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Abstract: In this study, we developed and validated a new proposed parameter quantifying the
interaction strength between natural and/or synthetic molecules with paramagnetic metal ions.
The Metal ion Recognition Index, Miri, is a quantitative parameter to describe the proton environment
and to define their involvement in the inner and/or outer sphere of the paramagnetic metal ion.
The method is based on the analysis of NMR proton spin-lattice relaxation rates of a specific ligand
in both the diamagnetic and paramagnetic conditions. The proposed procedure is also useful to
calculate the ligand proton spin-lattice relaxation rate in the paramagnetic bound conditions, which
is typically very difficult to determine experimentally. Miri was used to compare the ligand proton
involvement toward different paramagnetic species, in particular the Copper(Il)-Piroxicam system.
Copper(Il)-Piroxicam complex is one of the most active anti-inflammatory and anti-arthritic species.
Miri provides an opportunity to improve our knowledge of metal-ligand complexes that play a
fundamental role in bioinorganic interactions.

Keywords: NMR spectroscopy; 'H-NMR; metal ion recognition index; paramagnetic systems;
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1. Introduction

Theoretical and experimental studies on metal-ligand interactions are an important field of
research [1-5]. Metal-ligand complexes are very important for their applications in medicine,
biology, chemistry, agriculture, etc. [6-13]. The formation of complexes between bioactive substances
and metal ions, can produce different outcomes: (i) increase the pharmacological effects [14,15],
(ii) reduce possible toxic side effects [16,17], (iii) modulate biological activities of both ligands and
metal ions [18,19], (iv) contribute to the delivery of the bioactive substances towards their biological
targets [20,21]. In the latter case, the metal complexing represents one of the possible methods
to couple synergic pharmacological contributions and more efficient delivery systems (e.g., the
formation of molecular clusters [22], the encapsulation of the metal complex into lipid or liposomal
formulations [23-25], and the inclusion of complexes in carrier based hydrogels [26].
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Natural and synthetic anti-inflammatory molecules have been widely investigated to find more
effective compounds being able to interact with specific receptor sites of the biochemical pathway
involved in the activation and maintenance of the inflammatory processes [27-30]. Metal complexes
of the most active anti-inflammatory molecules are good candidates to become potent inhibitors of
inflammation processes. The presence of a paramagnetic center in solution was used in the past [31-37],
and more recently to investigate the structural and dynamical properties of metal-biopolymer
complexes of peptides and proteins [38-47].

In the present study, a new method to determine the strength of the interaction between a
ligand and a paramagnetic metal ion in solution, was developed and validated. The method is
based on the analysis of the paramagnetic contributions to the ligand NMR proton spin-lattice
relaxation rates. The experimental results obtained in both diamagnetic and paramagnetic systems
were used with developing a new parameter, the “Metal Ion Recognition Index”, Miri. This new
parameter provides a number of important uses: (a) as a quantitative parameter associated to a
specific mathematical and chemical meaning, (b) to discriminate the proton environment around the
paramagnetic metal ion and (c) to compare the paramagnetic contributions for different metal-ligand
systems. Miri can be determined for any stoichiometry of the metal-ligand complex, it is formally
related to the thermodynamic equilibrium constant (K¢;). The method offers the possibility to calculate
a parameter that is very rarely reported, i.e., the proton spin-lattice relaxation rates in the pure
paramagnetic environment (Ry,,).

The method was validated using Copper(II)-Piroxicam, Cu(II)-Pix, being one of the most active
anti-inflammatory and anti-arthritic species [48-51]. The crystal structure of the Cu(Il)-Piroxicam
complex is known [49].

