
1Scientific Reports |          (2019) 9:5613  | https://doi.org/10.1038/s41598-019-42125-w

www.nature.com/scientificreports

Supervised machine learning 
of ultracold atoms with speckle 
disorder
S. Pilati   1 & P. Pieri1,2

We analyze how accurately supervised machine learning techniques can predict the lowest energy levels 
of one-dimensional noninteracting ultracold atoms subject to the correlated disorder due to an optical 
speckle field. Deep neural networks with different numbers of hidden layers and neurons per layer 
are trained on large sets of instances of the speckle field, whose energy levels have been preventively 
determined via a high-order finite difference technique. The Fourier components of the speckle field 
are used as the feature vector to represent the speckle-field instances. A comprehensive analysis of the 
details that determine the possible success of supervised machine learning tasks, namely the depth and 
the width of the neural network, the size of the training set, and the magnitude of the regularization 
parameter, is presented. It is found that ground state energies of previously unseen instances can 
be predicted with an essentially negligible error given a computationally feasible number of training 
instances. First and second excited state energies can be predicted too, albeit with slightly lower 
accuracy and using more layers of hidden neurons. We also find that a three-layer neural network is 
remarkably resilient to Gaussian noise added to the training-set data (up to 10% noise level), suggesting 
that cold-atom quantum simulators could be used to train artificial neural networks.

Machine learning techniques are at the heart of various technologies used in every day life, like e-mail spam 
filtering, voice recognition software, and web-text analysis tools. They have already acquired relevance also in 
physics and chemistry research. In these fields, they have been employed for diverse tasks, including: finding 
energy-density functionals1–4, identifying phases and phase transitions in many-body systems5–11, predict-
ing properties such as the atomization energy of molecules and crystals from large databases of known com-
pounds12–14, or predicting ligand-protein poses and affinities for drug-design research15–18. Among the various 
machine learning methodologies, supervised machine learning has been put forward as a fast, and possibly accu-
rate, technique to predict the energies of quantum systems exploiting the information contained in large datasets 
obtained using computationally expensive numerical tools19.

Computational physicists and chemists have already demonstrated that supervised machine learning can be 
used, in particular, to determine the potential energy surfaces for molecular dynamics simulations of materials, 
of chemical compounds, and of biological systems20–26. This allows one to avoid on-the-fly quantum mechanical 
electronic-structure computations, providing a dramatic speed-up that makes larger scale simulations of complex 
systems as, e.g., liquid and solid water, feasible27. However, it is not yet precisely known how accurately the statis-
tical models commonly employed in supervised machine learning can describe quantum systems. In general, the 
accuracy achievable by these statistical models, chiefly artificial neural networks, depends on various important 
details, including the depth and the connectivity structure of the neural network, the size of the training set, and 
the type of regularization employed during the training process to avoid the pervasive over-fitting problem28. 
Also the choice of the features adopted to represent the quantum system of interest plays a crucial role; in fact, 
substantial research work has been devoted to the development of efficient representations (see, e.g., refs17,29,30). It 
is natural to expect that addressing models that describe highly tunable and easily accessible experimental setups 
could shed some light on this important issue.

These considerations lead us to focus on ultracold atom experiments. These systems have emerged in recent 
years as an ideal platform to investigate quantum many-body phenomena31,32. They allowed experimental-
ists to implement archetypal Hubbard-type models of condensed matter physics33 and even the realization of 
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programmable simulators of quantum spin Hamiltonians34. One can envision the use of these analog quantum 
simulators as computational engines to create datasets to be fed to supervised machine learning methods, provid-
ing data to train artificial neural networks even for models that defeat computational techniques. One example is 
the fermionic Hubbard model, that has been implemented in various cold-atom laboratories35–37. In fact, recent 
cold-atom quantum simulations of the Hubbard-model have been analyzed via machine learning techniques38.

One of the quantum phenomena that received most consideration by cold-atom researchers is the Anderson 
localization transition in the presence of disorder39–43. This phenomenon consists in the spatial localization of the 
single particle states, determining the absence of transport in macroscopic samples44. Unlike conventional con-
densed matter systems, which inherently include a certain amount of impurities, in cold-atom setups disorder is 
introduced on purpose. The most frequently used technique consists in creating optical speckle fields by shining 
lasers through rough semitransparent surfaces, and then focusing them onto the atomic cloud. These speckle 
fields are characterized by a particular structure of the spatial autocorrelation of the local optical field inten-
sities45,46. These correlations have to be accounted for in the modeling of cold-atom experiments with speckle 
fields47,48. Indeed, they determine the position of the mobility edge49–51, namely the energy threshold that in 
three dimensional systems separates the localized states from the extended ergodic states. In low dimensional 
configurations, any amount of disorder is sufficient to induce Anderson localization. However, the speckle-field 
correlations determine the transport properties and even the emergence of so-called effective mobility edge, i.e. 
energy thresholds where the localization length changes abruptly52–54.

