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Abstract

Background: COVID-19 is a critical pandemic that has affected human communities world-

wide, and there is an urgent need to develop effective drugs. Although there are a large

number of candidate drug compounds that may be useful for treating COVID-19, the evalua-

tion of these drugs is time-consuming and costly. Thus, screening to identify potentially

effective drugs prior to experimental validation is necessary. Method: In this study, we

applied the recently proposed method tensor decomposition (TD)-based unsupervised fea-

ture extraction (FE) to gene expression profiles of multiple lung cancer cell lines infected

with severe acute respiratory syndrome coronavirus 2. We identified drug candidate com-

pounds that significantly altered the expression of the 163 genes selected by TD-based

unsupervised FE. Results: Numerous drugs were successfully screened, including many

known antiviral drug compounds such as C646, chelerythrine chloride, canertinib, BX-795,

sorafenib, sorafenib, QL-X-138, radicicol, A-443654, CGP-60474, alvocidib, mitoxantrone,

QL-XII-47, geldanamycin, fluticasone, atorvastatin, quercetin, motexafin gadolinium, trova-

floxacin, doxycycline, meloxicam, gentamicin, and dibromochloromethane. The screen also

identified ivermectin, which was first identified as an anti-parasite drug and recently the drug

was included in clinical trials for SARS-CoV-2. Conclusions: The drugs screened using our

strategy may be effective candidates for treating patients with COVID-19.

1 Introduction

Coronavirus 2019 (COVID-19) is an infectious disease that has created a pandemic worldwide

[1]. Thus, it is urgent to identify effective drugs to combat this disease. Numerous studies

related to identifying effective therapeutics have been reported; in slico drug discovery is a use-

ful approach because very large numbers (up to millions) of drug candidate compounds can

be screened, which is not possible using experimental approaches. There are two main meth-

ods used for in slico drug discovery: ligand-based drug discovery (LBDD) and structure-based

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0238907 September 11, 2020 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Taguchi Y-h., Turki T (2020) A new

advanced in silico drug discovery method for novel

coronavirus (SARS-CoV-2) with tensor

decomposition-based unsupervised feature

extraction. PLoS ONE 15(9): e0238907. https://doi.

org/10.1371/journal.pone.0238907

Editor: Qianjun Li, University of Alabama at

Birmingham, UNITED STATES

Received: June 3, 2020

Accepted: August 26, 2020

Published: September 11, 2020

Copyright: © 2020 Taguchi, Turki. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data set can be

downloaded from GEO GSE147507

Funding: This work was supported by KAKENHI

[grant numbers 19H05270, 20H04848, and

20K12067] to YT and Deanship of Scientific

Research (DSR) at King Abdulaziz University,

Jeddah [grant number KEP-8-611-38] to TT.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0003-0867-8986
https://doi.org/10.1371/journal.pone.0238907
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0238907&domain=pdf&date_stamp=2020-09-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0238907&domain=pdf&date_stamp=2020-09-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0238907&domain=pdf&date_stamp=2020-09-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0238907&domain=pdf&date_stamp=2020-09-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0238907&domain=pdf&date_stamp=2020-09-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0238907&domain=pdf&date_stamp=2020-09-11
https://doi.org/10.1371/journal.pone.0238907
https://doi.org/10.1371/journal.pone.0238907
http://creativecommons.org/licenses/by/4.0/


drug discovery (SBDD), which have various advantages and disadvantages. LBDD can effec-

tively predict “hit” compounds, but cannot find new drug candidate compounds lacking

similarity to known drug compounds. In contrast, although SBDD can find drug candidate

compounds without similarity to known drugs, it requires massive computational resources

for docking simulation between compounds and proteins. When no experimentally confirmed

protein tertiary structures are available, these structures must also be predicted, potentially

decreasing the accuracy of the predicted affinity of compounds with proteins. As in [2–5], if

gene expression profiles altered by new drug candidate compounds are coincident with those

of known drug compounds, these new drug candidate compounds are regarded as promising.

Although this approach can identify promising drug candidate compounds even when they

lack similarity with known drugs, as required by LBDD, and massive computational resources

are not needed, as required by SBDD, it remains difficult to identify drug candidate com-

pounds for proteins and diseases when no effective drug compounds are known.

To overcome these limitations, we propose an unsupervised method that can predict drug

candidate compounds without knowledge of known compounds using a different formulation

of the recently proposed tensor decomposition (TD)-based unsupervised feature extraction

(FE) [5]. TD-based unsupervised FE was applied to the gene expression profiles of multiple

lung cancer cell lines infected with severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) [6]. The 163 genes identified as differentially expressed genes (DEGs) in SARS-CoV-2

infection were enriched in various SARS coronavirus-related terms. Drugs screened based on

the coincidence of DEGs between drug treatments and SARS-CoV-2 infection were largely

enriched with known antivirus drugs. This suggests that our strategy is effective and that the

drugs screened in this study are promising candidates as antiviral drug for SARS-CoV-2.