2. Results and Discussion

2.1. Theory

Both the proton relaxation rate and line shape analysis suggested that, in a diamagnetic system,
Piroxicam underwent fast motion conditions, i.e., woTc << 1, where wy is the proton Larmor frequency
and 7. is the correlation time modulating the re-orientational motions. In the presence of the
paramagnetic Cu(II) ions, the ligand may exist in either the bound (m) or in the free (f) environments.
In the presence of fast chemical exchange between the bound and the free environments, a paramagnetic
contribution to the ligand proton relaxation rates can be detected as:

Rlp =R exp le @

where Ry, is the paramagnetic contribution to the relaxation rate, Rjexp the experimental relaxation
rate in the paramagnetic system, and Ry the relaxation rate in the diamagnetic system.
Considering the following equilibrium:

Cu(Il)+L — Cu(Il) - L
if fast chemical exchange conditions apply, Riexp is defined as:
Rlexp = XmRim +XfR1f 2)

where, Ry, is the proton relaxation rate of the paramagnetic complex, and x and xy are the molar
fractions of the metal complex and the free ligand, respectively. Assuming that xyis close to 1 (as the
Ligand concentration is usually much higher than the paramagnetic ion concentration):

IN| exp — XmRim + le ®3)
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and
Ry exp le = XmRim 4
or
Rip = XmRim &)
Xm can be defined as:
[Cu(IT) — L]

"= Cull)] + 1] ©

where, [Cu(I)-L], is the concentration of the complex, [L] is the concentration of the free ligand, and
[Cu(II)] is the concentration of the free metal ion. Considering, as previously pointed out, that the
ligand concentration is much higher than the metal ion concentration, [L] >> [Cu(II)], then:

~ [Cu(Il) — L]
The thermodynamic equilibrium constant for the Cu(ll)-L interaction (at equilibrium) can be
defined as:
~[Cu(ll)-L] [Cu(II) — L] ®)
O [Cu(D]+ (L] ([Cu(ID)o] — [Cu(ID) — L][L]
being the [Cu(II)] concentration equal to: [Cu(Il)g] — [Cu(Il)-L]. Then:
Keg[Cu(IT)o][L]
Cu(ll)- L= ——————=— 9
Introducing this equation in Equation (7), then:
Keg[Cu(I1)o][L]
_ 10
= 4 Ky LD o
" KaglCu(I1)g
eqlSU U)o
_ 11
X T K1 an
Substituting x, in Equation (5), then:
_ Keq[Cu(I1),]
Ryp = T Kegll] m (12)
Assuming the term:
_ Ka o Miri (13)
T+ Keg[L]

Miri is then defined as “Metal Ion Recognition Index”. Miri is a constant at constant temperature
and constant ligand concentration. From Equation (12):

Ry = Miri[Cu(II),] (14)

Equation (14) is the equation of a straight line passing through the origin. Plotting the calculated
Ryp values, as a function of [Cu(Il)o], the value of Miri can be calculated from the slope of the linear
regression line. Miri measures the strength of the paramagnetic interaction, between the metal ion
and a specific proton of the ligand molecule. It also helps define the proton environment around the
paramagnetic ion.

In case of the presence of more ligand molecules in the metal coordination site, the equilibrium is
defined as:

nL + Cu(II) — [Cu(II) — (L),]
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Following a similar logic:
Keg[L]" " [Cu(IT),]
= 7 le
1+ Key[L]

Ryp (15)
which is an equation of a straight line passing through the origin, when Ry, vs. [Cu(II)o] is reported
(maintaining both the temperature and ligand concentration [L], constants).

Similarly to Equation (14), Equation (15) can be reduced to:

Ryp = Miri[Cu(II),] (16)
where Miri in this case is: .
Miri = wzz 17)
1+ Keq[L]n 1m

Equations (12) and (15) are powerful, in fact Equation (12) can be transformed to:

1 14 Ry[l
Ryp B [Cu(IT)o]KegR1m (18)
or
1 _ 1 n L] )

Rilp [C”(H)O]Ke‘qum [C”(H)O]le

In this case, there is a linear dependence between 1/Ry, and [L], as the paramagnetic ion
concentration [Cu(Il)o], is maintained constant. The slope of the straight line between them leads to the
determination of Rj,,, while the intercept allows for the estimation of the thermodynamic equilibrium
constant. In the case of the formation of the metal-ligand complex with a higher stoichiometry, like
Cu(Il)—(L),, Equation (15), can be transformed as:

1 14 Keg[L]" _ 1 N Keq[L)"
Rip  KegRum[L]" '[Cu(I1)g]  KegRum[L]" '[Cu(Il)g] ~ KegRim[L]" ' [Cu(II),]

(20)

The linearity of 1/Ry, versus [L] is lost and both Ry, and K, cannot be calculated directly from
geometrical analysis.

