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Abstract: In this study, β-cyclodextrin-modified reduced graphene oxide aerogels (β-CD-rGOAs)
were synthesized via a one-step hydrothermal method and were used to remove hexamethyldisilox-
ane (L2) from biogas. The β-CD-rGOAs were characterized by the Brunner–Emmet–Teller technique,
using Fourier-transform infrared spectroscopy, Raman spectrometry, scanning electron microscopy
(SEM), contact angle measurements, and X-ray diffraction. The results of the characterizations indi-
cate that β-CD was grafted onto the surface of rGOAs as a cross-linking modifier. The β-CD-rGOA
had a three-dimensional, cross-linked porous structure. The maximum breakthrough adsorption
capacity of L2 on β-CD-rGOA at 273 K was 111.8 mg g−1. A low inlet concentration and bed temper-
ature facilitated the adsorption of L2. Moreover, the β-CD-rGOA was regenerated by annealing at
80 ◦C, which renders this a promising material for removing L2 from biogas.

Keywords: reduced graphene oxide aerogel; β-cyclodextrin; hydrothermal reduction; hexamethyld-
isiloxane; contaminant removal

1. Introduction

Biogas is an increasingly important renewable energy resource that is produced by
the digestion of organic materials from sewage treatment plants and waste disposal sites;
biogas is comprised primarily of methane (50–70%, v/v), one of the most widely used
energy resources [1,2]. Apart from methane, the other main compound in biogas is CO2
(30% to 50%, v/v), followed by other gases under 2% (e.g., oxygen, nitrogen, hydrogen
sulfide, and siloxanes) [3,4]. Among these trace gases, siloxanes have the strongest adverse
effect on the utilization of biogas due to the conversion of siloxanes into silicates and
microcrystalline quartz during combustion [3], which contributes to abrasion of the inner
surfaces of the combustion engine [5,6]. Therefore, the removal of siloxanes must be taken
into consideration before biogas applications.

To date, several methods have been developed for removing siloxanes from biogas,
including adsorption, absorption, deep chilling, biological treatment, and membrane sepa-
ration [7–10]. Among these methods, deep chilling exhibits high removal efficiency and has
been applied on an industrial scale; however, this method is too expensive to accept [11].
During absorption, the use of strong acids such as H2SO4 or HNO3 presents many dis-
advantages, including the corrosion of the equipment, by- and co-product generation,
and a negative impact on health and the environment [12]. Regarding biodegradation,
the removal efficiency is low, and long processing times are required [13]. Nevertheless,
membrane separation is not considered to be a competitive treatment due to the selectivity
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and durability of the membrane [14]. Adsorption onto porous materials exhibits high
removal efficiencies [15,16]. Moreover, it is simple and low-cost [1]. Materials such as
activated carbon, silica gel, zeolites, activated alumina, and polymer resins have been
used in siloxane purification from biogas [17]. The specific surface and pore structure are
key characteristics to obtaining a high siloxane adsorption capacity [18]. In comparison,
activated carbons show high removal capacity for siloxanes, but it is important to prolong
the lifecycle due to the difficulty of regenerating activated carbon [18,19]. Therefore, there
is a need to develop new reusable porous materials that adsorb siloxanes.

Reduced graphene oxide aerogel (rGOA) can be produced by a reduction in graphene
oxide (GO), which exhibits higher physicochemical performance compared with GO [20].
rGOA has a three-dimensional (3D) network structure, strong hydrophobicity, and weak
polarity because of the low abundance of oxygen-containing functional groups on the
graphene sheets [21]. Due to its surface physical properties, rGOAs are mainly used in
adsorption, catalysis, energy storage, and other fields [20,22,23]. At present, rGOA is
frequently prepared through a direct reduction in GO in a hydrothermal environment. This
method does not introduce other reactants to facilitate self-assembly and does not remove
the byproducts in the preparation [24]. In addition, rGOA can retain the original physical
characteristics of graphene (surface defects and π-conjugated structure) [25]. However,
rGOA obtained by direct hydrothermal reduction has low porosity and a small specific
surface area. Therefore, it is worthwhile to develop a surface modification to optimize the
specific surface area and adsorption capacity.