2 Materials and methods

Fig 1 shows the overall design of this study.

2.1 Gene expression profiles

Gene expression profiles used in this study were downloaded from the Gene Expression

Omnibus (GEO) with GEO ID GSE147507. Specifically, the file used was GSE147507_Ra-

wReadCounts_Human.tsv.gz; it is composed of five cell lines (Calu3, NHBE, A549 Multiplicity

of infection (MOI) 0.2, A549 MOI 2.0, and A549 ACE2 expressed), two treatments (Mock and

SARS-CoV-2 infected), and three biological replicates for individual pairs of cell lines and

treatments. Thus, in total, 5 × 2 × 3 = 30 samples were available.

2.2 TD-based unsupervised FE

The purpose of applying TD to gene expression was to identify genes simultaneously associ-

ated with or dependent on multiple experimental conditions, i.e., infection, cell lines, and bio-

logical replicates.

Gene expression profiles are formatted as tensor, xijkm 2 R
N�5�2�3

, which represents the ith
gene expression of jth cell lines (j = 1: Calu3, j = 2: NHBE, j = 3: A549 MOI 0.2, j = 4: A549

MOI 2,0, j = 5: A549 ACE2 expressed) with kth treatment (k = 1: Mock and k = 2: SARS-CoV-

2 infected) of the mth biological replicates.

xijkm was decomposed into TD

xijkm ¼
X5

‘1¼1

X2

‘2¼1

X3

‘3¼1

XN

‘4¼1

Gð‘1; ‘2; ‘3; ‘4; ‘5Þu‘1 ju‘2ku‘3mu‘4i ð1Þ
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with a higher-order singular value decomposition (HOSVD) [5]. u‘1 j 2 R
5�5
; u‘2k 2 R

2�2
;

u‘3m 2 R
3�3
; u‘4 i 2 R

N�N
are singular value matrices which are orthogonal matrices. The tensor

was normalized as ∑i xijkm = 0 and
P

ix
2
ijkm ¼ N. Gð‘1; ‘2; ‘3; ‘4Þ 2 R

5�2�3�N is a core tensor that

represents a weight of the combination of ℓ1, ℓ2, ℓ3, ℓ4.

TD assumes that a tensor can be expressed as a summation of series of product of four sin-

gular value vectors, uℓ1 j, uℓ2 k, uℓ3 m, and uℓ4 i, each of which represents the dependence upon

j, k, m, and i, with the weight G. Generally, we cannot expect that these dependencies represent

something biological, as it is purely a mathematical assumption. Thus, we need to seek the sin-

gular value vectors that represent the biological dependence. Only occasionally do we find bio-

logical singular value vectors, and then we can go further.

Fig 1. Overall design of this study.

https://doi.org/10.1371/journal.pone.0238907.g001
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To identify uℓ4 i which is used for gene selection, we need to identify uℓ1 j whose values are

independent of j, i.e. cell line-independent, uℓ2 m whose values are independent of m, i.e., bio-

logical replicate-independent while uℓ2 k whose values are distinct between k = 1 and k = 2, i.e.,

distinct between Mock infection and SARS-CoV-2. These requirements support the fact that

the identified singular value vectors are biologically relevant.

The next step was to identify G(ℓ1, ℓ2, ℓ3, ℓ4) with the largest absolute values given ℓ1, ℓ2, ℓ3,

since such ℓ4 should be associated with uℓ4 i similar to gene expression having j, k, m depen-

dence represented by selected uℓ1 j, uℓ2 k, uℓ3 m. This enabled selection of uℓ4 i used for gene

selection. P-values, Pis, are attributed to ith gene using the following formula under the null

hypothesis that uℓ4 i obeys Gaussian distribution:

Pi ¼ Pw2 >
u‘4 i
s‘4

 !2" #

ð2Þ

where Pχ2[> x] is cumulative distribution of the χ2 distribution where the argument is larger

than x and s‘4 is the standard deviation. Next, Pis were adjusted by Benjamini and Hochberg

criterion [5] and genes associated with adjusted P-values less than 0.01 were selected as those

whose gene expression is significantly associated with the assumed dependence upon j, k, m.

2.3 Enrichment analysis

Gene symbols of genes selected by TD-based unsupervised FE with significantly altered

expression due to SARS-CoV-2 infection were uploaded to Enricher [7], which is a popular

enrichment analysis server that evaluates the biological properties of genes based on enrich-

ment analysis.

2.4 Differential expressed genes identification

Differential expressed genes (DEG) were identified by t test, sam [8] and limma [9]. Given k,

for individual is, xi1km and xi2km were compared. For t test and sam, normalized xijkm were

compared. For limma, logarithmic values of raw xijkm were compared with excluding is having

zero xijkm, since logarithmic values cannot be computed for negative or zero values. Since there

are as small as three biological replicates, three replicates of each pair are compared with each

other. Obtained P-values are adjusted by BH criterion and ith gene having adjusted P-values

less than 0.01 are selected.