2.2. The case of Cu(1l)-Piroxicam Complex

The proton spin-lattice relaxation rates of Piroxicam (Figure 1) in both the diamagnetic and
paramagnetic systems are reported in Table 1. The paramagnetic system refers to the proton spin-lattice
relaxation rate measured as a function of the copper(Il) concentration, in the range of 2 x 10~° to
7 x 10~* mol L~!. The paramagnetic contribution to proton spin-lattice relaxation, (R1p = Riexp — Ryf;
Equation (1)), of Piroxicam proton nuclei are reported in Table 2.

1 S/N\CHH
//\\ 15 }
O O

Figure 1. Structure and atom numbering of Piroxicam.
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Table 1. Non-selective proton relaxation rate Ryy (s~1) of Piroxicam solution (0.1 mol L) versus Cu(Il)
concentration. Maximum experimental error, <5%.

[Cu] (mol L™ 1)
0 2x107% 4x1075 7x1075 2x107% 4x107% 7x10*

Proton 8 (ppm)

H14 8.42 0.40 0.60 0.85 1.20 2.70 5.05 8.65
H2/H5 8.06 0.40 0.45 0.50 0.60 0.80 1.25 1.85
H12 7.99 0.45 0.55 0.65 0.80 1.55 2.65 4.45
H11/H3 7.89 0.50 0.55 0.56 0.70 0.95 1.40 227
H4 7.86 0.55 0.60 0.65 0.85 0.95 1.25 1.85
H13 7.28 0.45 0.55 0.75 1.00 2.15 3.65 6.35
H15 2.87 1.10 1.25 1.40 1.80 3.10 5.20 8.25

Table 2. Paramagnetic proton relaxation rate contribution Ry, (s™1) of Piroxicam solution (0.1 mol L~1)
versus Cu(Il) concentration. Maximum experimental error, <5%.

[Cu] (mol L™ 1)

i) m
Proton ppm) 2 % 10753 4 %1073 7 x 1075 2 x 1074 4x 104 7 x 104
H14 8.42 0.20 0.45 0.80 2.30 465 8.25
H2/H5 8.06 0.05 0.10 0.20 0.40 0.85 1.45
H12 7.99 0.10 0.20 0.35 1.10 2.20 4.00
H11/H3 7.89 0.05 0.10 0.20 0.45 0.90 1.60
H4 7.86 0.05 0.10 0.30 0.40 0.70 1.30
H13 7.28 0.10 0.30 0.55 1.70 3.20 5.90
H15 2.87 0.15 0.30 0.70 2.00 4.10 7.15

The “Metal ion Recognition Index” Miri, for the different molecular moieties of Piroxicam was
calculated from the linear regression analysis (Figure 2), which resulted in Miri values by 11,728, 8326,
and 10,201 s~! mol~! L for the H14, H13 and the methyl H15 protons, respectively. These results
confirm the validity of Equations (14) and (16) and allow for the quantification of the specific strength
of the Cu(II)-Piroxicam complex.

y=11728x
9.0

Rlp(s'l)

8.0 y=10201x

7.0
y=8326.2x

6.0

5.0

40 & H14

3.0
H13
2.0
H15
1.0

1x10% 2x10% 3x10% 4x10% 5x10% 6x10% 7x10* 8x10*

Cu?* (mol.dm3)

Figure 2. Paramagnetic contributions (Ry,) to the proton relaxation rates for the H13, H14, and H15 of
0.1 mol L~ Piroxicam solution versus Cu(Il) molar concentration.