In this article we perform a supervised machine learning study of the lowest three energy levels of a 
one-dimensional quantum particle moving in a disordered external field. This model is designed to describe an 
alkali atom exposed to a one-dimensional optical speckle filed, taking into account the detailed structure of the 
spatial correlations of the local intensities of the speckle field. This is in fact the setup implemented in the first 
cold-atom experiments on Anderson localization39,40. The first task we address is to determine the energy levels 
of a large set of speckle-field instances via a high-order finite difference formula. Next, we train a deep artificial 
neural network to reproduce the energy levels of this training set, and we then employ the trained neural network 
to predict the energy levels of previously unseen speckle-field instances.

The main goals of this study are (i) to analyze how accurately deep neural networks can predict low-lying 
energy levels of (previously unseen) system instances, (ii) to quantify how this accuracy depends on the depth and 
width of the network, (iii) to verify if and how the overfitting problem can be avoided, and how large the training 
set has to be to achieve this, (iii) to check if and how accurately excited state energies can be predicted, compared 
to ground-state energy levels. Furthermore, in view of the possible future use of cold-atom quantum simulators 
to provide data for supervised machine learning tasks, we analyze if and to what extent deep neural networks 
are resilient with respect to noise present in the training data. Such noise is indeed an unavoidable feature of any 
experimental outcome.

The main result we obtain is that, given a computationally affordable number of system instances for training, 
a neural network with three hidden layers can predict ground state energies of new system instances with a mean 
quadratic error well below 1% (relative to the expected variance); this error appears to systematically decrease 
with training-set size. Higher energy levels can be predicted too, but the accuracy of these predictions is slightly 
lower and requires the training of deeper neural networks. We also show that if one has only small or moderately 
large training sets (including order of 103 instances, as in some previous machine learning studies) the overfit-
ting problem does indeed occur, and it has to be minimized via an appropriate regularization, that we quantify. 
Another important finding we report here is that a deep neural network (with three layers of hidden neurons) 
is extremely robust against noise in the training set, providing essentially unaffected predictions for previously 
unseen instances up to almost 10% noise level in the training data.

Model
The model we consider is defined by a Hamiltonian operator that in coordinate representation reads:
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where ħ is the reduced Planck’s constant and m the particle mass. Vd(x) is a disordered external field, designed to 
represent the potential energy of an atom subject to an optical speckle field. Experimentally, these optical fields 
are generated when coherent light passes through, or is reflected by, rough surfaces. In the far field regime, a spe-
cific light intensity pattern develops, commonly referred to as optical speckle field. In cold-atom experiments, this 
optical speckle field is focused onto the atomic cloud using a converging lens.

A numerical algorithm to generate the intensity profile of a speckle field is based on the following expression55:

ξ ϕ ξ= | | .−V x V F W F x( ) [ ( ) [ ]( )]( ) (2)d 0
1 2

Here, the constant V0 corresponds to the average intensity of the speckle field, while we denote with

∫ϕ ξ ϕ= πξ−F x x e[ ]( ) d ( ) (3)
i x2

the Fourier transform of the complex field ϕ(x), whose real and imaginary part are independent random variables 
sampled from a Gaussian distribution with zero mean and unit variance. F−1 indicates the inverse Fourier trans-
form. The function W(ξ) is a filter defined as
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where w is the aperture width, which depends on the details of the optical apparatus employed to create and 
focus the speckle field, namely the laser wavelength, the size (illuminated area) and the focal length of the lens 
employed for focusing. We consider blue detuned optical fields, for which the constant V0 introduced in Eq. (2) 
is positive.

In the numerical implementation, the Gaussian random complex field ϕ(x) is defined on a discrete grid: 
xg = gδx, where δx = L/Ng, L is the system size, and the integer g = 0, 1, …, Ng − 1. The number of grid points 
Ng shall be large, as discussed below. The continuous Fourier transform is henceforth replaced by the discrete 
version. Periodic boundary conditions are adopted, and the definition (2) is consistent with this choice, i.e. 
Vd(L) = Vd(0).

