
RNA and Antiviral Immune Responses

LGP2 is an RNA helicase, homologous in structure to RIG-I
andMDA5, except that it lacks the 2CARDs that are required
to initiate antiviral signaling via the MAVS adaptor protein
(Figure 1(c)). Thus, LGP2 is not able to propagate the signal
to produce type 1 IFN and must have a role that is different
from RIG-I and MDA5 in the RLR pathway (Figure 2). Ini-
tially, LGP2 was proposed as a negative feedback regulator
of the RLR pathway that would act by sequestering vRNA
from RIG-I [51] or by displacing IKBKE from MAVS in
order to terminate IRF3-dependent antiviral signaling [52].
Subsequent studies showed that CTDs of LGP2 and RIG-I
are analogous and provided in vitro evidence that LGP2
CTD can interact with RIG-I to abolish its ability to initiate
antiviral signaling [4, 53]. In addition, the latest study is
reminiscent of the novel negative regulator of innate
immunity KHSRP that associates with the CTD of RIG-I to
maintain the receptor in an inactive state and attenuate its
sensing of vRNA [54]. Upon viral infection, KHSRP com-
petes with PAMP for the RNA recognition site located within
RIG-I’s CTD. This competition between KHSRP and vRNA
is thought to be essential to maintain a proper activation
threshold of RIG-I signaling and prevent unnecessary or
disproportionate activation of the RLR pathway. Despite

Table 1: RNA viruses and ligands recognized by RLR and TLR.

RNA sensor RNA preference Representative viruses

Helicases

RIG-I
Uncapped 5′ and phosphorylated ssRNA, short
dsRNA, and U/A-rich 3′ regions of viral RNA

Adenovirus, DENV, EBOV, FLUA/B, HCV, HSV, JEV, LACV, LASV,
MV, NDV, NV, PIV5, Reoviridae, RSV, RV, RVFV, SeV, VSV, and WNV

MDA5 Long dsRNA
Adenovirus, DENV, EBV, ECMV, enteroviruses, HCV, HSV, JEV,

MV, NDV, norovirus, NV, PIV5, Reoviridae, RSV, SeV, SAFV3, TMEV,
and WNV

LGP2∗ dsRNA ECMV and HCV∗

DDX60 dsRNA HCV, RSV, and VSV

SNRNP200 dsRNA FLUA, HCV, and SeV

TLRs

TLR3 dsRNA CVB3, HSV-1, poliovirus, Reoviridae family (rotavirus), RSV, and WNV

TLR7 GU- and U-rich ssRNA
DENV, EBOV, FLUA, HCV, HIV, HTLV-I, MV, poliovirus, rhinoviruses,

and YFV

TLR8 GU- and U-rich ssRNA FLUA, HCV, HIV, rhinoviruses, and YFV

CVB3: Coxsackie B virus; DENV: dengue virus; EBOV: Ebola virus; EBV: Epstein-Barr virus; ECMV: encephalomyocarditis virus; FLUA: influenza A virus;
FLUB: influenza B virus; HCV: hepatitis C virus; HIV: human immunodeficiency virus; HSV: herpes simplex virus; JEV: Japanese encephalitis virus; LACV:
La Crosse virus; LASV: Lassa virus; MV: measles virus; NV: Nipah virus; PIV5: parainfluenzas virus 5; RSV: respiratory syncytial virus; RV: rabis virus;
RVFV: Rift Valley fever virus; SAFV3: Saffold virus 3; TMEV: Theiler’s virus; SeV: Sendai virus; VSV: vesicular stomatitis virus; WNV: West Nile virus;
YFV: yellow fever virus. ∗More studies are required to clarify the capacity of LGP2 to detect viruses including ECMV and HCV.