We also explored the applicability of equations (19) and (20) to the Cu(ll)-Piroxicam system.
On the basis of previous studies on the Cu(Il)-Piroxicam complex in solution [50,52,53] and on
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Cu(Il)-Piroxicam crystal structure (Figure 3, [49]), we assumed the prevalence of the Cu(II)(Pix),
complex in solution.

Figure 3. X-ray structure of [Cull(Pix),] complex [49].

As the Piroxicam concentration is a much higher than that of the Copper ion, we consider a
predominance of the Cu(Il)(Pix), complex in the present experimental conditions. On the basis of these
considerations, Equation (19) cannot be applied and Equation (20), is then modified to:

R 1 4 [Pix]
Rip  KegRym[Pix][Cu(II)g] = Ryp[Cu(II)]

(21)

Equation (21) presents two terms, the first term can be neglected if the equilibrium constant of the
complex, K, is higher than 1 x 10%. However, a higher value of K., for the complex was previously
reported [52,53].

If we neglect the first term, Equation (21) is a linear equation where 1/ Ry, varies with Piroxicam
concentration. Table 3 reports the paramagnetic contributions to proton spin-lattice relaxation,
(R1p = Riexp — Ryy; Equation (1)) of Piroxicam proton nuclei as a function of Piroxicam concentration
(in the range of 0.25to 5 x 1072 mol L71), in the presence of Cu(Il), 1 x 10~* mol L~! concentration.

Table 3. Paramagnetic proton relaxation rate Ry, (s~1) of Piroxicam solutions at several concentrations
in the presence of Cu(II) (1 x 104 mol L~1). Maximum experimental error, <5%.

[Cu] (mol L™ 1)

Proton 5 (ppm)
0.25 0.20 0.15 0.10 5x 1075
H14 8.42 0.46 0.55 0.75 1.20 2.10
H2/H5 8.06 0.12 0.15 0.20 0.35 0.45
Hi12 7.99 0.30 0.35 0.45 0.65 1.15
H11/H3 7.89 0.10 0.12 0.17 0.25 0.45
HA4 7.86 0.12 0.15 0.20 0.30 0.60
H13 7.28 0.37 0.45 0.65 0.95 1.75
H15 2.87 0.38 0.45 0.60 0.95 1.70

These data can be used to determine Ry, the proton spin-lattice relaxation rate in the pure
paramagnetic site. As expected from Equation (21), it is a linear dependence of 1/Ry, on Piroxicam
concentration (Figure 4).

The values of Ry, calculated from the slopes of the fitted lines for the H12, H13, H14, and H15
(Table 4) indicated that each proton experience a specific paramagnetic environment as a consequence
of the different metal ion proton distances [54].
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Figure 4. 1/ Rlp to the proton relaxation rates for the H13, H14, H12, and H15 versus the
Piroxicam concentration.

Table 4. Calculated Ry, values from linear regression analysis of the data reported in Figure 2, for H14,
H12, H13, and H15 protons of Piroxicam.

Proton & (ppm) Rim (s71)
H14 8.42 1129 4+ 55
Hi12 7.99 730 £ 36
H13 7.28 943 + 46
H15 2.87 917 £+ 44

The calculated spin-lattice relaxation rates in the pure paramagnetic site (R1,,), were then used to
study the dynamical properties of the metal-ligand complex. The relaxation rate at the paramagnetic
site was defined as [55-57]:

2,2 2 2
1 :Z'ylgS(fé—I—l)/S( 3% 7t >+ZS(S+1)<A>< T ) )

_l’_
Thm 15 1+ Witz 1+ wit? 3 h 1+ wit?

where the dipolar term originates from the electron-nucleus dipolar contribution, while the scalar
one from the modulation of the scalar interaction between the electron spin S and the nuclear one I.
In Equation (22), wy and wg are the Larmor frequencies of nucleus and electron, respectively (where
w] >> ws), g is the Lande g factor, B is the Bohr magneton, r is the distance between the nucleus and
the paramagnetic species, and (A /) is the electron-nuclear hyperfine coupling constant. Values 7,
and T are correlation times that modulate dipolar and scalar interactions, and are defined as:

L ok ALY (23)

and
-1

o l=1l41,! (24)
where 7, is the rotational correlation time, 7, the electron spin relaxation time, and 7, the life time of
the nucleus in the bound site.

