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Abstract
Aim: To identify specific activities associated with high cognitive load during simulated pediatric out-of-hospital cardiac arrest (POHCA) resuscitation

using physiological monitoring with functional near-infrared spectroscopy (fNIRS).

Methods: We recruited teams of emergency medical services (EMS) responders from fire departments located throughout the Portland, OR

metropolitan area to participate in POHCA simulations. Teams consisted of both paramedics and emergency medical technicians (EMTs), with

one paramedic serving as the person in charge (PIC). The PIC was outfitted with the OctaMon to collect fNIRS signals from the prefrontal cortex.

Signals reported changes in oxygenated and deoxygenated hemoglobin concentrations, which were used to determine moments of increased cog-

nitive activity. Increased cognitive activity was determined by significant increases in oxygenated hemoglobin and decreases in deoxygenated hemo-

globin. Significant changes in fNIRS signals were associated with specific concurrent clinical tasks recorded by two independent researchers using

video review.

Results: We recorded cognitive activity of EMS providers in 18 POHCA simulations. We found that a proportion of PIC’s experienced relatively high

cognitive load during medication administration, defibrillation, and rhythm checks compared to other events.

Conclusion: EMS providers commonly experienced increased cognitive activity during key resuscitation tasks that were related to safely coordi-

nating team members around calculating and administering medications, defibrillation, and rhythm and pulse checks. Understanding more about

activities that require high cognitive demand can inform future interventions that reduce cognitive load.

Keywords: Prehospital emergency care, Out-of-hospital cardiac arrest, Simulation, Pediatrics, Cognitive load, Functional near-infrared

spectroscopy
Introduction

Background

Pediatric out-of-hospital cardiac arrest (POHCA) is a rare event, and

outcomes are poorer than those of adults1. Unique challenges in

POHCA resuscitation include age and size considerations regarding

medications, equipment, and treatment algorithms.2,3 Recently,

studies have identified POHCA resuscitation as high risk for care-
related patient safety events.4,5 Some authors have postulated a link

between errors in care and high cognitive load.6

Cognitive load theory posits that humans have a limited amount

of working memory available and when the demand of a task super-

sedes this availability, decrements in performance may occur.7 Tra-

ditionally, cognitive load has been measured using instruments that

are subjective and summative, such as the NASA-TLX. Investigators

have also attempted to measure physiologic markers of cognitive

load, using techniques such as pupillometry, galvanic skin response,
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fMRI, and EEG.8 Many of these techniques measure cognitive activ-

ity indirectly or use equipment that restrict mobility.

Functional near-infrared spectroscopy (fNIRS) is a tool for

directly measuring cognitive activity that could potentially be used

in naturalistic environments. fNIRS utilizes near-infrared light to

determine concentrations of oxygenated (HbO) and deoxygenated

hemoglobin (HbR), which is reflective of the overall metabolic

activity of a tissue of interest.9 When assessing cognitive load,

the fNIRS device is applied to the prefrontal cortex (PFC), which

is the region of the brain utilized when tasks involving working

memory are performed.10 fNIRS is similar to fMRI as a direct mea-

sure of cognitive activity, but provides the added benefit of being

low cost, lightweight, portable, and resistant to motion artifacts

making it attractive for use in dynamic environments including clin-

ical care. The objective of this study was to utilize fNIRS to iden-

tify specific events during simulated POHCA resuscitation

associated with physiologically measured increases in cognitive

load.

Methods

We recruited teams of EMS responders from fire departments

located throughout the Portland, OR metropolitan area between

June and August 2022 to voluntarily participate in POHCA simula-

tions. Each team consisted of both emergency medical technicians

(EMTs) and paramedics. Teams self-selected one member to serve

as the person in charge (PIC) who would be outfitted with the fNIRS

device during the simulations. The only criterion for selection was

that the PIC must be a paramedic.