4 Journal of Immunology Research



some initial controversies about its function in antiviral sig-
naling, LGP2 is emerging as a sentinel sensor that cooperates
with RIG-I and MDA5 to enhance their recognition of the
vRNA substrate and to initiate type 1 IFN response against
viruses such as ECMV and HCV (Table 1) [55–57]. Accord-
ing to this model, LGP2 can leverage upon its ATP-
dependent/RNA helicase activity to assist and increase
interactions of a larger subset of nucleic acid-derived PAMP
with RIG-I or MDA5 and finally potentiate antiviral signal-
ing. Additionally, it was recently shown that LGP2 inhibits
a DICER-mediated processing of vRNA [58]. In contrast to
the elaborated protein-based system found in mammals,
plants and invertebrates rely on their RNA interference
(RNAi) machinery to degrade vRNA and subvert viral repli-
cation [59]. This recent report provides evidence that LGP2
antagonizes the degradation of vRNA by DICER to keep
the cytosolic PAMPs intact and allow their detection by
RNA sensors. Further studies should provide key insights
about the relationship between the antiviral RNAi system,
LGP2, and the RLR pathway in mammalian cells. Interest-
ingly, LGP2 sentinel function seems to be shared by many
other DExD/H box RNA helicases such as DDX3, DHX9,
DHX29, and DDX41, which bind directly to nucleic acids
and interact with either RIG-I or MAVS to activate the
pathway (see [60, 61]). Furthermore, RNA helicases from
the Ski-2-like family have been described to act as sentinels
for RIG-I activation and viral RNA degradation, as well as
negative regulators of the RLR pathway. Indeed, SKIV2L
teams up with exosomes to degrade RNA and limits activa-
tion of the RLR pathway upon activation of the unfolded
protein response (UPR), and humans with a deficiency in
SKIV2L have a type 1 interferon signature in their peripheral
blood [62]. In this review article, we will concentrate on
DDX60 and SNRNP200 to show the prototypical character-
istics of a Ski-2-like helicase as a sentinel for cytoplasmic
antiviral response. The DDX60 RNA helicase also acts as a
cofactor of the exosome complex, which is involved in the
degradation of various types of RNA molecules to maintain
the quality of host RNA. However, upon viral infection,
DDX60 acts as an ISG that helps cells to suppress viral repli-
cation by increasing interactions between vRNA and RIG-I/
MDA5 to enhance antiviral signaling and type 1 IFN produc-
tion [63]. DDX60 is also able to promote exosome-mediated
degradation of HCV RNA (Table 1) that reduces cell stress
from viral replication as a first line of defense, but in turn
produces degraded vRNA agonists that are likely to be recog-
nized by RIG-I/MDA5 and other sentinels in a feed-forward
mechanism that enhances type 1 IFN production [64]. Over-
all, while additional studies are required to assess the role of
DDX60 against many viruses and across different cell lines,
the first insight into its mechanism of action highlights two
important features of Ski-2-like RNA helicases as sentinel
for cytoplasmic RNA: (1) they are able to detect vRNA and
bring them to RNA sensors (RIG-I) to augment antiviral
signaling by allowing for a more efficient detection of a cyto-
plasmic PAMP and (2) they are able to target vRNA to the
RNA exosome, which turns them into immune-stimulatory
molecules by revealing a molecular signature (e.g., short
5′ppp dsRNA) that can be recognized by RIG-I. More

recently, we identified a novel sentinel, SNRNP200, a mem-
ber of the Ski-2 RNA helicase family that is critical in the
RIG-I/MAVS signaling pathway by promoting vRNA sens-
ing and IRF3 activation via a direct interaction with TBK1
[65]. SNRNP200 is an essential member of the spliceosome
complex along with several other RNA helicases that are
responsible for removing introns from the pre-mRNA and
give rise to coding mRNA [66–70]. Upon viral infection,
SNRNP200 binds vRNA through its amino-terminal Sec 63
(Sec63-1) domain, relocates to the perinuclear region, and
acts as an adaptor protein to potentiate IRF3 signaling. Much
like other DExD/H box RNA helicases, SNRNP200 requires
a functional ATPase/helicase activity in addition to a compe-
tent Sec63-1 domain of unknown function to promote IRF3-
dependent IFN induction upon virus infection. Directed
mutagenesis experiments further showed that a defective
SNRNP200 C502A variant within the ATP-binding motif
leads to constitutive type 1 IFN production in vitro [71],
reminiscent of a phenotype of type 1 interferonopathies
[46–50]. Thus, the immunoregulatory function of SNRNP200
recapitulates properties of RIG-I/MDA5 and sentinels; they
all leverage upon their ATPase/helicase domain to unwind
vRNA and detect and bind to a specific RNA motif as they
translocate along the RNA strand, serving as scaffolding
proteins to initiate antiviral signaling. This mode of action
limits recognition of nonpathogenic RNA and the unneces-
sary activation of RLR signaling (as reviewed in [72]). In
this perspective, it is reasonable to propose that antiviral
RNA helicases are involved in the larger picture of RNA
responsiveness, where they balance the need for innate
defenses against pathogens and actively restrict involuntary
RLR pathway activation.