In the case of paramagnetic systems containing Cu(II) ions in solution, Equation (22) is dominated
essentially by the dipolar contribution [58-60]. This allows for the determination of the correlation time
value T, in fact from the crystalline structure of the [Cu(II)(Pix),] complex [50], each Cu(Il) ... proton
nuclei distance can be calculated. In this specific case, the distances between the paramagnetic ion
Cu(Il) and the nuclei H2 and H3 are 4.14, 4.58 A, respectively. Introducing the metal-ligand distances
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and the Ry, values in Equation (22), the correlation time (7.) modulating the dipolar contribution was
calculated. In the present case, this value was determined ranging 3 x 10719-5 x 1071° s. These data
are compatible to the value of the rotational correlation time of the complex. This important result
confirms that for Cu(ll) complexes in solution, the dipolar correlation time is dominated by the
molecular tumbling rotation ;.

3. Materials and Methods

3.1. Materials

Piroxicam (4-hydroxy-2-methyl-1,1-dioxo-N-pyridinyl-2H-1,2-benzothiazine-3-carboxamide) and
copper perchlorate hexahydrate Cu(ClO4),-6H,O, were purchased from Sigma-Aldrich (Milan, Italy)
and used without any further purification. The deuterated solvent, DMSO-dg, was 99.96 atom %D and
was also from Sigma-Aldrich.

3.2. NMR Measurements

The solutions for the NMR experiments were obtained by dissolving the appropriate amounts
of Piroxicam (0.1 mol L™!) and Cu(ClOy),-6H,0 in DMSO-d,. Paramagnetic purity of the Piroxicam
solution was tested by analyzing the NMR proton spin-lattice relaxation rates of both the solvent and
water signals.

'H-NMR spectra were obtained on a Bruker DRX 600 spectrometer, operating at 600.13 MHz.
The proton spin-lattice relaxation rates (R;) were measured using the inversion-recovery (180-t-90-t),
sequence, where t is the recovery delay after the inversion-recovery perturbation. The R; values
were calculated by computer fitting of the relaxation curves. The maximum experimental error in the
relaxation rate measurements was <5%. All the spectra were processed using the Bruker Software
TOPSPIN3.5. The temperature was held constant at 298 + 1 K for all experiments; and the maximum
experimental error on chemical shifts was <2%.

4. Conclusions

A new approach was developed to study the interaction processes between paramagnetic species
and biological and/or synthetic ligands. A new parameter, the metal ion recognition index, Miri, was
determined by plotting proton spin-lattice relaxation versus the concentration of the paramagnetic
ion. The main advantage of this approach, with respect to the measurement of the experimental
paramagnetic contribution to nuclear relaxation, is the possibility to define a new parameter, Miri. It is
formally related to two important chemical parameters, the formation constant of the complex and
the relaxation rate of the nuclear species in the pure paramagnetic site, Ry,,. The developed method
provides a new way to their calculation. In the case of 1:1 complexes, both parameters can be calculated.
For complexes with more ligands at the metal site, it is only possible to calculate the relaxation rate in
the pure paramagnetic site. In the present investigation, combining this information with structural
data, obtained from diffraction study of the crystal structure, the rotational correlation time of the
complex was also calculated.

The Miri is also an easy-to-calculate index giving the opportunity to compare the interaction
behavior between a selected metal and different ligands or different metals and a selected ligand.
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