Simulations were conducted at local fire department training cen-

ters. Each session began with an orientation where teams became

acquainted with the manikins (SimJunior, Laerdal Medical, Norway)

and patient monitor simulator (iSimulate, Albany, NY). Teams utilized

their own equipment to ensure that their response was as similar to

real-life as possible.

Following the orientation period, teams were dispatched to a call

involving a 6 year-old boy who had two syncopal episodes while

playing outside within the past week, and today parents witnessed

him passing out while running around the house. 911 was called

and CPR was initiated by the parent. Upon EMS arrival, ineffective

compression-only CPR was being performed. The patient was in

ventricular tachycardia and teams were expected to provide treat-

ment using the Pediatric Advanced Life Support11 algorithm which

included high quality CPR, rhythm checks within 1 minute, defibril-

lation, basic and/or advanced airway techniques, vascular access

(IV or IO), and administration of appropriate doses of medications

when indicated. In the scenario, ROSC was achieved after the third

defibrillation. All simulations were concluded at approximately

10 minutes.

Optical measurements were recorded using a functional

near-infrared spectrometer (OctaMon, Artinis Medical Systems,

The Netherlands). The OctaMon is a wireless, headband-like

device with embedded optodes that allow for the noninvasive

detection of changes in concentration of HbO and HbR of

the PFC. The detection of changes in concentration can be

related to cognitive load through neurovascular coupling which

states that as mental workload increases, so will cerebral blood

flow, thus resulting in a simultaneous increase in HbO and

decrease in HbR.12
Data analysis

We used the signal quality index (SQI) to exclude low quality signals

from analysis.13 After screening for signal quality, wavelet and recur-

sive least-squares (RLS) filters were applied to remove artifacts

caused by motion and physiological noise related to heart rate and

blood pressure fluctuations.14,15.

Cleaned signals were passed through the Automatic Identifica-

tion of functional Events (AIDE) algorithm which identified cognitive

events by comparing the signals on a second-by-second basis to a

model of functional activity.16 The Benjamini-Hochburg procedure

was used to correct the false discoveries rate in signal spikes,

wherein we presumed 5% of our detected peaks are false discover-

ies and set the p-value threshold to exclude them.17 This method is

less conservative but useful considering the space being explored.

The output from the AIDE algorithm provided time points where

spikes in cognitive demand occurred (Fig. 1).

Two reviewers independently reviewed video recordings of each

simulation and coded the clinical actions being performed at each

time point. The standard steps of resuscitation were used to code

activities performed by the PIC. Any discrepancies were resolved

through consensus and validated by a clinical expert.

Ethics approval

This study was approved by Oregon Health & Science University’s

Institutional Review Board (IRB# 00018494). Informed consent was

given by all participants.

Results

A total of 18 simulation sessions, each with a different team and PIC,

were conducted. Teams had a mean (SD) size of 7 (1) members,

including the PIC. Table 1 details PIC characteristics.

PICs appeared to have elevated cognitive load during similar clin-

ical tasks: 15 (83%) of the PICs had cognitive events during medica-

tion administration, 14 (78%) during defibrillation, and 13 (72%)

during rhythm checks (Fig. 2). Medication administration included

looking up, calculating, and giving drugs to the patient. Events coded

as defibrillation referred to moments where the PIC cleared team

members from the patient and administered an electrical shock.

Lastly, rhythm was coded when the PIC paused team activity to ana-

lyze the patient’s rhythm, presence of a pulse, and determined the

next course of action.

Discussion

In this study we utilized fNIRS as a physiologic measure of cognitive

load in order to identify moments in which EMS providers experi-

enced an increase in cognitive demand during POHCA simulations.

Our findings suggest that while there were numerous event types

where EMS providers experienced increased cognitive load, the

most common event types were surrounding the calculation and

administration of drugs, defibrillation, and rhythm and pulse checks.