5. Toll-Like Receptors (TLRs)

TLRs have an important role in recognizing molecular
patterns associated with different pathogens. 11 TLR genes
are present in the human genome, with TLR11 being a non-
functional pseudogene. The majority of the TLRs are found
on the plasma membrane, while TLRs 3, 7, 8, and 9 are
present in the endosomal compartment [73]. Whereas those
expressed on the cell surface predominantly recognize
molecules of the microbial membrane, for example, proteins,
lipids, and lipoproteins, endosomal TLRs detect viral, bacte-
rial, or self nucleic acids. In this review we will focus on TLRs
3, 7, and 8 for their role in detecting extracellular RNA and
viral particles [73].

6. TLR3 Expression and Ligands

TLR3 is expressed in the endosomes of immune cells, that
is, monocytes, macrophages, dendritic cells (DCs) (other
than plasmacytoid DCs), natural killer (NK) cells, T and
B lymphocytes, mast cells, eosinophils, and basophils. Non-
immune cells, such as epithelial and endothelial cells, kerati-
nocytes, fibroblasts, hepatocytes, astrocytes, and microglia,
also express TLR3 [74, 75]. TLR3 recognizes dsRNA, the
synthetic polyinosinic-polycytidylic acid (poly I : C), and
polyadenylic-polyuridylic acid (poly A :U) (Table 1) [74, 75].
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Moreover, TLR3 may be triggered by single-stranded RNA
(ssRNA) with stable stem structures as described based on
poliovirus RNA sequences [76]. However, further studies
may be required to elucidate the exact mechanisms of
such triggering.

TLR3 plays a significant role in the modulation of RNA
and DNA virus-mediated innate immune responses. TLR3
senses dsRNA viruses such as members of the Reoviridae
family including the rotavirus by sensing their genomic
RNA; this recognition leads to the induction of inflammatory
cytokines and type 1 IFNs [74, 77]. Moreover, TLR3 recog-
nizes intermediate RNAs that are produced during the repli-
cation of other viruses such as the herpes simplex virus-1
(HSV-1), respiratory syncytial virus (RSV), West Nile virus
(WNV), coxsackievirus B3 (CVB3), poliovirus, and influenza
A virus (FLUA). The viral dsRNAs can reach the TLR3 in the
endosomes upon phagocytosis of dying infected cells or by
direct uptake from the medium by antigen presenting cells
(Table 1) [74, 77]. The possibility of the presence of interme-
diate viral ssRNAs with stable stem structures as a reason for
the detection of these viruses by TLR3, as observed in the case
of poliovirus, remains to be investigated [76].

7. TLR3 Structure and Signaling Pathways

TLR3 has a C-terminal cytoplasmic toll-interleukin 1 recep-
tor (TIR) domain used for signaling, an N-terminal extracel-
lular domain (ECD), and a single transmembrane alpha
helix. The ECD has 23 leucine-rich repeats (LRRs); it is
responsible for the binding of dsRNA (Figure 1(d)). The
dimerization of ECDs initiates the signaling [74, 78]. The
TIR domain-containing adaptor protein-inducing IFN-β
(TRIF) is then recruited and undergoes slight conformational
changes [79] to form a signaling complex together with TNF
receptor-associated factor 6 (TRAF6), TRAF3, TBK1, IKKε,
and IKK (Figure 3). This leads to the activation of IRF3/
IRF7 and NF-κB, which results in the production of type 1
IFNs and inflammatory cytokines, respectively [74, 78].