3 Results

3.1 Gene selection

After identifying ℓ1 = 1, ℓ2 = 2, and ℓ3 = 1 based upon the criterion denoted in the Materials

and Methods (Fig 2), we attempted to list G(1, 2, 1, ℓ4)s to select ℓ4 used for gene selection.

We found that G(1, 2, 1, 5) had the largest absolute value (Table 1). As a result, u5i was

employed to attribute P-values to gene i as shown in Eq (2). Finally, we selected 163 genes

showing adjusted P-values less than 0.01 (Table 2).

3.2 Enrichment analysis

The selected 163 genes were uploaded to Enrichr (full list is available in S1 File) and we identi-

fied numerous enriched categories useful for follow-up analyses of the selected 163 genes and

in in silico drug discovery as described below.
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Fig 2. Singular value vectors obtained by the HOSVD algorithm. U1:U1j, U2:U2k, U3:U1m, See Materials and methods for the definitions of j, k,

and m.

https://doi.org/10.1371/journal.pone.0238907.g002

Table 1. G(1, 2, 1, ℓ4)s computed by the HOSVD algorithm.

ℓ4 G(1, 2, 1, ℓ4) ℓ4 G(1, 2, 1, ℓ4)

1 -21.409671 6 -12.388615

2 5.183297 7 8.437642

3 -21.426437 8 13.322888

4 10.030564 9 -1.850982

5 62.518121 10 9.211437

https://doi.org/10.1371/journal.pone.0238907.t001
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3.2.1 Protein-protein interactions. The 163 selected proteins significantly interacted

with numerous SARS-CoV virus proteins that play key roles in virus infection. Thus, our strat-

egy successfully identified critical human genes associated with the coronavirus infection (S1

Table).

3.2.2 Virus perturbations. Next, we examined whether the selected 163 genes signifi-

cantly overlapped with genes whose expression was altered by infection with viruses other

than SARS-CoV-2. We investigated “Virus Perturbations from GEO up” (S2 Table, full list is

available in S1 File) and “Virus Perturbations from GEO down” (S3 Table, full list is available

in S1 File). We found that SARS-CoV and SARS-BAtSRBD, which are coronaviruses mostly

related to SARS-CoV-2, were highly enriched. This also suggests that our strategy is effective

for identifying genes important in SARS-CoV-2 infection.

3.3 Drug discovery

Based upon the observations described above, we regarded the selected 163 proteins as repre-

sentative of the SARS-CoV-2 infection process. Next, we evaluated drug candidate compounds

by identifying those that significantly affected the expression of the selected 163 genes. For

this, we investigated individual drug treatment-related categories in Enrichr.

3.3.1 LINCS L1000 Chem Pert up/down. The first category investigated in Enrichr was

“LINCS L1000 chem pert”. LINCS collected numerous cell lines treated with various drug

compounds. Their altered expression profiles have been measured and stored in a public

domain database. We found many drug compounds whose treatments significantly altered the

expression of the selected 163 genes. Because the number of “hits” is too large to show here,

tables are provided as supplementary tables. Selected drugs in this category are shown below.

We identified many candidate drug compounds, indicating that our strategy is effective.

C646. C646 showed the second smallest (significant) P-value in “LINCS L1000 Chem Pert

up” and had multiple hits (S4 Table). This agent was also reported to be a novel p300/CREB-

binding protein-specific inhibitor of histone acetyltransferase which attenuates influenza A

virus infection [10].

Chelerythrine chloride. Chelerythrine chloride exhibited the third and fifth smallest (sig-

nificant) P-value in “LINCS L1000 Chem Pert up” and had multiple hits (S5 Table). It is

known to exhibit pharmacological inhibition of protein kinase C reduces West Nile virus repli-

cation (See Fig,1 [11]).

Canertinib. Canertinib exhibited the sixth smallest (significant) P-value in “LINCS L1000

Chem Pert up” and had multiple hits (S6 and S7 Tables). It shows antiviral chemotherapy

effects and controls poxvirus infections by inhibiting cellular signal transduction [12].

Table 2. One hundred and sixty-three genes selected by TD-based unsupervised FE.