For a large enough systems size L, the optical speckle field is self-averaging, meaning that spatial averages 
coincide with the average of local values over many instances of the speckle field, indicated as 〈Vd(x)〉d. These 
instances are realized by choosing different random numbers to define the complex field ϕ(x). The probability 
distribution of the local speckle-field intensity Vloc = Vd(x), for any x, is P(Vloc) = exp(−Vloc/V0)/V0 for ≥V 0loc , 
and P(Vloc) = 0 otherwise. It follows that, for large enough L, the average speckle-field intensity 〈Vd(x)〉d = V0 is 
equal to the standard deviation 〈 〉 − =V x V V( )d

2
d 0

2
0. Therefore, V0 is the unique parameter that determines the 

amount of disorder in the system.
The local speckle-field intensities at different positions have statistical correlations, characterized by the fol-

lowing spatial autocorrelation function:

π πΓ = 〈 ′ ′ + 〉 − = .x V x V x x V wx wx( ) ( ) ( ) / 1 [ sin( )/( )] (5)d d 0
2 2

One notices that the inverse of the aperture width w determines the correlation length, i.e. the typical size of 
the speckle grains. We will indicate this length scale as γ = w−1, which corresponds to the first zero of the cor-
relation function Γ(x). The correlation length allows one to define an energy scale, dubbed correlation energy, 
defined as Ec = ħ2/(2mγ2).

In the following we consider the system size L = 20γ, with a number of grid points Ng = 1024. Notice that with 
this choice one has δ γx , so that the discretization effect is irrelevant. Furthermore, the speckle-field intensity 
is fixed at the moderately large value V0 = 5Ec. We point out that we choose to normalize the optical speckle field 
so that its spatial average over the finite system size L exactly corresponds to V0, for each individual instance, thus 
eliminating small fluctuations due to finite size effects.

The local intensity profile of a typical instance of optical speckle field is displayed in the upper panel of Fig. 1. 
The continuous horizontal line indicates the average intensity V0. The lower panel displays the three eigenfunc-
tions φi(x), with i = 0, 1, 2, corresponding to the lowest energy levels. They solve the Schrödinger equation 

ϕ ϕ=Ĥ x e x( ) ( )i i i  with eigenvalues ei. These energy levels are indicated by the three horizontal segments in the 
upper panel of Fig. 1. The wave functions and the corresponding energy levels are computed via a finite difference 
approach, employing the grid points xg defined above, using a highly accurate 11-point finite difference formula. 
This makes the discretization error negligible. One notices that the wave functions φi(x) have non-negligible 
values only in a small region of space. This is consistent with the Anderson localization phenomenon, which in 
one-dimensional configurations is expected to occur for any amount of disorder, as predicted by the scaling the-
ory of Anderson localization56. Indeed, one might also notice that the node of the wave function corresponding 
to the first excited state is in a region of vanishing amplitude and is therefore barely visible.

Clearly, the energy levels ei randomly fluctuate for different instances of the speckle field. Their probability dis-
tribution is shown in Fig. 2, where the averages over many speckle-field instances 〈ei〉d are also indicated with ver-
tical segments. One notices that the probability distribution of the ground-state energy e0 is slightly asymmetric, 
while the distributions of the excited energy levels e1 and e2 appear to be essentially symmetric. Other properties 
of quantum particles in an optical speckle field, such as the density of states, have been investigated in refs47,57.

Methods
The first step in a supervised machine learning study consists in choosing how to represent the system instances. 
One has to choose Nf real values that describe the system, all together constituting the so-called features vector. 
One natural choice would consist in choosing the speckle field values Vd(xg) on the Ng points of the spatial grid 
defined in Sec. 1. Indeed, if the grid is fine enough these values fully define the system Hamiltonian. However, 
since Ng has to be large, this choice leads to a pretty large features vector, making the training of a deep neural 
network with many neurons and many layers rather computational expensive. This approach was in fact adopted 
in a recent related article19. The problem of the large feature vector was circumvented by employing so-called 
convolutional neural networks. In such networks the connectivity structure is limited. This reduces the number 
of parameters to be optimized, making the training more computationally affordable. The connectivity structure 
is in fact designed so that the network can recognize the spatial structures in the feature vector, somehow auto-
matically extracting the relevant details from a large feature space.