In order to control the levels of inflammation induced
by the triggering of TLR3, its signaling pathway is regulated
by different molecules. Some act as positive regulators
such as serine/threonine kinase receptor-associated protein
(STRAP) that interacts with TBK1 and IRF3 [80], munc18-1-
interacting protein 3 (Mint3) that stimulates the K63-linked
polyubiquitination of TRAF3 [81], Src-associated substrate
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in mitosis of 68 kDa (Sam68) that may balance NF-κB p65
and c-Rel activation [82], and finally S100A9 that acts during
the early stages of TLR3 activation by easing the maturation
of TLR3-containing early endosomes into late endosomes
[83]. Other molecules act as negative regulators, such as
Rho proteins that decrease the production of proinflamma-
tory cytokines upon TLR3 triggering [84], SUMO-specific
protease 6 (SENP6) that inhibits the NF-κB-mediated
expression of the proinflammatory genes [85], and miR-155
that controls TLR3 signaling by repressing molecules such
as TAB2, IKK-ε, and RIP [86]. Interestingly, some oncogenic
herpes viruses such as Kaposi’s-sarcoma-associated herpes
virus (KSHV) and Epstein-Barr virus (EBV) induce cellular
miR-155 expression or encode the functional ortholog of
miR-155, which might constitute a strategy to escape the
immune responses induced upon TLR3 triggering [86]. In
addition, several proteins in the TLR3 pathway are targeted
by different PTMs, which also participate in the regulation
of responses initiated by TLR3 triggering [6].

8. TLR3 and the Pathogenesis of Viral Infections

TLR3 has an important impact on the pathogenesis and out-
come of several RNA virus infections. In fact, the level of
expression of TLR3 is associated with the severity and out-
come of HCV infection [87]. Moreover, single-nucleotide
polymorphisms (SNPs) in the TLR3 gene are associated with
HCV-mediated liver disease progression and the develop-
ment of hepatic fibrosis [88]. As mentioned above, TLR3 also
plays an important role in establishing immune responses
against HSV-1. Different studies showed that mutations in
the TLR3 gene are associated with the predisposition to
HSV-1 encephalitis (HSE) in children [89–92] and adults
[93, 94]. These mutations in TLR3 were shown to result in
a lack of response to poly I : C and HSV-1 as observed in
fibroblasts and induced pluripotent stem cell- (iPSC-) differ-
entiated neural stem cells (NSCs), neurons, astrocytes, and
oligodendrocytes [89, 90]. This impairment was character-
ized by the absence of production of IFN-β and IFN-λ in
these cells [89, 90]. The association of mutations in the
TLR3 gene with varicella-zoster virus encephalitis was also
shown [93]. Other studies have shown that TLR3 may influ-
ence the pathogenesis of RSV, CB3, and enterovirus 71
(EV71), severe fever with thrombocytopenia syndrome
(SFTS), and HBV infections [95–99]. This highlights the
important role played by TLR3 in the innate immune
responses to viruses, although the exact mechanisms of
recognition and how it is involved often remain elusive.

9. Targeting TLR3 in Antiviral Therapies
and Vaccines

The potential use of TLR3 ligands in antiviral therapies and
vaccines is suggested by different studies. For example,
recently TLR3 ligands were shown to be efficient in reversing
the latency of the human immunodeficiency virus (HIV) by
the reactivation of HIV transcription in microglial cells
[100]. Another study reported TLR3 ligands as candidates
for anti-HIV immunotherapeutic strategies because these

ligands increased the ability of HIV-infected DC to activate
HIV-specific cytotoxic T lymphocytes [101]. TLR3 ligands
were also shown to be potent adjuvants for vaccine prepara-
tions targeting influenza virus, HIV, and HSV-2 [102–104].
Interestingly, poly I : C derivatives (known as Ampligen) are
potential adjuvants tested in vaccine preparations targeting
influenza virus, HIV, and HPV [102].