ABCC3 ACE2 ACTB ACTG1 ACTN4 AHNAK AKAP12 AKR1B1 AKR1B10 AKR1C2 ALDH1A1 ALDH3A1

ALDOA AMIGO2 ANTXR1 ANXA2 ASNS ASPH ATF4 ATP1B1 C3 CALM2 CALR CD24 CFL1 CPLX2 CRIM1

CTGF CXCL5 CYP24A1 DCBLD2 DDIT4 DHCR24 EEF1A1 EEF2 EIF1 EIF4B EIF5A ENO1 ERBB2 EREG FADS2

FASN FDCSP FDPS FLNB FTH1 FTL G6PD GAPDH GAS5 GPX2 GSTP1 H1F0 HMGA1 HNRNPA2B1

HSP90AA1 HSP90AB1 HSPA8 ICAM1 IER3 IFIT2 IGFBP3 IGFBP4 ITGA2 ITGA3 ITGAV ITGB1 JUN KRT18

KRT19 KRT23 KRT5 KRT6A KRT7 KRT8 KRT81 LAMB3 LAMC2 LCN2 LDHA LIF LOXL2 MIEN1 MTHFD2

MYL6 NAMPT NAP1L1 NEAT1 NFKBIA NPM1 NQO1 OAS2 P4HB PABPC1 PFN1 PGK1 PKM PLAU PLOD2

PMEPA1 PPIA PPP1R15A PSAT1 PSMD3 PTMA RAI14 RNF213 RPL10 RPL12 RPL23 RPL26 RPL28 RPL3 RPL37

RPL4 RPL5 RPL7 RPL7A RPL9 RPS19 RPS20 RPS24 RPS27 RPS27A RPS3A RPS4X RPS6 S100A2 S100A6 SAT1

SCD SERPINA3 SERPINE1 SLC38A2 SLC7A11 SLC7A5 SPP1 SPTBN1 SQSTM1 STARD3 STAT1 STC2 TGFBI

TGM2 TIPARP TMSB4X TNFAIP2 TOP2A TPI1 TPM1 TPT1 TRAM1 TUBA1B TUBB TUBB4B TXNIP TXNRD1

UBC VEGFA VIM YBX1 YWHAZ

https://doi.org/10.1371/journal.pone.0238907.t002
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BX-795. BX-795 has the 11th smallest (significant) P-value in “LINCS L1000 Chem Pert

up” and had multiple hits (S8 Table). BX-795 inhibits HSV-1 and HSV-2 replication by block-

ing the JNK/p38 pathways without interfering with PDK1 activity in host cells [13]. Su et al

[13] also suggested SARS-CoV as a target of BX-795.

Sorafenib. Sorafenib showed the 12th smallest (significant) P-value in “LINCS L1000

Chem Pert up” and had multiple hits (S9 Table). Sorafenib impedes Rift Valley fever virus

egress by inhibiting valosin-containing protein function in the cellular secretory pathway [14].

QL-X-138. QL-X-138 displayed the smallest (significant) P-value in “LINCS L1000 Chem

Pert down” and had multiple hits (S10 and S11 Tables). QL-XII-138 inhibits Dengue virus (see

Fig 3 [15]).

Radicicol. Radicicol showed the second smallest (significant) P-value in “LINCS L1000

Chem Pert down” and had multiple hits (S12 and S13 Tables). Antiviral activity and RNA

polymerase of radicicol is degradation following Hsp90 inhibition in a range of negative-

strand viruses [16]. Radicicol also preferentially reduces HCV release, although radicicol does

not affect its infectivity [17]. Because other Hsp90 inhibitors are effective against coronavirus

[18], radicidol is also thought to be effective for treating SARS-CoV-2.

A-443654. A-443654 showed the fourth smallest (significant) P-value in “LINCS L1000

Chem Pert down” and had multiple hits (S14 and S15 Tables). Jeong and Ahn found that

viral replication of HBV in infected or transfected hepatoma cells was markedly inhibited by

treatment with A-443654 [19], a specific inhibitor of Akt. As the SARS-CoV membrane pro-

tein also induces apoptosis by modulating the Akt survival pathway [20], A-443654 may be

an effective drug for treating COVID-19. The “PI3K-Akt signaling pathway” was the fourth

most significant pathway (adjusted P = 3.97×10−7, overlap is 17/354) in the “KEGG 2019

Human” category of Enrichr (full list is available in S1 File) to which the 163 selected genes

were uploaded.

CGP-60474. CGP-60474 had the fifth smallest (significant) P-value in “LINCS L1000

Chem Pert down” and multiple hits (S16 and S17 Tables). CGP-60474 is also a repurposed

drug that was used to treat lung injury in COVID-19 in an independent in silico study [21].

Alvocidib. Alvocidib showed the sixth smallest (significant) P-value in “LINCS L1000

Chem Pert down” and had multiple hits (S18 and S19 Tables). Alvocidib, a kinase inhibitor,

was repurposing as an antiviral agent to control influenza A virus replication [22].

Mitoxantrone. Mitoxantrone exhibited the 20th smallest (significant) P-value in “LINCS

L1000 Chem Pert down” and had multiple hits (S20 and S21 Tables). Mitoxantrone inhibits

Vaccinia virus replication by blocking virion assembly [23].

