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a b s t r a c t 

The coronavirus disease 2019 (COVID-19) pandemic has been ongoing for more than 3 years, with an enormous 
impact on global health and economies. In some patients, symptoms and signs may remain after recovery from 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which cannot be explained by an alter- 
nate diagnosis; this condition has been defined as long COVID. Long COVID may exist in patients with both mild 
and severe disease and is prevalent after infection with different SARS-CoV-2 variants. The most common symp- 
toms include fatigue, dyspnea, and other symptoms involving multiple organs. Vaccination results in lower rates 
of long COVID. To date, the mechanisms of long COVID remain unclear. In this narrative review, we summarized 
the clinical presentations and current evidence regarding the pathogenesis of long COVID. 
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Long COVID, also known as post coronavirus disease 2019 (COVID-
9) syndrome or post-acute sequelae of severe acute respiratory syn-
rome coronavirus 2 (SARS-CoV-2) infection (PASC), is defined as signs
nd symptoms that develop during or after an infection consistent with
OVID-19, which continue for more than 12 weeks, and are not ex-
lained by an alternate diagnosis. 1–3 

Long COVID is highly heterogeneous in its clinical presentation.
ore than 200 different symptoms are ascribed to long COVID. 4 The
ost commonly reported complaints include shortness of breath, fa-

igue, brain fog, anosmia, hair loss, sexual dysfunction, and sleep al-
eration. 5–11 The duration of long COVID symptoms is unclear. We and
ther researchers have found that patients infected with the original
ARS-CoV-2 strain still had long COVID symptoms more than 2 years
fter hospital discharge. 11–13 The proportion of each symptom changes
ver time based on a 2-year follow-up study in China, which is summa-
ized in Fig. 1 . 

Underlying reasons for developing lingering symptoms of COVID-19
nfection are unclear. In multiple cohort studies, female sex, 14 , 15 obe-
ity, 16 and severe COVID-19 disease were identified as the main risk
actors. However, long COVID is not limited to only patients with se-
ere forms of COVID-19. Outpatients with mild symptoms during the
∗ Correspondence to: Department of Pulmonary and Critical Care Medicine, China–
E-mail address: jiuyang.xu@126.com (J. Xu) 

# Yan Liu and Xiaoying Gu contributed equally to this work. 

ttps://doi.org/10.1016/j.pccm.2023.10.003 
eceived 29 January 2023 ; Available online 6 December 2023 
097-1982/© 2023 The Authors. Published by Elsevier B.V. on behalf of Chinese Med
 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
cute phase may also experience long COVID. 17–19 Interestingly, in-
ection with different SARS-CoV-2 variants is associated with varying
ong COVID phenotypes, 20 possibly owing to differences in viral–host
nteractions. Among patients infected with the original virus strain, a
igher percentage of them had long COVID than did patients infected
ith alpha or delta SARS-CoV-2 variants. 21 The omicron variant is as-

ociated with a lower risk of long COVID in comparison with the delta
ariant. 22–25 

The clinical findings and characteristics of long COVID differ among
ge groups. Older adults are more likely to be symptomatic, with the
ost common symptoms being fatigue and dyspnea. This group is more

ikely to have cough and arthralgia, as well as abnormal chest imag-
ng findings and pulmonary function tests. 26 The conditions of chil-
ren and adolescents are different and more complex in comparison
ith adults. Several large national studies from Germany, the United
ingdom (UK), 27 Norway, 28 Denmark, 18 , 29 , 30 and the United States
US) 31 have contributed further evidence on the health and social im-
acts of long COVID among children and adolescents, with conflicting
esults. 18 , 32 In some studies, no difference was found in long-lasting
ymptoms between children post COVID and healthy children. More gas-
rointestinal symptoms of long COVID were observed in immunocom-
romised children, but fatigue levels were higher in immunocompetent
hildren. 33 
Japan Friendship Hospital, Beijing 1000029, China. 
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Fig. 1. Symptoms and symptom proportions in long COVID. 
A longitudinal study among patients in Wuhan with the orig- 
inal SARS-CoV-2 strain reported symptoms and the changing 
proportion of symptoms of long COVID at different follow-up 
time. 11 SARS-CoV-2: Severe acute respiratory syndrome coro- 
navirus 2. 