10. TLRs 7 and 8: Expression and Ligands

TLRs 7 and 8 are expressed in the endosomes of a wide
variety of cells including immune cells such as monocytes,
macrophages, DC, and NK cells [105]. The expression of
TLR7 is also reported in T and B cells [105, 106]. TLR8 is also
expressed in mast cells and regulatory T cells [107, 108]. The
expression of TLRs 7 and 8 is not restricted to immune
cells, as they are also expressed in endothelial and epithelial
cells, astrocytes, microglia, and hepatocytes, as well as
tumor cells [109–111].

TLRs 7 and 8 share a lot of similarities, and recent find-
ings suggest a potential compensatory role played by TLR8
in the absence of TLR7 [112]. TLRs 7 and 8 recognize guano-
sine and uridine- (GU-) rich or U-rich ssRNA sequences
[113, 114]. However, we have shown that the presence of
GU-rich sequences in ssRNA might not be sufficient,
although necessary, to stimulate these TLRs [115]. In this
study, several GU-rich sequences in the HCV genome were
described; however, not all these sequences were able to
trigger TLRs 7 and 8. In fact, the capacity of these sequences
to trigger TLRs 7 and 8 was not influenced by their length or
the number of GU repeats that they contain [115]. Interest-
ingly, some cellular defense mechanisms that target vRNA
may influence its detection by TLRs 7 and 8. In fact, the
detection of phagocytosed vRNA by TLRs 7 and 8 is facili-
tated by the adenosine-to-inosine (A-to-I) editing, which is
an important arm of the antiviral response [116]. Further-
more, 2′-O-methylation within an RNA sequence shapes
differential activation of TLRs 7 and 8 [117, 118]. This mod-
ification leads to the triggering of TLR8 but not TLR7 by an
RNA that was initially able to trigger both TLRs. The hypoth-
esis that this might be due to a stronger binding by TLR7
than TLR8 will require further investigation. This change
in the triggering leads to a different secretion of proin-
flammatory cytokines as it impairs IFN-α production but
not IL-6 [118].

Because of the capacity to sense ssRNA, TLRs 7 and 8
have an important role in detecting RNA viruses and induc-
ing antiviral immune responses. They can be triggered by
viral GU- and U-rich ssRNA sequences, such as those in
highly conserved untranslated terminal regions (UTR) of
viral genomes that have a crucial role in viral protein transla-
tion and RNA replication [119]. The implication of TLR7 or
TLR8 in detecting RNA viruses is different depending on the
virus and the cell in which these TLRs are expressed. Viruses,
such as yellow fever virus (YFV), rhinoviruses, and HIV, can
be detected by both TLR7 and TLR8 [113, 120, 121]. How-
ever, the expression of TLRs 7 and 8 in a cell does not always
guarantee their triggering by an RNA virus, even though the
latter has RNA sequences that can be detected by these TLRs.
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This was shown in the case of the HCV genome, which has
sequences that stimulate both TLRs 7 and 8 [115]. Neverthe-
less, the complete HCV particles do not induce responses
through these TLRs in myeloid and plasmacytoid DC subsets
and monocytes, whereas such stimulation takes place in
macrophages without stimulating antiviral responses [115].
Differences in the ability of cells to detect an RNA virus
via TLRs 7 and 8 were also described for Zika virus
(ZIKV) infection, as no TLR7 activation was detected in
primary human fibroblasts [122], while genes implicated
in TLR7 and TLR8 pathways were found to be upregu-
lated in the human neural progenitor cells (hNPCs)
infected with this virus [123]. Moreover, some vRNAs
are recognized by TLR7 but not by TLR8. This may sug-
gest the presence of differences in the conditions that lead
to the detection of ssRNA sequences by TLR7 and TLR8.
For example, the measles virus (MV), Ebola virus (EV),
dengue virus (DV), human T-lymphotropic virus type 1
(HTLV-I), and poliovirus are able to trigger TLR7 only, while
the role of TLR8 in such recognition remains unclear
(Table 1) [74, 124]. Nevertheless, SNPs in TLR7 and TLR8
genes were associated with immune responses to MV sug-
gesting a role for both TLRs during MV infection [125].