QL-XII-47. QL-XII-47 showed the 22nd smallest (significant) P-value in “LINCS L1000

Chem Pert down” and had multiple hits (S22 and S23 Tables). QL-XII-47’s inhibition of Zika

virus, West Nile virus, hepatitis C virus, and poliovirus have been reported previously [15].

Geldanamycin. Geldanamycin showed the 25th smallest (significant) P-value in “LINCS

L1000 Chem Pert down” and had multiple hits (S24 and S25 Tables). Similar to radicicol as

described above, the antiviral activity and RNA polymerase of radicicol involves degradation

following Hsp90 inhibition in a range of negative-strand viruses [16]. These observations for

radicicol are also applicable to geldanamycin.

3.3.2 Drug perturbations from GEO. Although we successfully identified numerous

drug candidate compounds, it would also be useful to identify more candidates in other

categories to confirm the effectiveness of our strategy. Thus, we next investigate “Drug Pertur-

bations from GEO up/down” categories. As described below, we found numerous drug candi-

date compounds within these data sets (S26 Table).

Fluticasone. Effect of fluticasone propionate on virus-induced airway inflammation and

antiviral immune responses in mice [24].
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Atorvastatin. Atorvastatin restricts the ability of influenza virus to generate lipid droplets

and severely suppresses virus replication [25].

Quercetin. Quercetin was reported to inhibit the cell entry of SARS-CoV-2 [26] and was

included in the list of candidate compounds for SARS-CoV-2 screened by an in silico method

[27].

Motexafin gadolinium. Motexafin gadolinium was reported to selectively induce apoptosis

in HIV-1-infected CD4+ T helper cells [28].

Trovafloxacin. Simian virus 40 large T antigen helicase activity was inhibited by fluoro-

quinolone, trovafloxacin [29].

Doxycycline. Antiviral activity of doxycycline against vesicular stomatitis virus was observed

in vitro [30].

3.3.3 Drug matrix. To further confirm the independency of our findings based on the

data sets used, we also examined the “Drug Matrix” category (S27 Table, the full list is available

in S1 File). As we found some hits, our method can robustly identify promising drug candidate

compounds.

Meloxicam. Meloxicam is known to exert cytotoxic and antiproliferative activities towards

virus-transformed tumor cells [31], including myelocytomatosis virus and Rous sarcoma

virus. Myelocytomatosis virus is a retrovirus, which is an enveloped, negative-sense, single-

stranded RNA virus, whereas Rous sarcoma virus is an enveloped, positive-sense, single-

stranded RNA virus.

Gentamicin. Although gentamicin is known to be a bactericidal antibiotic, it also exhibits

antiviral activity (Table 3 [32]).

Dibromochloromethane. Dibromochloromethane was announced as a possible antiviral

drug by the Agency for Toxic Substances and Disease Registry (PUBLIC HEALTH STATE-

MENT Bromoform and Dibromochloromethane CAS#: 75-25-2 and 124-48-1, 2005).

3.4 Comparison with in silico drug discovery

Finally, we compared our results with those of other drugs identified in silico. As expected,

some overlap was observed.

3.4.1 Comparison with Wu et al. [33]. We found multiple hits, which are summarized in

S28 Table; Wu et al. [33] identified 29 potential PLpro inhibitors, 27 potential 3CLpro inhibi-

tors, and 20 potential RdRp inhibitors from the ZINC drug database, and identified 13 poten-

tial PLpro inhibitors, 26 potential 3Clpro inhibitors, and 20 Potential RdRp inhibitors from

their in-house natural product database. Doxycycline was among both the potential PLpro and

3CLpro inhibitors; ascorbic acid and isotretinoin were among the potential PLpro inhibitors;

pioglitazone was among the potential 3CLpro inhibitors; and cortisone and tibolone were

included as potential RdRp inhibitors from the ZINC drug database. These multiple hits fur-

ther support the suitability of our strategy.

3.4.2 Comparison with Ubani et al. [27]. Ubani et al. [27] screened a library of 22 phyto-

chemicals with antiviral activity obtained from the PubChem database for activity against the

spike envelope glycoprotein and main protease of SARS-CoV-2. Among these, we found only

one hit that overlapped with our screened out drugs, which was quercetin (S29 Table).

4 Discussion and conclusion

In this study, we proposed an advanced unsupervised learning method working in 4D tensors

for identifying numerous promising drug candidate compounds for treating COVID-19 infec-

tion. The proposed method works by applying TD-based unsupervised FE to gene expression

profiles of multiple lung cancer cell lines infected by SARS-CoV-2. We successfully identified
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163 human genes predicted to be involved in the SARS-CoV-2 infection process. By uploading

these selected 163 genes to Enrichr, we found that numerous drug compounds significantly

altered expression of the genes.