 

l  

r  

c  

n  

r  

q
 

c  

r  

o  

m  

b  

i  

s  

i

A

 

s  

s  

w  

a

A

 

C  

t  

i  

t  

i  

l  

o
 

i  

t  

t  

(  

C  

C  

e  

a  

a  

t  

c  

a  

l  

c  

c  

b  

t  

fl
 

f  

C  

t  
Vaccines against SARS-CoV-2 infection also offer protection against
ong COVID. 34–36 Krishna et al 37 reported a reduction in long COVID
eferrals at a teaching hospital in the UK over time, which is possibly
orrelated with reinfection and an increased rate of vaccination. Vacci-
ated people with breakthrough SARS-CoV-2 infection exhibited a lower
isk in death during the acute phase and lower incident post-acute se-
uelae. 38 

The mechanisms of long COVID are unclear. Leading hypotheses in-
lude alteration of the immune system, the persistence of residual vi-
al components driving chronic inflammation, endothelial dysfunction
r activation, microembolization, mitochondrial dysfunction, abnormal
etabolites, reactivation of pre-existing chronic viral infection, 39 dys-

iosis of microbiota, and unrepaired tissue damage. 40 These hypotheses
ntersect and overlap. We summarized the common symptoms and pos-
ible mechanisms of long COVID in Fig. 2 , which are discussed in detail
n the following sections. 

lteration of the immune system 

Patients with long COVID have an immune system that is in con-
tant high alert. 2 Changes have been observed in both the SARS-CoV-2-
pecific adaptive and non-specific innate immune responses of patients
ith long COVID. Alterations of autoreactive immune responses have
lso been found. The primary findings are discussed below. 

daptive immune cells in circulation 

The adaptive humoral and cellular immune response against SARS-
oV-2 functions in viral clearance. Immune memory persists after infec-
232 
ion to further protect the host, with virus-specific neutralizing antibod-
es and T-cell responses found up to 12 months post infection. 41 In con-
rast, a compromised immune response may lead to prolonged chronic
mmune activation and possibly long COVID. Studies have found that
ow perforin expression in CD8 + T lymphocytes during the acute phase
f severe SARS-CoV-2 infection predicts long COVID. 42 

Alteration of the adaptive immune response also persists dur-
ng recovery from acute infection. In a longitudinal study of pa-
ients with COVID-19, T-cell subsets exhibited different severity- and
ime-dependent dynamics. 43 An exhausted (PD-1-expressing)/senescent
CD57-expressing) state in CD4 + and CD8 + T cells and perturbance in
D4 + regulatory T cells were found in convalescent patients with long
OVID at 3-month follow-up during recovery from severe disease. The
xhausted/senescent state was still noted in CD8 + T cells up to 6 months
fter severe infection. Together with a decreased naïve cell population
nd augmented granzyme B and interferon gamma (IFN- 𝛾) production,
his suggests unresolved inflammation during long COVID. 43 Another
ohort study also reported high antiviral cytotoxicity in CD8 + T cells
nd higher expression of exhaustion marker PD-1 in individuals with
ong COVID, as compared with patients who had completely recovered,
orresponding to a state of chronic inflammation. 44 The spike-specific
lonal CD4 + T-cell receptor 𝛽 depth was significantly associated with
oth dyspnea and the number of symptoms at 12 months, suggesting
hat infection-induced SARS-CoV-2-specific immune responses might in-
uence long COVID. 45 

The immunopathological features of long COVID in children differ
rom those of adults. Buonsenso et al 46 found that children with long
OVID had a compromised ability to switch from the innate to the adap-
ive immune response, and these children showed a contraction of naïve
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Fig. 2. Common symptoms and possible mechanisms of long COVID. POTS: Postural orthostatic tachycardia syndrome; PTSD: Post-traumatic stress disorder. 
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nd switched B-cell compartment and an unstable balance of regulatory
 lymphocytes. 

nnate immune cells in circulation 

The frequency and function of innate immune cells are also related
o long COVID. Monocytes have been found significantly increased in
requency among patients with severe infection compared with those
ho had mild-to-moderate infection at 1–3 months post recovery, and

hese exhibited higher activation upon in vitro stimulation. However, the
uman leukocyte antigen (HLA) class II marker HLA-DR was found to
ecrease significantly, suggesting suppressed antigen-presenting func-
ion in patients post COVID-19. 47 Increased monocytes may be associ-
ted with worse disease severity, but the subsets of monocytes differ
lightly. 48 Natural killer (NK) cells play a crucial role in controlling vi-
al infection primarily via cytotoxicity and secretion of IFN- 𝛾 cytokine.
K cells are significantly increased in the peripheral blood of patients
ith long COVID in comparison with healthy controls. 47 CD59 high NK

ells are decreased in subgroups with severe infection and are associ-
ted with increased pro-inflammatory cytokines, especially interleukin
 (IL-6), which impairs the expansion and function of NK cells. 47 The
yelopoiesis cytokines granulocyte colony-stimulating factor and gran-
locyte macrophage colony-stimulating factor were found to be higher
n patients with long COVID compared with healthy controls. At one
onth after infection, high serum levels of IL-17 and IL-2 and low serum

evels of IL-4 and IL-10 appear to constitute a cytokine profile of long
OVID. 49 These markers are potential targets for long COVID treatment
nd prevention strategies. Mast cell activation symptoms are also in-
reased in patients with long COVID. 50 , 51 A longitudinal cohort study,
omparing the immune status and changes on lung computed tomog-
aphy (CT) in patients with COVID-19, showed no significant differ-
nce in immune-related indexes compared with healthy controls at 1-
ear follow-up. However, in the abnormal CT group, complement C3
emained at a high level. 52 
233 
utoimmune response 