11. TLRs 7 and 8: Structures and
Signaling Pathways

TLRs 7 and 8 are single-pass transmembrane receptors
composed of a pathogen-recognition LRR-containing ecto-
domain and a TIR domain [126]. TLRs 7 and 8 have 26
LRR motifs in their extracellular domain, which contain
multiple insertions such as the Z-loop or undefined region
situated between LRRs 14 and 15 (Figures 1(e) and 1(f))
[127]. Both TLRs are proteolytically cleaved in the endo-
somes at the level of the Z-loop by arginine endopeptidase
and cathepsins, and the cleaved fragments are linked together
[128]. This is essential for the dimerization and activation of
these TLRs [129]. TLR7 and TLR8 dimers have a binding site
for small chemical stimuli or degradation products of ssRNA
and a second binding site that recognizes ssRNA oligonucle-
otides. Both these sites are required for ssRNA-induced acti-
vation [130, 131]. The TIR domains multimerize following
the interaction of TLRs 7 and 8 with their agonists, which is
important for the recruitment of myeloid differentiation pri-
mary response gene 88 (MyD88) [132]. MyD88 forms a com-
plex with interleukin 1 receptor-associated kinase (IRAK)
molecules. The pathway will eventually lead to the activation
of transcription factors including IRF7 and NF-κB, which
will cause the production of type 1 IFNs and inflammatory
cytokines, respectively (Figure 3) [132].

A number of molecules regulate TLR7 and TLR 8 signal-
ing pathways and control the immune responses that are
triggered upon stimulation of these TLRs. Some of these
molecules are positive regulators such as UNC93B1, which
physically associates with TLRs 7 and 8 and delivers them
to endolysosomes [133]; hepatocyte growth factor regulated
tyrosine kinase substrate (HRS) that is required for proper
TLR7 trafficking to endolysosomal networks [134]; CCAA
T/enhancer-binding protein beta (C/EBPδ) that enhances

the transcription of TLR8 [135]; triggering receptor
expressed on myeloid cells like 4 (TREML4) that enhances
TLR7 signaling [136]; and pyruvate dehydrogenase kinase
isozyme 2 (PDK2) that physically interacts with TRAF6
[134]. Spleen tyrosine kinase (Syk) was also shown as a
positive regulator of the TLR7 pathway in the plasmacytoid
DC (pDC) subsets. However, Syk may also negatively regu-
late the TLR7 pathway upon the stimulation of the regulatory
immunoreceptors CD303 and CD85g in pDC, which sug-
gests the presence of a dual role for Syk in the regulation of
the TLR7 pathway [137]. Other molecules are also consid-
ered as negative regulators for the TLR7 pathway such as
tripartite motif 35 (TRIM35) that stimulates the K48-linked
ubiquitination of IRF7 [138] and SENP6 described above in
the TLR3 section [85]. More studies are required to identify
molecules that negatively regulate TLR8 signaling. Further-
more, different proteins implicated in the TLR7/8 pathway
are subject to PTMs, which have a direct impact on the
regulation of TLR7- and TLR8-induced responses [6].

12. TLRs 7 and 8 and the Pathogenesis of
Viral Infections

TLRs 7 and 8 influence the pathogenesis and outcome of
several RNA virus infections such as HCV. In fact, the spon-
taneous resolution of the HCV infection has been shown to
be associated with a sustained hyperresponsiveness of pDCs
and mDCs to TLR7/8 stimulation [139], and the clearance
and progression of the HCV infection is modulated by varia-
tions in the TLR7 and TLR8 genes [140]. Moreover, the
potential capacity of the vRNA of different influenza strains
to stimulate TLRs 7 and 8 was found to be correlated to the
virulence of the strains [141]. In addition, SNPs in the
TLR7 and TLR8 genes were associated with the CD4 T cell
count during an HIV infection [142] as well as the levels
of type 1 IFN and proinflammatory cytokines and the pro-
gression to hepatocellular carcinoma during an HCV infec-
tion [143, 144]. Also, the low copy numbers of the TLR7
gene is associated with the establishment of chronic HBV
infection [145].