Various analyses demonstrated that our results are robust. First, in a previous study [34] in

which we employed a similar strategy to understand the infectious process of mouse hepatitis

virus, a well-studied model CoV, we also identifies numerous drug candidate compounds in

“DrugMatrix” and “Drug Pert from GEO up/down” categories in Enrichr. Although these

drug compounds identified in the previous study were not always identified as top-ranked cat-

egories in this study (S26 and S27 Tables), most were significant. For example, in the “Drug

Matrix” category, the identified drugs in the previous study were primaquine, meloxicam,

cytarabine, pyrogallol, catechol, and neomycin. Among these six drugs, none, except for

meloxicam, were ranked within the top ten (S27 Table), but still significantly affected the

expression of the selected 163 genes in this study (S30 Table). In the “Drug Pert from GEO

up/down” category, the identified drugs in the previous study were fenretinide, pioglitazone,

quercetin, decitabine, troglitazone, and motexafin gadolinium. Among these, only quercetin

and motexafin gadolinium were identified in the present study (S26 Table), but other four

drugs still significantly affected the expression of the selected 163 genes (S31 Table). Addition-

ally, doxycycline, ascorbic acid, isotretinoin, pioglitazone, cortisone, tibolone, and quercetin

were identified in the comparison with two other in slico studies. These drugs were also identi-

fied in the comparison between the present study and other in slico studies (S28 and S29

Tables). These overlapping results with the previous study suggest that our strategy is quite

robust.

These results are also thought to be biologically sound. For example, Although A-443654 is

inhibitor of Akt, which is important for SARS-CoV infection (see above). Radicicol and gelda-

namycin inhibit Hsp90. The importance of inhibition of Hsp90 was reported for treating

patients with COVID-19 has been reported previously [35]. Although we could not identify all

biological meanings of the identified drugs, these two examples suggest that the results are bio-

logically sound.

One may wonder if the detection of PPI in SARS-CoV reported in S1 Table is meaningful,

as SARS-CoV does differ from SARS-CoV-2. In order to confirm if our identified 163 genes

also significantly overlapped with PPI in SARS-CoV-2, we compared the genes with those

identified to be interacting with SARS-CoV-2 proteins [36] (S32 Table). The 163 genes identi-

fied in this study turned out to be highly coincident with human genes reported to be interact-

ing with SARS-CoV-2 proteins (S33 Table). P-values reported in S33 Table were computed by

Fisher exact test between 163 genes and human genes reported to be interacting with SARS-

CoV-2 proteins in S32 Table. It is obvious that the identified 163 genes are significantly over-

lapping with genes reported to be interacting with SARS-CoV-2 proteins. Thus, the PPI

detected in this study (S1 Table) is not accidental but reliable.

Next we compared our drug repositioning proposals based on DrugMatrix, GEO and

LINCS in Enrichr (provided as S1 File) with the drugs identified for SARS-CoV-2 in another

study [37]. Among 142 drugs identified by Zhou et al [37], as many as 43 drugs were found to

significantly affect 163 genes in at least one experiment within either DrugMatrix, GEO, or

LINCS in Enrichr (S34 Table). Thus, our proposal of drug repositioning is also reliable.

This study might be considered to be purely incremental, as the methods employed in this

study other than TD based unsupervised FE are simply comparisons with other studies and

databases. However, we believe it is the opposite. Using our methods, although we could iden-

tify very limited number of genes (163 genes), the small number of identified genes widely

overlapped with at least three categories (DrugMatrix, GEO, and LINCS) in Enricher, two in
silico studies [27, 33] as well as two very recent studies that specifically targeted SARS-CoV-2

PLOS ONE Drug discovery for SARS-CoV-2 using tensor decomposition-based unsupervised feature extraction

PLOS ONE | https://doi.org/10.1371/journal.pone.0238907 September 11, 2020 9 / 16

https://doi.org/10.1371/journal.pone.0238907


[36, 37]. Comparisons with external researches rarely give good results. Therefore, the result

that our small number of 163 genes was coincident with a large number of independent

research suggests the superiority of our strategy. To our knowledge, no other strategies can

identify such small number of genes that are significantly coincident with large number of

studies.

One might also ask why we did not employ simpler approaches like identification of gene

expressed distinctly between mock and infected cells (DEG). Nevertheless, this kind of

approach forced us to identify DEGs in each cell line and allowed us to select intersections

between those identified in each of as many as five cell lines. Considering that intersection

might decrease the number of DEGs or might result in no intersections, if our integrated

approach works well, there are no reasons to seek DEGs in five cell lines one by one.

Another possible concern might be that we did not distinguish between upregluation and

downregulation when we selected genes, but simply considered overlaps of genes associated

with altered expression between SARS-CoV-2 infection and drug treatment. In this sense,

there could be a possibility that some selected drugs are not opposed to infection but rather

accelerate it. However, the tissues and cell lines that were treated with the drugs showed a wide

range and sometimes upregulation and downregulation differ between distinct tissues and cell

lines. The purpose of this study was to screen candidate compounds, and we did not focus on

strict coincidence between upreguation and downregulation, as too strict a criterion might

overlook a useful candidate drug compound.