In this article we adopt a different strategy. The definition of the optical speckle field in Eq. (2) and the struc-
ture of the spatial correlations described in Sec. 1 suggest that one can construct a more compact system rep-
resentation by switching to the Fourier space. In fact, it is easy to show that the (discrete) Fourier transform of the 
speckle field F[Vd](ξ) has a finite support, limited to the interval ξ∈[−w:w]. This limits the number of nonzero 
Fourier components. Since the Fourier grid spacing is δξ = 1/L, one expects to have 42 nonzero (complex) Fourier 
components for our choice of system size L = 20γ. One should also consider that the Fourier transform of a real 
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signal has the symmetry F[Vd](−ξ) = F[Vd](ξ)*. This further limits the number of nonzero independent variables, 
leaving us with a feature vector with only Nf = 42 (real) components. In Fig. 3 we plot the average over many 
speckle-field instances of the absolute value of the real and imaginary parts of the Fourier components F[Vd](ξ). 
Only the positive semiaxis ξ ≥ 0 is considered, due to the symmetry mentioned above. It should also be pointed 
out that due to the choice of normalization discussed in Sec. 1, the real part of the Fourier transform at ξ = 0 is 
fixed at Re{F[Vd](0)} = 5Ec, for each individual speckle-field instance; also, the imaginary part is fixed at Im{F[Vd]
(0)} = 0. This reduces the number of active features to 40. Still, we include all Nf = 42 components in the feature 
vector, in view of future studies extended to speckle fields with varying intensities. In fact, the inactive features do 
not play any role in the training of the neural network.

In supervised machine learning studies it is sometimes convenient to normalize the components of the feature 
vector so that they have the same minimum and maximum values, or the same mean and standard deviation. This 
improves the efficiency in those cases in which the bare (non-normalized) feature values vary over scales that dif-
fer by several orders of magnitude. However, as can be evinced by the plot of their standard deviations (denoted 
σ[Re{F[Vd](ξ)}] and σ[Im{F[Vd](ξ)}]) in Fig. 3, the Fourier components of the speckle field differ at most by a 
factor of ~4. Therefore a normalization procedure is not required here.

Figure 1.  Upper panel: local intensity Vd(x) of a typical instance of optical speckle field, as a function of 
the spatial coordinate x/γ. The energy unit is the correlation energy Ec = ħ2/(2mγ2), defined by the spatial 
correlation length of the speckle field γ. The continuous horizontal (black) line indicates the average over many 
speckle-field instances of the optical speckle field intensity V0 = 〈Vd(x)〉d. Lower panel: profile of the three 
lowest-energy wave functions of the speckle field instance displayed in the upper panel. The corresponding 
energy levels are indicated by the three horizontal segments in the upper panel.
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Our plan is to train the neural network to predict the three lowest energy levels of a quantum particle in a 
speckle field. We generate a large number of speckle-field instances (we indicate this number with Nt) using dif-
ferent random numbers, as discussed in Sec. 1. Their energy levels are computed via the finite difference approach 
(see Sec. 1). The target value is either the ground-state energy, or the first excited energy level, or the second 
energy level. Actually, for mere convenience, we consider the shifted energy levels y = εi = ei − 〈ei〉d (with i = 0, 1, 
2), so that the target values have zero mean when averaged over many speckle-field instances. Each instance is 
represented by the feature vector = …f f ff ( , , , )N1 2 f

, namely the Nf = 42 values taken from the nonzero Fourier 
components described above, and the target value y (ground state, first excited state, or second excited state) to be 
learned.

The statistical model we consider is a feed-forward artificial neural network, as implemented in the multi-layer 
perceptron regressor of the python scikit-learn library58. This neural network includes various layers with a spec-
ified number of neurons. The leftmost layer is the input layer. It includes Nf neurons, each representing one of the 
features values. Next, there is a tunable number of hidden layers; we indicate this number as Nl. This is one of the 
details of the statistical model that will be analyzed. The number of neurons in the hidden layers, indicated as Nn, 
can also be tuned. (Different hidden layers could have different numbers of neurons. However, in this article we 
choose to have the same number of neurons Nn in all hidden layers.) Nn is the second relevant detail of the statis-
tical model to be analyzed. The input layer and the hidden layers also include a bias term. The rightmost layer is 
the output layer, and includes one neuron only. Each neuron h = 1, …, Nn in the hidden layer l = 1, …, Nl takes a 
value ah

l  obtained by evaluating the so-called activation function, denoted by g(⋅), on the weighted sum ∑ −w aj h j
l

j
l

,
1 

of the values of the neurons in the previous layer l − 1, adding also the bias term bh
l , leading to: 

= ∑ +−( )a g w a bh
l

j h j
l

j
l

h
l

,
1 . The index j labels neurons in the previous layer, so that j = 1, …, Nf when l = 1 and 
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Figure 2.  Probability distribution P(ei) of the first three energy levels e0, e1, and e2. The vertical segments 
indicate the corresponding averages over many speckle-field instances 〈e0〉d, 〈e1〉d, and 〈e2〉d. The energy unit is 
the correlation energy Ec.