Cross-linkers, such as polyaniline, polyethylenimine, and β-cyclodextrin (β-CD), are
promising materials for modifying surface chemical properties due to their abundant hy-
droxyl and amine groups. They can cross-link with rGOA through synergistic interactions
of covalent and hydrogen bonding, form a reinforced, 3D porous structure, and increase
the specific surface area of rGOA [26,27]. Among these cross-linkers, β-CD (as a derivative
of cyclodextrin, a biodegradable material produced by hydrolysis of starch by cyclodextrin
glucosyltransferase), which is available at a low price and is widely sourced, exhibits
extensive degradability and cross-linking [28]. The interior of β-CD is hydrophobic, and the
surface is hydrophilic (Figure 1). β-CD can be grafted onto the surface of rGOAs through
interactions with the hydroxyl groups of rGOA by strong hydrogen bonding [29]. Through
cross-linking, β-CD-modified rGOA (β-CD-rGOA) can form a stable 3D structure with
many pores, resulting in an enhanced adsorption capacity. Using β-CD as a modifier of
rGOA results in a high adsorption capacity for naproxen, bisphenol A, and heavy metal
ions from an aqueous solution [30–33]. However, the adsorption of siloxanes has not been
reported. Furthermore, most of the rGOAs reported in the literature were prepared with
the GO, which is flaky and single-layered, and is synthesized by the Hummer or a modified
Hummer method. This procedure increases the complexity of the preparation and the
cost. With the wide application of GO, multilayer industrial-grade multilayer graphene
(IGGO) has been mass-produced, greatly reducing its cost. However, whether IGGO can be
modified by β-CD to produce 3D rGOA remains to be studied.
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As reported herein, a β-CD-rGOA with a 3D structure was synthesized by using
IGGO as a raw material via a one-step hydrothermal method. The resultant β-CD-rGOA
was thoroughly characterized to determine the possible adsorption mechanism. Subse-
quently, to investigate the optimal adsorption performance of β-CD-rGOA for removing
hexamethyldisiloxane (L2), batch experiments were designed, including the influence of
the β-CD dosage, L2 inlet concentration, and bed temperature. Moreover, regeneration
experiments were applied to evaluate the recyclability of β-CD-rGOA. The results indicate
that β-CD-rGOA is highly promising in removing siloxanes from biogas.

2. Materials and Methods
2.1. Chemicals and Reagents

β-cyclodextrin (β-CD, C42H70O35, Mw 1135 g mol−1, ρ 1.614 g cm−3, 99.0% purity,
solid powder) was provided by Chengdu Kelon Chemical Reagent Factory (Chengdu,
China). Industrial-grade multilayer graphene oxide (IGGO, 95.0% purity, solid powder)
was obtained from Suzhou Hengqiu Technology Co., Ltd., (Suzhou, China). Hexamethyl-
disiloxane (L2, C6H18OSi2, Mw 162 g mol−1, ρ 0.764 g cm−3, 99.0% purity, liquid) was
purchased from Aladdin (Shanghai, China). Sairuifu Technology Co., Ltd., (Tianjin, China)
supplied absolute ethanol (C2H5OH, Mw 46 g mol−1, ρ 0.789 g cm−3, 99.9% purity, liquid).
All reagents were used directly with no further purification. Deionized water was used for
all experiments.

2.2. Preparation of β-CD-rGOAs

β-CD-rGOAs were synthesized via a one-step hydrothermal approach [32]. Briefly,
a 60-mL IGGO suspension (4.0 mg mL−1) was obtained after ultrasonic treatment for
30 min. Then, the IGGO suspension was added to 120 mg of β-CD, with ultrasound for
another 30 min. The mixture was enclosed in a 100-mL, Teflon-lined autoclave and heated
at 180 ◦C for 6 h to obtain β-CD-reduced graphene-oxide hydrogels (β-CD-rGOHs). After
washing with deionized water, the hydrogels were dialyzed with 20 v/v% ethanol for
6 h and freeze-dried for 24 h to obtain rGOA samples with an IGGO/β-CD mass ratio
of 1:0.5. Various IGGO-to-β-CD mass ratios (1:0, 1:0.25, and 1:1) were synthesized by the
same method. The products were termed rGOA, β-CD-rGOA-0.25, and β-CD-rGOA-1,
respectively. Some properties of aerogels were shown in Table S1.