Beyond abnormal immune cells and cytokines, autoimmune reactive
nflammation is hypothesized to be one cause of long COVID. 53 The au-
oimmune response is associated with the release of autoantigens by ac-
ivated or dying neutrophils, elevation of the neutrophil-to-lymphocyte
atio, and neutrophil extracellular traps. Persistence of neutrophil extra-
ellular traps and anticardiolipin autoantibodies has been found in pa-
ients during the post-acute phase of COVID-19 infection. 54 Wang et al 55 

sed a high-throughput autoantibody discovery technique to screen a
ohort of 197 patients with COVID-19 for autoantibodies against 2770
xtracellular and secreted proteins. The authors found that these pa-
ients exhibited dramatic increases in a wide range of autoantibody reac-
ivities, compared with uninfected controls. 56 We and others have also
hown that antibody against anti-melanoma differentiation-associated
ene 5 is prevalent in patients with COVID-19, and a high titer of this
ntibody is correlated with severe disease and unfavorable outcomes. 57 

 recent German study of 96 patients reported antinuclear antibody
ANA) titers ≥ 1:160 in 43.6% of patients at 12 months after COVID-
9 symptom onset, and these patients had significantly higher propor-
ions of neurocognitive symptoms. 58 Another study showed that post-
cute COVID-19 symptoms are common among COVID-19 patients with
heumatic disease. 59 However, this correlation between long COVID and
utoimmunity is uncertain. A cohort study showed that only 4.3% pa-
ients had higher ANA titers at 8 months after infection, which is lower
han the frequency of ANA positivity in the general population (5%). 60 

nother study found that anti-calprotectin antibodies were associated
ith a return to healthy status at 8 months post infection and may
lay a protective role in the pathology of long COVID. 61 Similarly, IFN-
pecific autoantibodies have been implicated in severe COVID-19 62–64 

nd have been proposed as a potential driver of the persistent symptoms
haracterizing long COVID 

65 ; however, a cohort study with 215 conva-
escent participants with SARS-CoV-2 infection showed that persistent
nti-IFN antibodies were unlikely to contribute to long COVID symp-
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oms. 66 These interesting findings suggest that the geographic distribu-
ion and sociodemographic characteristics of patient populations might
ccount for the different results; thus, further studies are warranted. 

ocal immunity in organs 

The above results are mainly based on studies involving patients’
lood samples, but the immune responses in local tissues or organs may
iffer from those in circulation. Because acquisition of patient specimens
s very difficult, few data on tissue or organ immunity are available. 

The lungs comprise a special organ in that they are connected to the
utside of the body via the airway, and many kinds of resident immune
ells in the lungs play important roles in COVID-19 and long COVID. 67 

issue-resident lymphocytes remain within the respiratory tract after
learance of the primary viral infection and provide immediate and
uperior immunity against reinfection with the same virus. 68 , 69 Dys-
egulated resident T cells have been shown to be associated with lung
nflammation, pathology, and fibrosis after respiratory viral infection,
articularly in older patients. 70 The airway and alveolar immune sys-
em or immune cells are also associated with long COVID. Vijayakumar
t al 71 studied blood and bronchioalveolar lavage fluid (BALF) samples
ollected from individuals with ongoing post-COVID-19 respiratory dis-
ase, and they analyzed immune cell profiling and protein levels using
ow cytometry and proteome analysis. The researchers found signifi-
antly more cells in BALF samples from patients post COVID-19 and that
eutrophils, alveolar macrophages, T cells, and B cells were significantly
ncreased in individuals post COVID-19, even 80 days after primary in-
ection. The proteomes in BALF collected from patients post COVID-19
ere different from those of healthy individuals, although the proteomes

n serum returned to normal. Changes in lung local immunity, including
levated concentrations of proteins involved in epithelial dysfunction,
issue repair, and apoptosis, declined overtime. 

oagulation abnormalities and endothelial dysfunction 

Abnormal coagulation and intravascular thrombosis are known land-
arks of many forms of severe COVID-19 and have been associated with
 higher risk of death. Persisting platelet activation and hyperactivity are
resent in COVID-19 survivors. 72 Elevated D-dimer is also reported in
atients with long COVID, which raises the possibility of thromboem-
olic disease in long COVID. 73 Pretorius et al 74 used proteomics and
uorescence microscopy to study plasma samples from healthy indi-
iduals, individuals with acute COVID-19 and type 2 diabetes melli-
us, and individuals with long COVID. The investigators found large
nomalous (amyloid) deposits (microclots) in plasma samples from pa-
ients with long COVID. These microclots included various inflamma-
ory molecules and 𝛼 2-antiplasmin, various fibrinogen chains, and
erum amyloid A. Heparin-induced extracorporeal low-density lipopro-
ein (HELP)/fibrinogen precipitation apheresis, a kind of treatment that
as been used for septic multi-organ failure, has been used for patients
ith acute COVID-19 or long COVID. 75 Some patients with long COVID
ave travelled to other countries to receive HELP and triple anticoag-
lation therapy, which have not been assessed using modern scientific
ethods; however, most of these patients did not meet the criteria for

aking these anticoagulant drugs and had a high risk of bleeding. 76 Addi-
ional studies are required to validate the general applicability of HELP
r anticoagulant drugs as a treatment for long COVID. 