Prior works exploring cognitive load during resuscitation simula-

tion have commonly relied on self-assessment measures such as

the NASA-TLX, or physiologic measures such as changes in heart

rate or cortisol levels to determine levels of workload.18 In addition,

much of the work has centered on the variation of cognitive load

between team members, showing that team leads often have the



Fig. 1 – Output in one of six fNIRS channels from the AIDE algorithm providing time points of interest.

Table 1 – PIC characteristics, data represented as mean (SD).

PIC Characteristics, n = 18

Gender (Male, Female) 17.1

Age 32 (7)

Years of Experience 7.9 (6.7)

Pediatric cardiac arrests treated in past year 1.3 (0.5)

Simulated pediatric cardiac arrests treated in past year 1.8 (0.6)
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highest level of workload and that cases involving pediatric patients

result in increased cognitive load.19–21 This study builds upon the

work of others, exploring the use of fNIRS as a physiologic measure

that can be used in ecologically valid environments, and focusing on

the specific care events that may lead to increases in cognitive load

among team leaders during resuscitation.

Defibrillation is a critical step that improves a patient’s chances of

long-term survival following OHCA.22 We identified high cognitive

load around defibrillation. This could be related to concern for team

safety (clearing the patient); calculating age-appropriate energy

dose; and anticipating that defibrillation may lead to ROSC and a

consequent change in management. We separately identified a

physiologic spike in cognitive load at the time of the rhythm check.
We theorize this may be related to interpretation of pediatric rhythms

and the determination of shockable vs non-shockable algorithm. Int

erestingly, this cognitive challenge is the basis for the development

of AEDs, however, EMS crews generally did not use the AED mode

of their defibrillator during the simulated resuscitation.

Finally, medication dosing presents a unique challenge in the

resuscitation of POHCA due to weight-based dosing requirements.

A robust literature has described medication dosing errors in the pre-

hospital setting and some have speculated that high cognitive load

may be a factor contributing to error.5,6 Our observation of a physio-

logic spike in cognitive load may support this theory. Specific cogni-

tive tasks related to medication delivery in pediatric resuscitation

include navigating cognitive aids, identifying the correct medication



Fig. 2 – The proportion of PICs who experienced cognitive load while performing specific tasks during a simulated

resuscitation.
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and syringe size, drawing up the dose, double checking the dose,

and administering the medication.

While we have proposed a number of potential explanations for

events associated with high cognitive load, it is possible that the

low-frequency, high-stakes nature of pediatric resuscitation is

inherently stressful and may contribute to cognitive load even

among events well practiced by paramedics caring for adult car-

diac arrest. Studies have previously described reasons for high

levels of EMS provider stress inherently related to pediatric

patients, including perceived vulnerability, sympathy for the patient,

and insufficient exposure.23 We acknowledge the exploratory nat-

ure of this work which provides fertile ground for future confirma-

tory studies with the ultimate goal of identifying potential

experimental interventions to mitigate cognitive load during

POHCA resuscitation.

Limitations

This study contains limitations. The biggest limitation is that we used

simulated events and cognitive load in patient resuscitations may dif-

fer. We tried to mitigate this limitation through the use of high-fidelity

manikins and professional actors. Additionally, in each simulation

session fNIRS data was only collected from one participant, the

PIC. Although the PIC on each team was responsible for the same

general duties, specific tasks might have differed on a case-to-

case basis given the unconstrained simulation environment. It is also

plausible that the PIC and other team members experienced load dif-

ferently because of the variation in the responsibilities while deliver-

ing care. Additional studies would be needed to further explore the
impact that provider role has on cognitive load and how load is dis-

tributed among teams. Lastly, given the observational approach to

this study, we were unable to determine the exact stimuli that caused

each event. Because of this, there is a possibility for false negatives

and positives in our coded events.

Conclusion

During POHCA simulations, EMS providers commonly experienced

increased cognitive load surrounding the performance of tasks

related to medication administration, defibrillation, and rhythm analy-

sis. The findings from this exploratory study may guide future studies

exploring cognitive load during pediatric resuscitation and the devel-

opment of new interventions to improve care.
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