2.3. Characterization

The morphology of the as-synthesized materials was characterized via scanning elec-
tron microscopy (SEM, S-4800, Hitachi, Tokyo, Japan) and with a Raman spectrometer
(Renishaw, NewMills, UK). Transmission electron microscopy (TEM, H-7650, Hitachi,
Tokyo, Japan) was used to characterize the fine structure of the materials. The X-ray diffrac-
tion (XRD, Bruker AXS, Karlsruhe, Germany) patterns were used to analyze the structural
characteristics of the samples with a D8 ADVANCE X-ray source (Bruker AXS, Munich,
Germany). The functional group composition was confirmed by Fourier-transform in-
frared (FTIR, Bruker Optics Co., Karlsruhe, Germany) spectroscopy from 400 to 4000 cm−1

with a Tensor 27 spectrometer (Bruker AXS, Karlsruhe, Germany). The N2 adsorption–
desorption isotherms were measured with an aperture and specific surface area analyzer
(Kubo × 1000, Beijing Builder Co., Ltd., Beijing, China) at 77 K and 10−5 < P/P0 < 1.0.
The Brunner–Emmet–Teller (BET, Beijing Builder Co., Ltd., Beijing, China) specific sur-
face areas (SBET) were obtained, and the Barrett–Joyner–Halenda method was used to
calculate the average pore size (Daver) and total pore volume (Vtot). The water contact
angle was investigated, to determine the hydrophobicity of the samples, with a contact
angle/interface system (JY-PHb, Jinhe Instrument Manufacturing Co., Ltd., Nanjing, China).
Gas chromatography with a hydrogen flame ionization detector (GC 9790, Fuli Analytical
Instrument Co., Ltd., Wenling City, China) was used to observe the L2 concentration with
a GDX-102 stationary-phase column (2.0 m long × 2.0 mm inner diameter). The detecting
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conditions were as follows: oven temperature, 200 ◦C, injector temperature, 250 ◦C, and
detector temperature, 280 ◦C.

2.4. Adsorption and Regeneration

The L2 dynamic adsorption performance onto the adsorbents was evaluated based
on a previous study [34]. The relevant parameters were as follows: L2 inlet concentration
(Cin), 14.62 mg L−1, gas flow rate (Vg), 50 mL min−1 (superficial velocity of 100 cm min−1,
cross-sectional area of 0.5 cm2), and temperature (T), 20 ◦C. When the L2 outlet concen-
tration (Cout,t) equaled Cin, the adsorption reached saturation. The association between
Cout,t/Cin and time (t) was used to express breakthrough curves that were used to describe
the dynamic adsorption performance. Usually, the adsorption behavior was evaluated
by the following two quantities: breakthrough time (tB, min) and breakthrough adsorp-
tion quantity (QB, mg g−1). The breakthrough time was defined as the time in which
Cout,t/Cin = 0.05, and QB as the adsorption quantity was when the adsorption time was tB.

The adsorption capacity (Qt), corresponding to t, was evaluated with Equation (1) [35]:

Qt =
VgCin

m

∫ t

0

(
1−Cout,t

Cin

)
tt, (1)

where Cin and Cout,t are the inlet concentration (mg L−1) and outlet concentration (mg L−1)
at adsorption time t (min), m (g) is the mass of adsorbent, and Vg (L min−1) is the gas flow
rate. By substituting Cout,t/Cin = 0.05 in Equation (1), QB is obtained.

When the β-CD-rGOAs were saturated with L2, the regeneration of the used β-CD-
rGOAs was performed in a water bath at 80 ◦C under blowing nitrogen for 30 min. This
adsorption–desorption was repeated 10× to evaluate the regenerative performance of
the β-CD-rGOAs. The continuous adsorption–desorption cycle was repeated for the first
5 times, and an adsorption–desorption cycle was repeated daily for the next 5 times.

2.5. Mathematical Models

The Yoon–Nelson model was selected to predict the theoretical breakthrough adsorp-
tion capacity (QB,th, mg g−1) and the theoretical breakthrough time (tB,th, min) and to better
understand adsorption phenomena of L2 in the β-CD-rGOAs. The model is represented by
Equation (2) [36]:

Cout,t

Cin
=

1
1 + exp[KYN(τ − t)]

× 100% (2)

where KYN is the Yoon–Nelson constant of the model, t is the adsorption time (min), and τ
is the time when the ratio Cout,t/Cin = 0.5.

The model values (KYN and τ) of various adsorption experiments were obtained
through simulation using Equation (2). The tB,th was obtained by the Equation (2) when
the Cout,t/Cin ratio was 0.05.

