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Elucidating immune-related gene transcriptional
programs via factorization
of large-scale RNA-profiles

Shan He,1 Matthew M. Gubin,2 Hind Rafei,3 Rafet Basar,3 Merve Dede,1 Xianli Jiang,1 Qingnan Liang,1

Yukun Tan,1 Kunhee Kim,1 Maura L. Gillison,4 Katayoun Rezvani,3 Weiyi Peng,5 Cara Haymaker,6

Sharia Hernandez,6 Luisa M. Solis,6 Vakul Mohanty,1,* and Ken Chen1,7,*

SUMMARY

Recent developments in immunotherapy, including immune checkpoint blockade (ICB) and adoptive cell
therapy (ACT), have encountered challenges such as immune-related adverse events and resistance, espe-
cially in solid tumors. To advance the field, a deeper understanding of the molecular mechanisms behind
treatment responses and resistance is essential. However, the lack of functionally characterized immune-
related gene sets has limited data-driven immunological research. To address this gap, we adopted non-
negative matrix factorization on 83 human bulk RNA sequencing (RNA-seq) datasets and constructed 28
immune-specific gene sets. After rigorous immunologist-led manual annotations and orthogonal valida-
tions across immunological contexts and functional omics data, we demonstrated that these gene sets
can be applied to refine pan-cancer immune subtypes, improve ICB response prediction and functionally
annotate spatial transcriptomic data. These functional gene sets, informing diverse immune states, will
advance our understanding of immunology and cancer research.

INTRODUCTION

Despite recent breakthroughs in immunotherapy such as immune checkpoint blockade (ICB)1 and adoptive cell therapy (ACT),2 only a

limited fraction of patients benefits from these biomedical advancements. Challenges related to immune-related adverse events and resis-

tance remain and hinder positive outcomes, especially in solid tumors.3 It is essential for the field of immunotherapy to understand

molecular mechanisms underlying the treatment resistance and responses better predict treatment outcomes and develop targeted ther-

apeutics. A systematic way to address these challenges is through statistical analysis of transcriptional programs of human patient sam-

ples,4 which can uncover useful gene expression patterns associated with immunotherapeutic responses. Interpretation of transcriptional

programs and their functional significance, however, relies on utilizing previously established gene signature knowledgebases5–8 such as

Molecular Signature Database (MSigDB) Hallmarks (Hallmark),9 Kyoto Encyclopedia of Genes and Genomes (KEGG),10 Gene Ontology

(GO),11 etc. Unfortunately, these knowledgebases are largely cell-type agnostic and lack granularity or immune specificity.7 Such biases

severely hamper data interpretation in immunological studies utilizing high-throughput RNA profiling, resulting in many missed opportu-

nities. To further advance cancer immunotherapy, there is an urgent need to discover and expand immune-related gene signatures/sets

(irGSs) in current knowledgebases to comprehensively represent diverse immune-specific transcriptional states and to apply them to inter-

pret molecular functions.

A closer inspection of the aforementioned knowledgebases reveals important limitations that are inherent to each source. For example,

Hallmark9 contains only 7 immune-related pathways, with an average of 160 member genes each. The large gene sets in this database can

potentially inflate biological significance, without genuine and specific relevance to the designated functions. On the other hand, KEGG10

contains mostly metabolism related pathways that are not specific to immune systems. The GO11 terms, with its hierarchical nature, result

in collective enrichment of general terms with overlapping functions, diminishing statistical power to detect specific terms. Moreover,

although there are some immune-related pathways in the aforementioned knowledgebases, they are too broadly defined. For example,

in KEGG, the term T cell receptor (TCR) signaling does not distinguish receptor formation by T cells from antigen presentation by
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antigen-presenting cells, two complimentary functions in TCR signaling. In Hallmark, ‘‘inflammatory response’’ is too broad to inform detailed

molecular programs or mechanisms. Therefore, there is a need to define more specific gene sets and refined annotations to achieve higher

granularity.

To address this knowledge gap, some immune specific knowledgebases have been constructed. In particular, ImmuneSigDB,12 consisting

of over 5,000 irGSs, was derived from RNA-expression datasets. These RNA expression datasets are very rich, derived from nearly 400 non-

cancer-specific immunological experiments, containing samples challenged with pathogen infections, cytokines or immunological perturba-

tions of different kinds andmagnitudes, thus possessing rich immunological states. Some immunological states may be shared by a variety of

conditions. For example, the severe immune dysregulation and inflammation,13,14 observed in sepsis samples may inform immune cell pro-

liferation, inflammatory signaling, and cellular dysfunction and exhaustion in tumor immune microenvironment (TIME).