Our strategy has some advantages over LBDD and SBDD. We do not need any list of drugs

known to be effective to SARS-CoV-2. As we presently do not have any known effective drugs

for SARS-CoV-2, LBDD strategy can be hardly performed. In contrast to SBDD, which

requires massive computational resources like supercomputer, our method is light weighted

and can be performed with a standard computational server that can be purchased even in a

small laboratory. Thus, we believe that our strategy is superior to both LBDD and SBDD for

drug repositioning.

We noticed that ivermectin is included in the hits in DrugMatrix category in Enrichr

(Table 3). Ivermectin was recently reported to inhibit the replication of SARS-CoV-2 in vitro
[38]. As ivermectin was first invented as anti-parasite drug, no previous supervised in silico
approach considered it. To our knowledge, this is the first report of an in silico approach that

can detect ivermectin as a possible SARS-CoV-2 drug. This suggests the effectiveness of our

unsupervised approach.

Finally, we would like to explain why our method (1) is applicable in drug discovery and (2)

outperforms other conventional methods. At first, most of gene expression based in silico drug

discovery methods are supervised methods [39, 40] that require known target-drug relations

or drug-disease relations, which are not available for SARS-CoV-2. Thus, no supervised

methods can be applicable to the present study. On the other hand, for other unsupervised

approaches [41, 42], the earlier studies selected genes specific to diseases as key features. They

Table 3. Ivermectin detected in DrugMatrix category in Enrichr.

Term Overlap P-value Adjusted P-value

Ivermectin-7.5 mg/kg in CMC-Rat-Liver-1d-dn 12/277 2.98E-06 9.93E-06

Ivermectin-7.5 mg/kg in CMC-Rat-Liver-5d-dn 12/289 4.60E-06 1.44E-05

Ivermectin-7.5 mg/kg in CMC-Rat-Liver-3d-dn 11/285 2.29E-05 5.56E-05

Ivermectin-7.5 mg/kg in CMC-Rat-Liver-1d-up 10/323 3.28E-04 5.39E-04

Ivermectin-7.5 mg/kg in CMC-Rat-Liver-5d-up 8/311 4.06E-03 5.10E-03

Ivermectin-7.5 mg/kg in CMC-Rat-Liver-3d-up 8/315 4.38E-03 5.46E-03

https://doi.org/10.1371/journal.pone.0238907.t003
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also selected drugs that affect the selected genes. Thus, the basic strategy is similar to ours. The

question remained whether we can select limited number of genes whose expression is altered

because of SARS-CoV-2 infection. To see superiority of TD based unsupervised FE that can

select as few as 163 genes effective to selected drugs, we applied t test, sam [8], and limma [9]

to pairwise comparisons between individual control and infected cell lines (Table 4). Notably,

none of these three methods were effective. The t test selected less than or equal to one gene

for three out of five cell lines. While no gene was selected by SAM for all of five cell lines,

limma identified almost all genes as DEG. As long as performance of other unsupervised

methods depends upon the successful selection of DEG as disease signature, other unsuper-

vised methods that did not employ TD based unsupervised FE are unlikely to identify effective

drugs better than the present study. Thus, based on our results, we can conclude that the

employment of TD based unsupervised FE for selecting genes is instrumental for a successful

unsupervised gene expression based drug discovery.

Supporting information

S1 Table. Virus protein-protein interaction. Virus proteins that significantly interact with

the 163 genes selected by TD based unsupervised FE and enriched by “Virus-Host PPI P-HIP-

STer 2020” in Enrichr.

(PDF)

S2 Table. Upregulated genes due to SARS-CoV-2 infection. Genes whose expression is

altered by SARS-CoV-2-related viruses that significantly interact with the 163 genes selected

by TD based unsupervised FE and enriched by “Virus Perturbations from GEO up” in

Enrichr.

(PDF)

S3 Table. Downregulated genes due to SARS-CoC-2 infection. Genes whose expression was

altered by SARS-CoV-2-related viruses that significantly interact with the 163 genes selected

by TD-based unsupervised FE and enriched by “Virus Perturbations from GEO down” in

Enrichr.

(PDF)

S4 Table. C646 in “LINCS L1000 Chem Pert up/down”. C646 significantly affects the expres-

sion of the selected 163 genes as evident in the “LINCS L1000 Chem Pert up/down” category

in Enrichr. The last number after the—is dose density.