Hence, substituting Equation (2) in Equation (1), the QB,th at tB,th can be calculated.

3. Results
3.1. Effect of Modifier β-CD

Figure S1 shows digital photos of β-CD-rGOHs and β-CD-rGOAs. After hydrothermal
reduction, the hydrogels were prepared, indicating that reduction-induced self-assembly
facilitated the formation of hydrogels. Figure 2 shows the nitrogen adsorption/desorption
isotherms and the pore size distributions of IGGO, rGOA, and β-CD-rGOA-0.5. In accor-
dance with the IUPAC classification, β-CD-rGOA-0.5 demonstrated the features of type
IV isotherms with H3 hysteresis loops, which is indicative of a mesoporous structure [37].
Alternatively, IGGO and rGOA followed a type III isotherm with a macroporous or non-
porous material and low BET surface area. Table 1 shows the textural parameters of IGGO
and β-CD-rGOAs. The BET analysis indicates that the specific surface areas of IGGO,
rGOA, β-CD-rGOA-0.25, β-CD-rGOA-0.5, and β-CD-rGOA-1 were 7.4, 55.2, 59.3, 163.5,
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and 112.3 m2 g−1, respectively. The increased BET area of β-CD-rGOAs was possible due
to the reduction-induced self-assembly and β-CD crosslinking effect. With increasing β-CD
loading, the BET area increased, and the porous structure was enhanced. The pore size
distributions indicate that the primary pores of β-CD-rGOA-0.5 were within a diameter of
2–6 nm, which mainly contributed to the specific surface area. However, more β-CD caused
a decrease in the surface area and total pore volume, which might be attributable to the ex-
cessive aggregation of β-CD [32]. Therefore, β-CD-rGOA-0.5 had an appropriate amount of
β-CD. Based on the literature, a narrower mesoporous range facilitates L2 adsorption [38].
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Table 1. Properties of IGGO and β-CD-rGOAs.

Sample Specific Surface
Area (m2 g−1)

Total Pore
Volume (cm3 g−1)

Average Pore
Diameter (nm)

Contact
Angle (◦)

IGGO 7.4 0.23 13.18 76.6
rGOA 55.2 0.39 9.04 121.8

β-CD-rGOA-0.25 69.3 0.41 7.28 122.0
β-CD-rGOA-0.5 163.5 0.68 5.93 128.4
β-CD-rGOA-1 112.3 0.65 7.87 127.1

Figure S2 shows a water droplet on the surface of a β-CD-rGOA-0.5 film, which
indicates the strong hydrophobicity of the material. Table 1 shows the experimental values
of the contact angle (θ) for the studied materials. The β-CD-rGOAs all exhibited high
hydrophobicity, which is attributable to the removal of some oxygen-containing functional
groups because of the hydrothermal reaction.