Routine coagulation parameters such as D-dimer, 77 von Willebrand
actor (VWF), and factor VIII (FVIII) have been used as markers of en-
othelial activation and are also assessed in adults with long COVID.
WF antigen, VWF propeptide, and FVIII are significantly elevated in
atients with long COVID, compared with controls. 78 Mounting evi-
ence suggests that endothelial cells (ECs) are a direct or indirect pref-
rential target of SARS-CoV-2 and that dysfunction of the endothe-
ium is key in COVID-19. 79 Delayed catastrophic thrombotic events,
234 
ascular injury, and endothelial dysfunction have been found in post-
cute COVID-19. 80 , 81 Endothelial dysfunction has a relationship with
icrovascular occlusion in patients with COVID-19; a significant de-

rease in vascular density was found in a prospective, observational co-
ort study of patients with long COVID. 82 , 83 An in vitro study investigat-
ng the effects of patient sera on ECs suggested a pro-angiogenic effect in
erum from patients with post-COVID-19 syndrome as a compensatory
echanism for endothelial dysfunction, which is absent in patients with

ong COVID. 84 Thus, chronic endothelial dysfunction may play a role in
ong COVID, which might explain several of the key symptoms involv-
ng multiple organs. 85 , 86 Blood biomarkers for vasculature transforma-
ion are significantly elevated in long COVID, with angiogenesis markers
angiopoietin-1/P-selectin) yielding a classification accuracy for long
OVID of 96% of the samples, 87 which has the potential for diagnos-
ic and therapeutic applications. Endothelial biomarkers (endothelin 1
nd angiopoietin-2) have also been found to alter in patients with post-
OVID-19 syndrome. 88 During long COVID, there is ongoing endothelial
ell dysfunction, dysregulated angiogenesis, as well as imbalance of the
WF and a disintegrin and metalloprotease with thrombospondin type
 repeats, member 13 axis. Immunophenotyping has revealed signifi-
antly elevated intermediate monocytes and activated CD4 + and CD8 +
 cells in convalescence, which are correlated with thrombin generation
nd endotheliopathy markers, respectively, showing cross talk between
Cs and immune cells. 89 L-arginine and vitamin C can regulate endothe-
ial dysfunction and oxidative stress, 90 , 91 and some studies show the
avorable effects of these drugs in patients with long COVID. 90 , 92 

EC dysfunction and abnormal D-dimer are also associated with long
OVID in children, and children with a more severe spectrum of dis-
ase, characterized by three or more persisting symptoms, had higher
-dimer levels than those who fully recovered from COVID-19. How-
ver, VWF, FVIII, VWF ristocetin cofactor, and fibrinogen showed no
ignificant differences. 86 

ersistent presence of virus or viral components 

Persistent existence of viral ribonucleic acid (RNA), protein, or whole
irus could be the cause of autonomic dysfunction, independent of hos-
italization status and severity of acute COVID-19 illness. 93 Occult vi-
al persistence is another major underlying pathophysiological mecha-
ism in long COVID. 94 SARS-CoV-2 RNA can be found in the feces, 95 , 96 

lasma, and urine of patients with COVID-19 95 up to 7 months after in-
ection. In another study, persistence of residual antigen and SARS-CoV-
 RNA was found in tissues (the appendix, skin, and breast) of patients
ith long COVID. 97 In addition to persistent virus and RNA, a common

et of autoantigens is recognized in individuals post COVID-19. 61 Persis-
ent circulating SARS-CoV-2 spike protein can be detected in the plasma
f patients with long COVID up to 12 months after infection, which is
hought to be associated with long COVID. 98 Moreover, the long-term
evel of anti-spike immunoglobulin G is associated with the breadth of
utoreactivity post COVID-19. 61 

itochondrial dysfunction 

Mitochondria play a central role in the host response to viral in-
ection and immunity, functioning as a platform for immune signaling
y engaging the IFN system. Mitochondrial double-stranded RNA trig-
ers antiviral signaling, including in COVID-19. 99 The clinical presenta-
ion of long COVID partially overlaps with post-viral fatigue syndrome,
nd several studies support the hypothesis that the disruption of mito-
hondrial metabolic pathways is a possible cause of long COVID. 100 , 101 