The triggering of TLRs 7 and 8 by viruses is not always
an advantage for the immune system. HIV infection pro-
vides several examples for this phenomenon. In fact, TLR7
stimulation by the HIV ssRNA in CD4 T cells induces the
anergy of these cells [146]. HIV requires the stimulation of
NF-κB upon the triggering of TLR8 to replicate in DCs
[147]. In addition, HIV takes advantage of the cellular pro-
tein snapin that inhibits its detection by TLR8 in DCs
to transinfect other cells [148]. In fact, inhibiting snapin
expression leads to an increased localization of HIV-1
within the early endosomes that contain TLR8, the establish-
ment of a proinflammatory response, and the inhibition of
CD4 T cell transinfection [148].

13. Targeting TLRs 7 and 8 in Antiviral
Therapies and Vaccines

TLR7 and TLR8 ligands are potential candidates for antiviral
therapeutic and vaccine strategies. Hence, the capacity of
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TLR7 and TLR8 ligands to inhibit HIV replication and to
activate the HIV reservoir is being investigated [149, 150].
Moreover, TLR7 and TLR8 ligands were proposed to be used
as adjuvants in FLU vaccine preparations [151]. Further-
more, the TLR7 agonist Imiquimod (R-837 or trade name
Aldara) and TLR7/8 dual agonist Resiquimod (R-848) are
topical treatments for HPV-induced warts [102]. Although
systemic administration of Imiquimod may be highly toxic,
Resiquimod showed promising results as an adjuvant in an
anti-HSV trial [102].

14. Conclusion and Perspectives

Up to this point, we have established the key players and
mechanisms of the antiviral innate immunity protecting the
host from RNA viruses. We have shown that RNA helicases
and TLRs 3, 7, and 8 are essential nucleic acid sensors that
survey the cytoplasmic and endosomal spaces for extracellu-
lar threats and, upon engagement, elicit type 1 IFN responses
to restrict viral replication. Recent findings showing the
involvement of unconventional PTMs, such as SUMOylation
and acetylation, to the regulation of these PRRs have cleared
the way to a better understanding of antiviral signaling, host-
factor interactions, and the etiology of various autoimmune
diseases. Further studies using a system-based approach,
similar to the one used to identify SNRNP200 and KHSRP,
together with the understanding of the nature of ligands
and inhibitors of PRRs should provide additional knowledge
to identify novel approaches for treatments and vaccine
preparations directed against RNA viruses and beyond, in
autoimmune diseases and cancers [102, 152]. Moreover, the
potential ability of RNA viruses to interfere with the mecha-
nisms regulating the signaling of these PRRs in order to
escape detection necessitates more investigations. Addition-
ally, with the description of a myriad of novel host factors
involved in RLR signaling, one might wonder which compo-
nents (RNA sensors, sentinels, positive, and negative regula-
tors) are required for the minimum or optimal antiviral
response, and what are the differences in this hierarchy
according to cell type or pathogen. There is a coordination
between TLRs and RLRs, as seen in some autoimmune
diseases and viral infections [153–156]. The mechanisms that
control this cooperation in detecting RNA viruses, and the
consequences of such collaboration, deserve to be investi-
gated in more depth. Lastly, PRR-targeting therapies have
gained great momentum in the field of cancer immunother-
apy. Recent reports have shown that RIG-I activation can
induce tumor cell death directly via the production of IFN,
or indirectly via the activation of cytotoxic CD8 T cells and
NK cells, and via DC-mediated antigen cross-presentation
of tumor-associated antigens to CD8 T cells [68]. In addition,
the modulation of TLR3 and 7 can be leveraged as anticancer
therapies since their signaling can increase cytotoxic T cell
activity and directly induce cancer cell death via apoptosis,
pyroptosis, and autophagy. Thus, the recent advances in
our understanding of innate antiviral immunity have clearly
given a new momentum towards the development of ther-
apeutic agents targeting PRR for infectious diseases and
cancers. These strategies are in the preclinical or early

clinical phase such that it is still unknown if these PPR-
targeting agents will translate into effective, safe, and tolera-
ble anticancer therapeutics.
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