3.2. Characterization of Adsorbents

Figure 3 shows SEM and TEM images of IGGO, rGOA, and β-CD-rGOA-0.5. IGGO
had a relatively smooth surface with no wrinkles and holes. After hydrothermal reduction,
the folds of rGOA and β-CD-rGOA-0.5 increased in number, and the surfaces were not
smooth. Thinner lamellae and more pores can be identified in the SEM and TEM images,
and are shown in Figure 3c–f. In contrast, β-CD-rGOA-0.5 exhibited more wrinkles than
rGOA, implying that it may possess a higher specific surface area and larger pore volume,
which could be due to the modification of the β-CD crosslinking effect. These folds could
improve the surface area and increase the adsorption [39]. These results are consistent with
the previous findings shown in Table 1.
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Figure 4 shows XRD diagrams of IGGO, rGOA, and β-CD-rGOA-0.5. An extensive
alteration of the structures was noted by the XRD patterns. A sharp diffraction peak at
11.6◦ in the IGGO pattern corresponded to the (001) plane, which reveals a highly ordered
structure with interlayer spacing of about 7.6 Å [40]. Moreover, a narrow peak (100) centered
at 42.7◦ was observed for IGGO, corresponding to the long range order in the graphitic
planes. After hydrothermal reduction, the characteristic peak of IGGO disappeared, and
characteristic diffraction peaks indexed to (002) facets of graphitic carbon for rGOA and
β-CD-rGOA-0.5 at 24.9◦ and 23.4◦, respectively; these corresponded to interlayer spacings
of 3.7 and 3.9 Å, respectively [38]. The presence of the broad diffraction peak signified the
disordered structure, and the loss of 42.7◦ could reflect the loss of planarity for rGOA and
β-CD-rGOA-0.5. The interlayer spacing of the rGOA and β-CD-rGOA-0.5 were smaller
than that of IGGO due to the removal of oxygen-containing functional groups and π–π
interactions during self-assembly [38]. The interlayer spacing of β-CD-rGOA-0.5 was
slightly larger than that of rGOA, which is attributable to the cross-linking modification of
β-CD. When β-CD was introduced into the β-CD-rGOAs, the crosslinking effect of more
hydrogen bonds suppressed π–π restacking, which enlarged the interlamellar spacing.
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Raman spectroscopy is frequently used to characterize the deficiencies in graphene-
based materials (Figure 5). The Raman spectra indicate two distinct characteristic peaks
in IGGO, rGOA, and β-CD-rGOA-0.5 at 1600 and 1345 cm−1, corresponding to the G and
D peaks, respectively, of carbon materials. The G peak is the characteristic feature for
graphite (sp2-hybridized carbon in-plane stretching vibration), and the D peak is due to
the disordered carbon, including, e.g., sp3-hybridized carbon and dopant atoms. Usually,
the D/G band intensity ratio (ID/IG) represents the degree of disorder in carbon [41]. The
ID/IG of rGOA (0.95) and β-CD-rGOA-0.5 (0.98) indicate a noticeable increase compared
with IGGO (0.83). This indicates that the hydrothermal reduction increased the number of
defects and resulted in a low degree of carbonization. β-CD-rGOA-0.5 had a slightly higher
value of ID/IG than rGOA, which indicates that introducing β-CD lead to an increase in the
degree of defects. Because of the hydrogen bonding between β-CD and rGOA, the degree
of graphitization was decreased, which led to a higher ID/IG ratio. The peaks located in
the range of 2300–2800 cm−1 are the 2D bands, which are another characteristic peak of
graphene [37]. In comparison with IGGO, rGOA and β-CD-rGOA-0.5 exhibited a fairly
broad and up-shift 2D peak in the Raman spectrum, demonstrating its low-layer structure,
which was consistent with the TEM results.
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Figure 6 shows the FTIR spectroscopy results for IGGO, rGOA, and β-CD-rGOA-0.5.
The broad peaks at 3441 cm−1 are attributable to the O–H stretching vibration in the car-
boxyl groups, C–OH groups, and adsorbed-state water. In the IGGO spectrum, 2927 cm−1

(low-intensity stretching and bending vibrations from C–H), 1727 cm−1 (C=O stretching
vibration in the carboxyl groups), 1600 cm−1 (C=C vibration of the graphene skeleton), and
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1050 cm−1 (C–O–C stretching vibration in the epoxy groups) were observed, which indi-
cates that IGGO has a large number of oxygen-containing groups on its surface [36]. After
hydrothermal reduction, the C–O–C band at 1050 cm−1 and the C=O peak at 1727 cm−1

in the rGOA were no longer evident, which indicates that some of the oxygen-containing
groups in IGGO underwent reduction. However, after adding β-CD, the FTIR spectra
of β-CD- rGOA-0.5 indicate that, not only was the C=O peak absent, but the spectral
features of β-CD were evident (the coupled C–O–C stretching/O–H bending vibrations at
1163 cm−1 and the coupled C–O/C–C stretching/O–H bending vibrations at 1050 cm−1 and
1112 cm−1), indicating the modification of rGOA with β-CD [41,42]. Moreover, the broader
absorption of β-CD-rGOA-0.5 over the range of 3000–3750 cm−1 (high wavenumbers) was
evident, which is indicative of hydrogen bond formation between rGOA and β-CD [43].
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In accordance with the experimental results, a possible working mechanism was
elucidated (Figure 7). In a 180 ◦C hydrothermal enviroment, carbonyl groups can be
efficiently reduced to hydroxyl groups, and the ring-opening reaction of an epoxy group
occured to form a hydroxyl group. After the modification of β-CD on the rGOA surface,
the π–π stacking between the graphene sheets can be weakened; with the hydroxyl group
generated, the H-bonds would be increased. When hydroxyl segments at the edge and
plane of rGOA interact through hydrogen bonding, a porous 3D structure is possibly
facilitated. In this manner, β-CD-rGOA-0.5 can provide more active sites and channels,
whereas the adsorption ability was increased.
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3.3. Comparison of Dynamic Adsorption Performances