iller et al 102 found that SARS-CoV-2 infection can lower the expres-
ion of nuclear-encoded genes related to mitochondrial complex I, 103 

hich can explain the dysfunction of mitochondria. The loss of mito-
hondrial membrane potential, which indicates mitochondrial dysfunc-
ion, has been observed in leukocytes from patients post COVID-19. 104 

ozzi 100 analyzed the published RNA dataset of human peripheral blood
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ononuclear cells and found that SARS-CoV-2 infection affected the
etabolism of small mitochondrial RNAs without altering overall mi-

ochondrial transcription. Another study on the plasma metabolic phe-
otype showed that PASC plasma metabolites are indicative of altered
atty acid metabolism and dysfunctional mitochondria-dependent lipid
atabolism. 105 These metabolic profiles obtained at rest are consistent
ith previously reported mitochondrial dysfunction during exercise and
ay pave the way for therapeutic intervention focused on restoring
itochondrial fat-burning capacity. 106 Understanding of mitochondrial
ysfunction post SARS-CoV-2 infection may help in improving the un-
erstanding of long COVID-19 and resulting multi-organ dysfunction
uch as cardiovascular disorders, 107 as well as selective neuronal mi-
ochondrial targeting in SARS-CoV-2 infection, which affects cognitive
rocesses to induce "brain fog" in long COVID. 108 

ut microbiota 

Persistent SARS-CoV-2 RNA can be found in the feces of patients
ith long COVID, as previously mentioned. Recent studies have shown

hat gut dysbiosis is linked to the severity of COVID-19 and persis-
ent complications months after disease resolution. In a prospective
tudy, Su et al 109 used short-gun metagenomic sequencing to determine
ong-term alterations in the gut microbiome of patients with COVID-
9. They found that gut dysbiosis in 78.7% of patients with PASC had
ot fully recovered with an average of 14-month follow-up. In another
tudy, Liu et al 110 conducted multi-kingdom gut microbiota analysis and
ound that cluster 1 (characterized by a predominance of Ruminococcus

navus , Klebsiella quasipneumoniae , Aspergillus flavus , Candida glabrata ,
andida albicans [ C. albicans ], Mycobacterium phage MyraDee, and
seudomonas virus Pf1) was significantly associated with severe COVID-
9 and the development of PASC, which indicates that multi-kingdom
icrobiota may serve as a prognostic tool in patients with COVID-19.
ublished reports suggest the potential role of an altered gut microbiome
n the gut–brain axis and associated neurological sequalae because al-
ered gut microbiota cause increased expression of various mediators.
or instance, zonulin causes disruption of tight junctions and stimulates
he enteric nervous system and signals to the central nervous system
CNS), precipitating neurological sequalae in long COVID. 111 

nrepaired tissue damage in different organs or systems 

ung 

Respiratory symptoms, including shortness of breath, dyspnea, and
atigue, are the most common symptoms of long COVID, with dys-
nea present in as many as 13.4% of survivors 2 years post infec-
ion. 112 We and others have reported persistent impaired pulmonary
unction and abnormal lung CT findings in COVID-19 survivors. 8 , 113–115 

ositron emission tomography–computed tomography (PET-CT) has
lso revealed abnormal metabolism in the lungs and brains of patients
ith long COVID, in comparison with healthy controls. 116–118 The mech-
nism of persistent lung injury in long COVID is unclear, and relevant
uman studies are lacking. One hypothesis is that long COVID is as-
ociated with impaired endothelial function. 119 In patients with long
OVID, signs of lung fibrosis is associated with activation of the absent

n melanoma 2 (AIM2) receptor in circulating cells and the release of
L-1 𝛼, IFN- 𝛼, and transforming growth factor beta. 120 

ardiovascular system 

COVID-19 can lead to long-term severe post-COVID myoendocardi-
is, which is characterized by prolonged persistence of coronavirus in the
ardiomyocytes, endothelium, and macrophages (up to 18 months) in
ombination with high immune activity. 121 Postural orthostatic tachy-
ardia syndrome is another sequela of COVID-19, 122 but the cause is
nclear. Direct viral damage, autonomic nerve damage, and brainstem
235 
njury might be related to this symptom. In a cohort study of patients
ecovering from COVID-19, cardiovascular magnetic resonance imag-
ng (MRI) revealed cardiac involvement in 78 patients (78%) and ongo-
ng myocardial inflammation in 60 patients (60%). These findings were
ighly prevalent regardless of pre-existing conditions, overall course
nd severity of the acute illness, and time from the original diagno-
is. 123 Arterial wall stiffening, endothelial dysfunction, and a persis-
ently high oxidative burden might contribute to cardiac dysfunction
n long COVID. 124 , 125 Long-term follow-up of patients with COVID-19
eveals a higher prevalence of hypertension and an increase in mortal-
ty following hospital discharge. 126 The PROLUN (Patient-Related Out-
omes and Lung Function After Hospitalization for COVID-19) study
emonstrated right ventricular and left ventricular diastolic dysfunction
n approximately 50% of patients post COVID-19; among these, 27% of
atients still had arrhythmias 3 months after infection. 127 Arrhythmo-
enic right ventricular cardiomyopathy presents with right ventricular
ysfunction and arrhythmias and is associated with anti-desmoglein-2
DSG2) antibodies. In serum samples of patients with long COVID, a high
requency of anti-DSG2 antibodies is found, which is related to cardiac
equelae. 128 