Figure 3.  Average over many speckle-field instances of the absolute value of the Fourier components of 
the speckle field. The (red) squares correspond to the real part. The (blue) open triangles correspond to the 
imaginary part. The (black) circles and the (green) stars indicate the standard deviations of the real part and of 
the imaginary part, respectively.
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j = 1, …, Nn when l > 1. The coefficients wh j
l
,  are the weights between layer l and layer l − 1, with l = 1, …, Nl + 1. 

They represent the model parameters that have to be optimized during the learning process, together with the bias 
terms bh

l . The neuron of the output layer (corresponding to the index l = Nl + 1) also performs the weighted sum 
with bias, but the activation function is here just the identity function. Taking, as an illustrative example, a neural 
network with one hidden layer and one neuron in the hidden layer, the learning function would be 

= ∑ + +( )F w g w f b bf( ) j j j1,1
2

1,
1

1
1

1
2. Different choices for the activation function g(x) of the hidden neurons are 

possible, including, e.g., the identity, the hyperbolic tangent, and the rectified linear unit function, defined as 
g(x) = max(0, x). In this article, we adopt the latter function. A preliminary analysis has shown that other suitable 
choices perform quite poorly.

The training process consists in optimizing the model parameters wh j
l
,  and bh

l  so that the function values F(ft) 
closely approximate the target values yt. Here, the index t = 1, …, Nt labels the instances in the training set. The 
optimization algorithm is designed to minimize the loss function α= ∑ − +L F yW f W( ) ( ( ) ))t t t

1
2

2 1
2 2

2, where 
the second term is the regularization and is introduced to penalize complex models with large coefficients. It is 
computed with the L2-norm, indicated as ⋅ 2, of the vector W, which includes all weight coefficients. The regu-
larization is useful to avoid overfitting, the situation in which the target values of the training instances are accu-
rately reproduced, but the neural network fails to correctly predict the target values of previously unseen 
instances. The magnitude of the regularization term can be tuned by varying the (positive) regularization param-
eter α. Typically, large values of α are required to avoid the pervasive over-fitting problem when the training set 
is small (if the neural network has many layers and many hidden neurons), while small (or even vanishing) values 
of α can be used if the training set is sufficiently large. The role of this parameter is another important aspect that 
will be analyzed below.

The optimization is performed using the Adam algorithm59, an improved variant of the stochastic gradient 
descent method, which is readily implemented in the scikit-learn library, and proves to perform better than the 
other available options for our problem. The tolerance parameter in the multi-layer perceptron regressor is set to 
10−10, providing a large parameter for the maximum number of iteration so that convergence is always reached. 
All other parameters of the multi-layer perceptron regressor are left at their default values.

Results
In the following, we evaluate the performance of the trained neural network in predicting the energy levels of 
a set of Np = 40000 speckle-field instances not included in the training set. As a figure of merit, we consider the 
coefficient of determination, typically denoted with R2, defined in the general case as:
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p  is the average of the target values in the test set, which is essentially zero here due to the use 
of shifted energy levels. A perfectly accurate statistical model which exactly predicts the target values of all the 
instances in the test set would yield a coefficient of determination equal to R2 = 1. For example, a constant func-
tion which produces (only) the correct average of the test set target values, but (clearly) completely fails to repro-
duce their fluctuations, would instead correspond to the score R2 = 0. Notice that the coefficient of determination 
could in principle be negative in the case of an extremely inaccurate statistical model (in fact, R2 is not the square 
of a real number). All R2 scores reported in the following have been obtained as the average over 5 to 15 repeti-
tions of the training of the neural network, initializing the random number generator used by the multi-layer 
perceptron regressor of the scikit-learn library with different seed numbers. The estimated standard deviation of 
the average is used to define the error bar displayed in the plots. This error bar accounts for the fluctuations due 
the (possibly) different local minima identified by the optimization algorithm.