The adsorption breakthrough curves by using the Yoon–Nelson model of the IGGO,
rGOA, β-CD-rGOA-0.25, β-CD-rGOA-0.5, and β-CD-rGOA-1 (Figure 8) were tested at
20 ◦C, Vg of 50 mL min−1, and Cin of 14.62 mg L−1 for comparing the dynamic adsorption
performance. Table 2 shows the experimental adsorption values and the calculated model
parameters. The high correlation coefficients (R2 > 0.99) indicate that the Yoon–Nelson
model fit well with the L2 dynamic adsorption onto β-CD-rGOAs. Thus, in the following
discussion, the calculated theoretical parameter values (tB,th and QB,th) were used to com-
pare and analyze the adsorption capacity of the β-CD-rGOAs. The L2 directly penetrated
the IGGO, indicating that the IGGO had virtually no adsorption ability. Furthermore, the
adsorption performance among the β-CD-rGOAs was ranked as β-CD-rGOA-0.5 > β-CD-
rGOA-1 > β-CD-rGOA-0.25 > rGOA, and the β-CD-rGOA-0.5 exhibited the maximum
breakthrough time and adsorption capacity, with tB,th and QB,th values of 11.03 min and
88.7 mg g−1, respectively. To determine the factors that are responsible for the β-CD-rGOA
adsorption capacity, the relationships between QB,th and SBET, Vtot, and the contact angle
were evaluated (Figure 9). The linear regression equation was y = a + bx. Some important
statistical data were shown in Table S2. Specifically, the closer R2 is to 1, the better the linear
relationship; the smaller the standard deviation, the more precise the data. Accordingly,
the correlation coefficient (R2) values for QB,th–SBET, QB,th–Vtot, and QB,th–contact angle
were 0.9953, 0.9507, and 0.8563, respectively. Therefore, it can be broadly concluded that
SBET and Vtot were the predominant factors that affected the L2 adsorption capacity, while
contact angle also has a certain degree of positive correlation [38].

Nanomaterials 2022, 12, 2643 9 of 14 
 

 

Figure 7. Working mechanism of hydrothermal reduction and crosslinking. 

3.3. Comparison of Dynamic Adsorption Performances 
The adsorption breakthrough curves by using the Yoon–Nelson model of the IGGO, 

rGOA, β-CD-rGOA-0.25, β-CD-rGOA-0.5, and β-CD-rGOA-1 (Figure 8) were tested at 20 
°C, Vg of 50 mL min−1, and Cin of 14.62 mg L−1 for comparing the dynamic adsorption 
performance. Table 2 shows the experimental adsorption values and the calculated 
model parameters. The high correlation coefficients (R2 > 0.99) indicate that the Yoon–
Nelson model fit well with the L2 dynamic adsorption onto β-CD-rGOAs. Thus, in the 
following discussion, the calculated theoretical parameter values (tB,th and QB,th) were 
used to compare and analyze the adsorption capacity of the β-CD-rGOAs. The L2 di-
rectly penetrated the IGGO, indicating that the IGGO had virtually no adsorption abil-
ity. Furthermore, the adsorption performance among the β-CD-rGOAs was ranked as 
β-CD-rGOA-0.5>β-CD-rGOA-1>β-CD-rGOA-0.25> rGOA, and the β-CD-rGOA-0.5 ex-
hibited the maximum breakthrough time and adsorption capacity, with tB,th and QB,th 
values of 11.03 min and 88.7 mg g−1, respectively. To determine the factors that are re-
sponsible for the β-CD-rGOA adsorption capacity, the relationships between QB,th and 
SBET, Vtot, and the contact angle were evaluated (Figure 9). The linear regression equation 
was y = a + bx. Some important statistical data were shown in Table S2. Specifically, the 
closer R2 is to 1, the better the linear relationship; the smaller the standard deviation, the 
more precise the data. Accordingly, the correlation coefficient (R2) values for QB,th–SBET, 
QB,th–Vtot, and QB,th–contact angle were 0.9953, 0.9507, and 0.8563, respectively. Therefore, 
it can be broadly concluded that SBET and Vtot were the predominant factors that affected 
the L2 adsorption capacity, while contact angle also has a certain degree of positive 
correlation [38]. 