idney 

The expression of angiotensin-converting enzyme 2 (ACE2) in the
idney is higher than that in the lung. Therefore, it is hypothesized that
ARS-CoV-2 may infect the kidney and induce acute kidney injury. Al-
hough creatinine can return to normal in most patients following re-
overy from acute infection, several studies in different countries have
hown that the kidney function of patients with long COVID may not
ompletely recover. 7 , 129 A study from Shenzhen, China showed that a
ecrease in the glomerular filtration rate was still present 2 years af-
er infection with SARS-CoV-2 wildtype virus. 12 Lipid mediators have
 potential role in causing renal injury and fibrosis in long COVID. 130 

ansen et al 131 reported that SARS-CoV-2 directly infected kidney cells,
ed to increased collagen 1 protein expression, and was associated with
ncreased tubule-interstitial kidney fibrosis in patient autopsy samples
nd in a human-induced pluripotent stem cell-derived kidney organoid.
hese could explain both acute kidney injury in patients with COVID-
9 and the development of chronic kidney disease in long COVID. Post-
OVID-19 patients with long COVID are at heightened risk for acute kid-
ey injury or chronic kidney disease (CKD), and these conditions further
ncrease their mortality risk. 132 The multi-ligand receptor for advanced
lycation end-products (RAGE) and its ligands are contributing factors
n CKD and COVID-19, as these two diseases promote RAGE activity.
he downstream effects include inflammation, cellular dysfunction, tis-
ue injury, and fibrosis. Interventions to reduce RAGE and RAGE ligand
evels may offer novel approaches to protect kidney function in long
OVID. 132 

entral and peripheral nervous systems 

SARS-CoV-2 spreads to the brain via either the nasal cavity or blood
tream and may trigger neuroinflammation. 5 The remaining sequelae
f long COVID may occur as a result of acute neurologic complica-
ions such as stroke, encephalitis, and Guillain–Barré syndrome or other
actors related to hospitalization such as delirium. 94 , 133–135 The patho-
hysiology of other neurological symptoms, such as cognitive or mental
isorders, headache, and olfactory/gustatory dysfunction, could differ
rom the acute phase. The role of sustained neuroinflammation in the
nset of symptoms has been hypothesized in many studies to involve
icroglia activation, autoimmunity, or local microthrombosis or mito-

hondrial dysfunction. 94 Autopsy studies of patients with long COVID
nd studies using a hamster model of long COVID could provide evi-
ence regarding persistent neuroinflammation and microglia activation
n the brain. 136 , 137 MRI in patients with long COVID reveals structural
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lterations in the brain, such as significantly enlarged gray matter vol-
me (GMV) in several clusters (spanning frontotemporal areas, the in-
ula, hippocampus, amygdala, basal ganglia, and thalamus in both hemi-
pheres) compared with controls, and GMV alterations in limbic and sec-
ndary olfactory areas are present in patients with long COVID, which
ight be dynamic over time. 138 Brain MRI can show changes to the

tructure of the brain, but it cannot show the metabolic changes be-
ore structural changes occur, as in PET. 117 Brain 18 F-FDG PET imaging
as shown that outpatients with post-COVID-19 conditions exhibited
xtensive hypometabolic right frontotemporal clusters. Patients with
ore numerous symptoms during the initial phase and with a longer
uration of symptoms were at higher risk of persistent brain involve-
ent. 139 Another study showed that brain PET hypometabolism in pa-

ients with long COVID, involving the olfactory gyrus and connected
imbic/paralimbic regions, extended to the brainstem and the cerebel-
um. 116 PET-CT in children infected with SARS-CoV-2 has shown hy-
ometabolism in the left orbito-frontal region, which can explain neu-
ocognitive symptoms in children with long COVID. 140 , 141 

Clinical symptoms of long COVID, including fatigue, myalgia, insom-
ia, headache, depression, and shortness of breath, can be explained
y brainstem dysfunction induced by the tropism of SARS-CoV-2 and
hronic inflammation during long COVID. 142 Both direct and indirect
irus damage is associated with brainstem dysfunction. Because the
CE2 receptor is highly expressed in the brainstem compared with other
rain regions, SARS-CoV-2 may persist in the brainstem. 142 Indeed, au-
opsy studies have found SARS-CoV-2 RNA and proteins in the brain-
tem. 143 Other brain autopsy studies in patients who died owing to
OVID-19, and where brainstem damage was observed, detected no
ARS-CoV-2 RNA or protein; this result suggests that pathological im-
une or vascular activation also contributes to brainstem damage. 144 