The first aspect of the machine learning process we analyze is the role of the regularization parameter α. A 
neural network with Nl = 3 hidden layers and Nn = 150 neurons per hidden layer is considered for this analysis, 
testing how accurately it predicts the (shifted) ground state energies of the Np = 40000 instances of the test set. 
Figure 4 shows the R2 scores as a function of the regularization parameter, for different sizes of the training set Nt. 
One notices that for the smallest training set with Nt = 25000 instances the optimal result is obtained with a sig-
nificantly large regularization parameter, namely α ≈ 0.03. This indicates that without regularization this training 
set would be too small to avoid overfitting. Instead, the largest training sets provide the highest R2 scores with 
vanishingly small α values, meaning that here regularization can be avoided. In fact, this neural network proves 
able to accurately predict the ground-state energies of the speckle-field instances, with the highest values of the 
coefficient of determination R2 close to 1.

This high accuracy can be appreciated also in the scatter plot of Fig. 5, where the shifted ground-state energy 
εpred = F(f) predicted by the neural network (with Nl = 3 and Nn = 150, as in Fig. 4) is plotted versus the exact 
value ε0. Here, the training set size is Nt = 80000, and the regularization parameter is fixed at the optimal value. 
The color scale indicates the absolute value of the discrepancy d = εpred − ε0. One notices that somewhat larger dis-
crepancies occur for those speckle-field instances whose ground state energy is higher than the average. The inset 
of Fig. 5 displays its probability distribution P(d). This distribution turns out to be well described by a gaussian 
fitting function with a standard deviation as small as σ ≅ 0.039Ec.

It is interesting to analyze how the accuracy of the neural network varies with the number of hidden layers 
Nl and of the neuron per hidden layer Nn. In Fig. 6 the R2 scores are plotted as a function of Nl. The three upper 
datasets correspond to (shifted) ground-state energy predictions with three values of Nn. In Fig. 7 the R2 scores are 
plotted as a function of Nn, for three numbers of layers Nl. The size of the training set is Nt = 80000. One notices 
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that a neural network with only one hidden layer is not particularly accurate, with the R2 score being close to 
R2 ≈ 0.8. Instead, two hidden layers appear to be already sufficient to provide accurate predictions. Increasing the 
hidden layer number beyond Nl = 3 does not provide a sizable accuracy improvement. The number of neurons 
Nn plays a relevant role, too. A significant accuracy improvement occurs when the number of hidden neurons 
increases from Nn = 50 to Nn = 100. This improvement becomes less pronounced when Nn is increased beyond 
Nn = 150.

It is evident that neural networks with Nl > 2 and Nn > 150 are quite accurate statistical models to predict 
ground state energies; however, their R2 scores still remain close but systematically below the ideal result R2 = 1. 
It is possible that a larger training set would allow one to remove even this small residual error. To address this 
point, we plot in Fig. 8 the gap with respect to the ideal score, computed as 1 − R2, as a function of the training set 
size Nt, reaching relatively large training set sizes Nt = 140000. The considered neural network is considerably 
deep and wide, having Nl = 3 hidden layers and Nn = 200 neurons per hidden layer. One observes that this gap 
systematically decreases with Nt. In fact, for ≥N 50000t , the gap data trend appears to be reasonably well charac-
terized by the following power-law fitting function: 1 − R2(Nt) = A/Nt, where A = 513(6) is the only fitting param-
eter. We emphasize here that this fitting function is empirical, that it applies to the considered regime of large 
training set sizes Nt, and that is is possible that the gap data would display a different scaling (e.g., logarithmically 
vanishing) for even larger Nt values. Still, the analysis of Fig. 8 suggests that, given a sufficiently large training set, 
a few-layers deep neural network can provide essentially arbitrarily accurate predictions of ground-state energies. 
Chiefly, one notices that at Nt = 140000 the R2 score is as accurate as R2 ≅ 0.996, meaning that the residual error is 
already negligible for many purposes. The training process of a deep neural network on much larger training sets 
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becomes a computationally expensive task, at the limit of the computational resources available to us. In this 
regards, it is worth reminding that the computational cost of training a neural network scales with the training set 
size, with the number of features, and with the Nl-th power of the number of neurons per hidden layer. In fact, in 
general, the inaccuracies in supervised machine learning predictions can be attributed to the limited expressive 
power of the statistical model (e.g., an artificial neural network with too few hidden layers), but also to the possi-
ble inability of the training algorithm to find the optimal parameters. In the case analyzed here, it appears that the 
training algorithm is not the limiting factor, since the R2 scores systematically improve with Nt. However, substan-
tial research efforts are still being devoted to improve the power and the speed of the optimization algorithms 
employed to train artificial neural networks, and even quantum annealing methods have recently been tested60.