 
Figure 8. Breakthrough curves of different adsorbents for L2. 

Table 2. Adsorption parameters of different adsorbents for L2 a. 

Absorbent tB 
(min) 

tB,th 
(min) 

QB,th 

(mg g−1) 
KYN τ 

(min) 
R2 

IGGO 1.16 0.89 7.1 3.0263 1.86 0.9901 
rGOA 5.14 4.64 37.1 1.6239 6.45 0.9941 

β-CD-rGOA-0.25 5.78 5.64 45.2 1.5359 7.55 0.9934 
β-CD-rGOA-0.5 11.27 11.03 88.7 1.3434 13.22 0.9952 
β-CD-rGOA-1 8.00 7.62 61.2 1.6331 9.42 0.9938 

a m ≈ 0.10 g, Cin = 14.62 mg L−1, Vg = 50 mL min−1. 

Figure 8. Breakthrough curves of different adsorbents for L2.

Table 2. Adsorption parameters of different adsorbents for L2 a.

Absorbent tB
(min)

tB,th
(min)

QB,th
(mg g−1)

KYN
τ

(min) R2

IGGO 1.16 0.89 7.1 3.0263 1.86 0.9901
rGOA 5.14 4.64 37.1 1.6239 6.45 0.9941

β-CD-rGOA-0.25 5.78 5.64 45.2 1.5359 7.55 0.9934
β-CD-rGOA-0.5 11.27 11.03 88.7 1.3434 13.22 0.9952
β-CD-rGOA-1 8.00 7.62 61.2 1.6331 9.42 0.9938

a m ≈ 0.10 g, Cin = 14.62 mg L−1, Vg = 50 mL min−1.
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β-CD-rGOAs adsorbents.

3.4. Influence of Inlet Concentration and Bed Temperature

Inlet concentration is a significant factor influencing the adsorption process [44].
Figure 10 shows the curve of the tB,th and QB,th change over Cin. The tB,th decreased
exponentially with Cin. However, QB,th values presented, at first, an increasing trend
and then a decreasing one in the concentration series experiment. As reported [45,46], it
might be related to the co-action of the adsorption driving force of L2 molecules (positive
correlation to Cin) and the accessibility of adsorption sites (negative correlation to Cin),
which could portend L2 adsorption behavior during industrial application.
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Bed temperature is another important factor that affects the L2 adsorption efficiency.
Breakthrough curves fitted by the Yoon–Nelson model of L2 adsorption on β-CD-rGOA-0.5
at different bed temperatures (0–55 ◦C) were shown in Figure 11, and the details of the cal-
culated results by the Yoon–Nelson model were presented in Table 3. There was a tendency
that, the higher the bed temperature, the shorter the tB,th, indicating that low temperature



Nanomaterials 2022, 12, 2643 11 of 14

was beneficial to the adsorption of L2 on β-CD-rGOA-0.5. The results revealed that the L2
adsorption on β-CD-rGOA-0.5 was exothermic. The maximum breakthrough adsorption
capacity (111.8 mg g−1) of L2 on β-CD-rGOA-0.5 was observed at a temperature of 0 ◦C,
Cin of 14.62 mg L−1, and Vg of 50 mL min−1.
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3.5. Recycling Performance of β-CD-rGOA-0.5

The recycling performance is a key factor for evaluating practical applications of an
adsorbent [47]. Thus, the spent β-CD-rGOA-0.5 was assessed via thermal treatment at 80 ◦C
for 30 min, and, subsequently, through five adsorption–desorption cycles. Figure 12 shows
the adsorption breakthrough curves for L2 of β-CD-rGOA-0.5 after each desorption, and
Figure S3 shows that there is no residual L2 on the β-CD-rGOA-0.5 after continuous cycles.
These results indicate that β-CD-rGOA-0.5 can be completely reused or recycled. Therefore,
the as-prepared β-CD-rGOA-0.5 is a promising candidate for a number of applications on
an industrial scale.
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the low bed temperature and inlet concentration resulted in high L2 adsorption levels
for β-CD-rGOA-0.5. Finally, the β-CD-rGOA-0.5 can be easily regenerated and reused
multiple times by heating at 80 ◦C for 30 min. All of these characteristics indicate that the
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