SARS-CoV-2 infection increases the gene expression profile for
lzheimer disease risk in both an aged MA10 (mouse-adapted strain
f SARS-CoV-2) animal model and in human patients. 145 A study in
inland suggested that the Apolipoprotein E4 (APOE4) gene is a risk
actor for severe COVID-19 and post-COVID mental fatigue. 146 The
 4 allele of APOE4 is the strongest genetic risk factor for sporadic
lzheimer disease, which may be one reason why COVID-19 is a risk

actor for Alzheimer disease. 147 SARS-CoV-2 S1 spike proteins contain
oth self-associating “prion-like ” regions, 148 as well as amyloid peptide-
inding and other domains that appear to play roles in pathological
seeding ” amyloid genesis and/or spreading that supports the forma-
ion of pathogenic lesions in the brain and CNS, which contribute to
ro-inflammatory neurodegeneration, neural cell atrophy, and/or neu-
onal cell death. 149 

In addition to the CNS, the activity of autonomic nerves (vagal) is
mpaired in patients with long COVID. 150 A cross-sectional study found
hat long COVID is also associated with psychiatric disorders, new onset
sychiatric disorders, and suicide risk. 151 Autonomic nervous system
amage could contribute to the symptoms of long COVID, without clear
vidence of organ damage. 94 

Reports of anosmia are observed in acute COVID-19 and could be a
nique symptom. Lechner et al 152 conducted a prospective, multi-center
tudy consisting of baseline psychophysical measurement of smell and
aste function in patients with COVID-19. A total of 218 individuals
ith a sudden loss of the sense of smell that continued for at least 4
eeks were recruited, and 76 individuals completed a 1-year follow-
p. Of these, 52.6% (10/19) with an abnormal baseline Brief Smell
dentification Test scored below the normal threshold at 1 year, and
2.8% (24/29) of them had persistent parosmia. Animal and human au-
opsy studies have suggested mechanisms of anosmia in acute COVID-
9, such as destruction of the olfactory neuroepithelium or transmis-
ion of pathogens directly via the olfactory nerve in olfactory disor-
ers. 153 , 154 The sense of smell is mostly recovered within 2 weeks or
fter other symptoms are improved. However, this could take longer in
ome patients with long COVID 

155 and there is no significant difference
fter infection with different variants. 156 Hamsters infected with SARS-
 C

236 
oV-2 had prolonged inflammation in the olfactory system and various
rain regions, including the striatum and cerebellum. This inflammation
as evident in the absence of infectious virus and was associated with
ehavioral changes. 136 Recent studies in patients with PASC who have
nosmia show a dysregulated axis among immune cells, horizontal basal
ells, sustentacular cells, and olfactory sensory neurons arising in the
ASC hyposmia olfactory epithelium, inducing sensory dysfunction. Lo-
al lymphocyte populations expressing interferon- 𝛾 and 𝛾𝛿 T cell mark-
rs were present in the olfactory epithelium of patients with PASC, in-
icating interferon response and inflammation here. 155 Trace elements
lay important roles in viral infections, and an imbalance of important
race elements can accelerate SARS-CoV-2 neurovirulence and increase
eurotoxicity, which could have a role in the nervous system damage of
ong COVID. 157 

ndocrine system 

Adrenal dysfunction might be related to long COVID, with the symp-
oms of long COVID and chronic adrenal insufficiency having striking
imilarities. 158 In the Mount Sinai–Yale Long COVID study, cortisol lev-
ls of patients with long COVID were approximately half those of healthy
ontrols, which was the most significant predictor of long COVID. 159–161 

ow cortisol levels in long COVID may be associated with adrenal gland
ysfunction induced by viral infection and ensuing cellular damage. 162 

A case-control study in Spain showed that diabetes was not a risk fac-
or for experiencing long-term post-COVID symptoms. 163 Another study
ound that prediabetes mellitus seemed to be associated with an in-
reased risk of severe COVID-19 and higher serum levels of IL-6 during
he acute phase, without long-term worsening of sequelae. 164 However,
ew-onset diabetes can persist in the post-acute phase of COVID-19.
ossible mechanisms include virus-induced ß-cell cytotoxicity, insulin
esistance, and dysregulation of the immune and renin–angiotensin sys-
ems. 165 , 166 Xie and Al-Aly 167 used the national databases of the US
epartment of Veterans Affairs to build a cohort of 181,280 partici-
ants who had a positive SARS-CoV-2 test between March 1, 2020 and
eptember 30, 2021. They found an increased risk of diabetes in the
OVID-19 group compared with a contemporary control group. One-
ear follow-up among patients in Wuhan post discharge showed that
ritical COVID-19 illness was associated with an increased risk of dia-
etes. 168 