We analyze also how accurately a neural network can predict the (shifted) excited state energies. In fact, in 
quantum many-body theory, predicting excited state energies is a more challenging computational problem com-
pared to ground-state energy computations, since efficient numerical algorithms such as, e.g., quantum Monte 
Carlo simulations, cannot be used in general, thus demanding the use of computationally expensive techniques 
like exact diagonalization algorithms. It is interesting to inspect if this greater difficulty is reflected in the process 
of learning to predict excited state energies from previous observations. R2 scores corresponding to predictions 
of first excited state energies are displayed in Fig. 6, as a function of Nl, for three numbers of neurons per hidden 
layer Nn. R2 scores corresponding to the second excited state are displayed too, but for one Nn value only. One 
notices that the R2 scores are lower than in the case of ground state energy predictions, in particular the results 
corresponding to the second excited state. Furthermore, the number of layers appears to play a more relevant role. 
Deeper neural networks are necessary to get close to the ideal score R2 = 1. However, adding even more layers 
becomes computationally prohibitive, and is beyond the scope of this article.

It is worth mentioning that machine learning techniques have been recently employed to develop compact 
representations of many-body wave functions of tight-binding and quantum spin models. In particular, a specific 
kind of generative (shallow) neural network, namely the restricted Boltzmann machine, has been found to be 
capable of accurately approximating ground-state wave functions61. Unrestricted Boltzmann machines, including 
direct correlations among hidden variables, have been considered, too62. Interestingly, it was later found that in 
order to accurately represent (low-lying) excited states, deeper neural networks are required63, in line with our 
findings on energy-level approximation.

The last aspect we investigate is the resilience of the neural network to the noise eventually present in the data 
representing the energy levels of the training set. Quantifying this (possible) resilience is important in order to 
establish if it is feasible to employ the outcomes of analog quantum simulations performed, e.g., with ultracold 
atom experiments, to train neural networks. In fact, while training sets obtained from numerical computations, as 
the exact diagonalization calculation employed here, are in general free from random fluctuations (this is not the 
case, e.g., of Monte Carlo simulations), in experiments a certain amount of statistical uncertainty is unavoidable. 
With this aim, we perform the training of a neural network on a large set of instances whose (shifted) energy lev-
els εi have been randomly distorted by adding a Gaussian random variable with zero mean and standard deviation 
equal to the standard deviation of the original set of energy levels times a scale factor η. This scale factor quan-
tifies the intensity of the noise added to the training set. Specifically, we consider a neural network with Nl = 3 
layers, Nn = 200 neurons per layer, while the size of the training set is the largest considered in this article, namely 
Nt = 140000. The results for the coefficient of determination R2 (computed on Np non-randomized test instances, 
previously unseen by the neural network) as a function of the noise intensity η are shown in Fig. 9. One notices 
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that the prediction accuracy is essentially unaffected by the added noise up to a noise level of a few percent. Only 
when the noise level is above 10% (corresponding to η > 0.1) the reduction in the R2 score becomes significant. 
The R2 data appear to be well described by the empirical fitting function R2(η) = a − bηc, with a, b, and c fitting 
parameters. These results indicate that the neural network is capable of filtering out the signal from the noise, 
resulting in a remarkable resilience to the random noise present in the training set. It is worth mentioning that, 
analogously to the analyses reported above, the regularization parameter α has been optimized for each η value, 
individually. These optimizations show that, while for small added noise (small η) vanishingly small α values are 
optimal, meaning that no regularization is needed, larger α values are need when the noise intensity increases; for 
example, when η = 0.35 the optimal regularization parameter (the one providing the highest R2 score on the test 
set) is α = 0.01. This indicates that, by penalizing models with large weight coefficients, the regularization helps 
the neural network to avoid learning the noise, thus filtering out the signal.

These findings suggest that data obtained from cold-atom quantum simulations might be used to train neural 
network, possibly providing a route to make predictions on models that cannot be accurately solved via computer 
simulations, as for the paradigmatic case of the fermionic Hubbard model. Concerning this, it is worth men-
tioning that recent cold-atoms experiments implementing the fermionic Hubbard model have been analyzed via 
machine learning techniques38, and we hope that our findings will motivate further endeavours in this direction.

It is also worth mentioning that previous studies on classification problems via supervised machine learning 
have already found that deep neural networks are remarkably robust against noise; see, e.g., ref.64 and references 
there in. In those studies, noise was introduced in the form of many instances with random labels, even at the 
point of outnumbering the instances with correct labels. Our results extend these previous findings to the case 
of a specific, experimentally relevant, regression problem. It is also worth pointing out that techniques to reduce 
the effect of random errors in the training set have been developed in the machine learning community (see, e.g. 
ref.65), and that such techniques could be adapted to analyze cold-atom experiments.