(PDF)

Table 4. DEG identifications between control and infectious cell lines using t test, SAM, and limma. Genes associated with adjusted P-values less than 0.01 are selected

as DEG.

t test SAM limma

P� 0.01 P< 0.01 P� 0.01 P < 0.01 P � 0.01 P < 0.01

Calu3 21754 43 21797 0 42 13380

NHBE 21797 0 21797 0 41 13328

A549

MOI 0.2 21797 0 21797 0 50 13867

MOI 2.0 21472 325 21797 0 15 13823

ACE2 expressed 21796 1 21797 0 111 11403

https://doi.org/10.1371/journal.pone.0238907.t004
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S5 Table. Chelerythrine chlorid in “LINCS L1000 Chem Pert up/down”. Chelerythrine

chlorid significantly affects the expression of the selected 163 genes as evident in the “LINCS

L1000 Chem Pert up/down” category in Enrichr. The last number after the—is dose density.

(PDF)

S6 Table. Canertinib in “LINCS L1000 Chem Pert up”. Canertinib significantly affects the

expression of the selected 163 genes as evident in the “LINCS L1000 Chem Pert up” category

in Enrichr. The last number after the—is dose density.

(PDF)

S7 Table. Canertinib in “LINCS L1000 Chem Pert down”. Canertinib significantly affects

the expression of the selected 163 genes as evident in the “LINCS L1000 Chem Pert down” cat-

egory in Enrichr. The last number after the—is dose density.

(PDF)

S8 Table. BX-795 in “LINCS L1000 Chem Pert up/down”. BX-795 significantly affects the

expression of the selected 163 genes as evident in the “LINCS L1000 Chem Pert up/down” cat-

egory in Enrichr. The last number after the—is dose density.

(PDF)

S9 Table. Sorafenib in “LINCS L1000 Chem Pert up”. Sorafenib significantly affects the

expression of the selected 163 genes as evident in the “LINCS L1000 Chem Pert up” category

in Enrichr. The last number after the—is dose density.

(PDF)

S10 Table. QL-X-138 in “LINCS L1000 Chem Pert up”. QL-X-138 significantly affects the

expression of the selected 163 genes as evident in the “LINCS L1000 Chem Pert up” category

in Enrichr. The last number after the—is dose density.

(PDF)

S11 Table. QL-X-138 in “LINCS L1000 Chem Pert down”. QL-X-138 significantly affects the

expression of the selected 163 genes as evident in the “LINCS L1000 Chem Pert down” cate-

gory in Enrichr. The last number after the—is dose density.

(PDF)

S12 Table. Radicicol in “LINCS L1000 Chem Pert up”. Radicicol significantly affects the

expression of the selected 163 genes due to “LINCS L1000 Chem Pert up” category in Enrichr.

The last number after the—is dose density.

(PDF)

S13 Table. Radicicol in “LINCS L1000 Chem Pert down”. Radicicol significantly affects the

expression of the selected 163 genes due to “LINCS L1000 Chem Pert up” category in Enrichr.

The last number after the—is dose density.

(PDF)

S14 Table. A-443654 in “LINCS L1000 Chem Pert up”. A-443654 significantly affects the

expression of the selected 163 genes as evident in the “LINCS L1000 Chem Pert up” category

in Enrichr. The last number after the—is dose density.

(PDF)

S15 Table. A-443654 in “LINCS L1000 Chem Pert up”. A-443654 significantly affects the

expression of the selected 163 genes as evident in the “LINCS L1000 Chem Pert up” category

in Enrichr. The last number after the—is dose density.

(PDF)
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S16 Table. CGP-60474 in “LINCS L1000 Chem Pert up”. CGP-60474 significantly affects the
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expression of the selected 163 genes as evident in the “LINCS L1000 Chem Pert down” cate-

gory in Enrichr. The last number after the—is dose density.

(PDF)

S20 Table. Mitoxantrone in “LINCS L1000 Chem Pert up”. Mitoxantrone significantly

affects the expression of the selected 163 genes as evident in the “LINCS L1000 Chem Pert up”

category in Enrichr. The last number after the—is dose density.

(PDF)

S21 Table. Mitoxantrone in “LINCS L1000 Chem Pert down”. Mitoxantrone significantly

affects the expression of the selected 163 genes as evident in the “LINCS L1000 Chem Pert

down” category in Enrichr. The last number after the—is dose density.

(PDF)

S22 Table. QL-XII-47 in “LINCS L1000 Chem Pert up”. QL-XII-47 significantly affects the

expression of the selected 163 genes as evident in the “LINCS L1000 Chem Pert up” category

in Enrichr. The last number after the—is dose density.

(PDF)
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category in Enrichr. The last number after the—is dose density.

(PDF)

S25 Table. Geldanamycin in “LINCS L1000 Chem Pert down”. Geldanamycin significantly

affects the expression of the selected 163 genes as evident in the “LINCS L1000 Chem Pert

down” category in Enrichr. The last number after the—is dose density.

(PDF)

S26 Table. Enrichment in “Drug Perturbations from GEO up/down”. Genes whose expres-

sion is altered by SARS-CoV-2-related viruses that significantly interact with the 163 genes

selected by TD-based unsupervised FE and enriched by “Drug Perturbations from GEO up/
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