Impaired lipid metabolism might be associated with long COVID, and
ody composition and nutrition may also be related. 169 Extreme obe-
ity is a strong predictor of long-COVID in patients with severe COVID-
9 illness and acute respiratory distress syndrome (ARDS). 170 A cross-
ectional study of 50,402 patients with COVID-19 showed that obesity
nd lipid metabolism disorders determined the risk for development of
ong COVID syndrome. 171 

usculoskeletal system 

Musculoskeletal manifestations of COVID-19 are likely related to a
yperinflammatory host response, a prothrombotic state, or therapeu-
ic effects rather than viral toxicity. 172 Physical inactivity and poor nu-
ritional status are some mechanisms leading to muscle dysfunction in
ndividuals with long COVID. 173 A case-control study showed that at
 year post discharge from the intensive care unit, six patients with
ersisting dyspnea on exertion showed impaired volitional diaphragm
unction, although pulmonary function tests and echocardiography were
ormal. Diaphragm dysfunction with impaired voluntary activation can
e present 1 year after severe COVID-19-induced ARDS and may be re-
ated to exertional dyspnea. 174 Low threshold provision of individual-
zed nutritional and exercise interventions is important. In those most
eriously affected by malnutrition and sarcopenia, ambulatory or inpa-
ient rehabilitation should be considered. Geriatric rehabilitation pro-
rams should be specifically adapted to the needs of older patients with
OVID-19. 175 
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pigenetics, single-nucleotide polymorphisms (SNPs), and other 

actors related to long COVID 

A logistical study involving RNA-seq and whole-genome bisulfite se-
uencing of blood cells showed significant changes in both transcript
bundance and DNA methylation of genes and transposable elements
n patients who had recovered from COVID-19, identifying 425 up-
egulated genes, 214 downregulated genes, and 18,516 differentially
ethylated regions in total. These results support that an overactivated

mmune response, abnormal stress response, and metabolic processes
re associated with long COVID. 176 Another study involving longitu-
inal DNA methylation profiling analysis found that the accumulation
f epigenetic aging is associated with long COVID, which cannot be
eversed at late clinical phases in some patients. 177 ACE2 and type II
ransmembrane serine protease (TMPRSS2) are receptors of SARS-CoV-
. The spike protein (S) of SARS-CoV-2 is a viral envelope glycoprotein
hat binds to ACE2 after its cleavage at sites S1/S2 by TMPRSS2. Find-
ngs differ regarding whether SNPs of ACE2 and TMPRSS2 are associated
ith long COVID. A cohort study of patients with long COVID showed
 negative correlation between loss of taste and ACE2 gene expression
evels. 156 Another study showed that the four SNPs of ACE2 were associ-
ted with COVID-19 severity; however, this did not predispose individu-
ls to developing long COVID symptoms after recovery from COVID-19
nfection during the first wave of the pandemic. 178 Luo et al 179 ana-
yzed ACE2 SNPs in European and Chinese populations and found that
he rs2106809 G allele significantly increased the expression of ACE2,
nd the ACE2 SNP rs2106809 was a functional brain expression quanti-
ative trait locus and potentially involved in long COVID; these findings
arrant further investigations. Reactivation after infection with other
iruses may be associated with long COVID. One study showed that re-
ctivation of Epstein–Barr virus (EBV) in the throat was more common
n patients with long COVID fatigue than in convalescent patients with
ARS-CoV-2 infection, suggesting that EBV replication may be a cofactor
n a subgroup of patients who develop long COVID fatigue. 180 

onclusion 

Long COVID is a multisystem illness. The COVID-19 pandemic has
een ongoing for over 3 years. On the basis of more than 3 years’ re-
earch on long COVID, its mechanisms remain unclear, possibly due to
he strict viral experimental conditions. Until now, the leading hypothe-
es regarding long COVID include alteration of the immune system, per-
istence of residual viral components driving chronic inflammation, en-
othelial dysfunction or activation, microembolization, mitochondrial
ysfunction, abnormal metabolites, reactivation of pre-existing chronic
iral infection, dysbiosis of microbiota, and unrepaired tissue damage. 

Vaccination has been actively promoted in China and around the
orld. Additionally, multiple novel small-molecule anti-viral drugs have
een developed against the virus. However, with the emergence of new
ariants (e.g., omicron) of SARS-CoV-2, the pandemic will not easily be
esolved, and the situation remains challenging. Patients infected with
he omicron variant generally have milder illness than patients infected
ith previous variants. Although we are gradually accumulating evi-
ence regarding long COVID, whether omicron causes persisting symp-
oms and whether the mechanisms are similar to those of previous vari-
nts are still unknown. Much work remains to more clearly understand
he mechanisms of long COVID. 
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