Discussion
The general problem we tried to address is whether a machine can learn to solve new quantum mechanics prob-
lems from previously solved examples. Specifically, we performed a supervised machine learning study, training 
a deep neural network to predict the lowest three energy levels of a quantum particle in a disordered external 
field. The trained neural network could be employed, e.g., to speed up the ensemble averaging calculations, for 
which numerous realizations have to be considered in order to faithfully represent the disorder ensemble. This 
kind of ensemble averaging plays a crucial role in the studies on Anderson localization (see, e.g, refs49,50). The 
quantum model we focused on is designed to describe a one-dimensional noninteracting atomic gas exposed to 
an optical speckle field, taking into account the structure of the spatial correlations of the local intensities of the 
random field. The most relevant aspects of a supervised machine learning task have been analyzed, including 
the number of hidden layers in the neural network, the number of neurons in each hidden layer, the size of the 
training set, and the magnitude of the regularization parameter. Interestingly, we found that a neural network 
with three or four layers of hidden neurons can provide extremely accurate prediction of ground-state energies 
using for training a computationally feasible number of speckle-field instances. The predictions of excited state 
energies turned out to be slightly less accurate, requiring deeper neural networks to approach the optimal result. 
We also quantified the amount of regularization required to avoid the overfitting problem in the case of small or 
moderately large training sets.

In recent years, the experiments performed with ultracold atoms have emerged as an ideal platform to per-
form quantum simulations of complex quantum phenomena observed also in other, less accessible and less tun-
able, condensed matter systems. In the long term, one can envision the use of cold-atom setups to train artificial 
neural network to solve problems that challenge many-body theorists, like the many-fermion problem. In the 
medium term, these experiments can be employed as a testbed to develop efficient representations of instances 
of quantum systems for supervised machine learning tasks, as well as for testing the accuracy of different statis-
tical models, including, e.g, artificial neural networks, convolutional neural networks, gaussian approximation 
potentials, or support vector machines19,24. These machine learning techniques could find use in particular in 
the determination of potential energy surfaces for electronic structure simulations29, or even in ligand-protein 
affinity calculations for drug-design research. For this purpose, it is of outmost importance to understand how 
accurate the above mentioned statistical models can be in predicting the energy levels of complex quantum many 
body systems. This is one of the reasons that motivated our study. In view of the possible future use of cold-atom 
quantum simulators as computational engines to provide training sets for supervised machine learning tasks, we 
investigated the resilience of artificial neural networks to noise in the training data, since this is always present 
is any experimental result. We found that a deep neural network with three layers is remarkably robust to such 
noise, even up to a 10% noise level in the target values of the training data. This level of accuracy is indeed within 
the reach of cold-atoms experiments. This is an important result suggesting that training artificial neural net-
works using data obtained from cold-atom quantum simulations would indeed be feasible. The analysis on the 
amount of regularization discussed above provides information on how many experimental measurements would 
be needed to avoid the risk of overfitting.

It well known that an accurate selection of the features used to represent the system instances can greatly 
enhance the power of supervised machine learning approaches. In this article we have employed the Fourier com-
ponents of the optical speckle field. This appears to be an effective choice for systems characterized by external 
fields with spatial correlations. This approach could be further improved by combining this choice of features with 
different types of artificial neural networks as, e.g., the convolutional neural networks; the latter have in fact been 
considered in ref.19, but in combination with a real-space representation of the quantum system. In this regards, it 
is worth mentioning that various alternative representations have been considered in the field of atomistic simu-
lations for many-particle systems, including, e.g, the atom-centered symmetry functions26, the neighbor density, 
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the smooth overlap of atomic positions, the Coulomb matrices (see, e.g, ref.29), and the bag of bonds model13. In 
this context, an important open problem is the development of space-scalable representations, and associated 
statistical models, that can be applied to systems of increasing system size. Previous machine-learning studies on 
atomistic systems exploited the locality of atomic interaction to build such scalable models for many-atom sys-
tems22,29. This property, which is sometimes referred to as nearsightedness, characterizes many common chemical 
systems. However, quantum mechanical systems often host long-range correlations that cannot be captured by 
locality-based models. A more general approach, which will be the focus of future investigations, might be built 
using transfer-learning techniques66 whereby models optimized on small scale systems form the building blocks 
of neural-network models for large scale systems with a moderate computational cost.

Data Availability
All data sets and computer codes employed in this work are available upon request.
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