However, the ImmuneSigDB study, conducted nearly a decade ago, applied empirical approaches that may have resulted in some limi-

tations. First, the study examined sets of genes that are differentially expressed (DEGs) across different comparisons of interest, and these

comparison groups were subjectively decidedby researchers as important and immune-relevant.12 Second, differential gene expression anal-

ysis tends to output large numbers of DEGs (200 G 70, max = 1,992), with 50% of the gene set size ranges from 190 to 196 member genes.

Third, the derived irGSs tend to have limited translational implications as they can only be used to differentiate major states (such as cell lin-

eages) instead of more granular substates. Fourth, given that these comparison groups are defined based on empirical knowledge,

ImmuneSigDB irGSs are likely incomplete. Lastly, the ImmuneSigDB irGSs are simply annotated using the GEO ID of the dataset and the

comparison groups, thus containing limited annotations of immune functions, hampering results interpretation.

In this paper, we aim to construct concise and well-annotated immune-specific gene sets using non-negative matrix factorization (NMF),15

a powerful factor analysis technique16–20 that has not yet been applied to ImmuneSigDB data. By decomposing gene expression of samples

from ImmuneSigDB into composite programs, followed by addition statistical analysis to consolidate and annotate these programs, we have

identified 28 irGSs describing various immunological processes. These irGSs can be applied to study and characterize various immune-

related transcriptional states such as those in play in TIMEs. We have systematically validated gene set annotations on 12 different datasets

and explored their translational implications on 15 different datasets (see STAR Methods Data Sources). These datasets include various mo-

dalities, CITE-seq, BulkRNAseq, scRNA-seq, and spatial transcriptomics, and were profiled from a variety of immunological contexts,

including but not limited to cytokine perturbation experiments, infectious disease, and treatment naive or immunotherapy-treated cancer

patients. Through these exploratory analyses, we showed that these gene sets can better characterize pan-cancer tumor-immune subtypes,

separate ICB response in melanoma, liver, and lung cancer and reveal spatial heterogeneity in ovarian, intestinal, and breast cancer samples.

RESULTS

Twenty eight gene sets covering diverse immunological functions in the TIME

The ImmuneSigDB datasets comprise 83 human bulk gene expression profiles with 1,826 RNA samples from studies published in leading

immunology journals (Figure S1A). The datasets included in the ImmuneSigDB were derived from patients affected by severe infections

and sepsis or from cell lines challenged with experimental manipulations12: gamma delta T cells activated by IL2,21 and CD14+ monocytes22

cultured with IFN-gamma and stimulated with Toll-like receptor 2 ligand. Such a large collection of datasets entails transcriptional profiles

from diverse cell states, making them suitable to derive generalizable irGSs.

The datasets encompass gene expression data obtained from human and mouse samples (Figure S1B) that originated from samples

deriving fromdifferent cell types (Figure S1C). Among datasets profiled fromHomo sapiens, the number of genes and samples profiled varies

among datasets (Figures S1D and S1E). We partitioned the 83 ImmuneSigDB human datasets into 47 lymphoid-derived and 36 myeloid-

derived datasets.

To obtain unique irGSs, we carried out the analytic workflow, illustrated in Figure 1A and detailed in Figure S1F and STARMethods, sepa-

rately for the lymphoid and themyeloid data.We appliedNMFon each qualifying dataset (see STARMethods) and obtained the top 50 genes

from each latent factor based on theNMF loadings, producing a total of 529 gene sets. To ensure generalizability, gene sets derived from one

dataset were kept only if they overlap at least 20% with at least one gene set derived from another dataset. To ensure non-redundancy, we

excluded gene sets with over 20% overlap with gene sets from the same dataset, resulting in 115 gene sets. To further reduce redundancy, we

employed the algorithmproposed by Tirosh et al.,16 whereby gene sets are progressively merged intometa programs (MP) based on Jaccard

distances (see STAR Methods).

Using the workflow described previously, we derived 19 immune-relatedMPs (irMPs) from lymphoid samples (L_MP1-19) and 9 irMPs from

myeloid samples (M_MP1-9) (Table 1). To annotate each irMP with immune-relevant functions, we performed over-representation analysis

(ORA) using biological processes from GO, KEGG, and Hallmark and sorted the enrichment results first by counts of core enrichment then

by ascending adjusted p values. Enrichment results and constituent genes for each L_MP and M_MP were presented in Tables S1, S2, S3,

and S4. We named the irMPs based on top enriched terms and refined the annotations by going over the constituent genes and the

stringDB23 protein-protein interaction (PPI) network, followed by meticulous scrutiny by multiple immunologists (Matthew Gubin Ph.D.;

Hind Rafei M.D.; Rafet Basar M.D.; Katy Rezvani M.D/Ph.D.; and Weiyi Peng M.D/Ph.D.) from MD Anderson Cancer Center. Rationales for

each gene set annotation have been documented in supplementary notes.

Overall, the L_MPs are highly specific to immune functions, consisting of pathways such as lymphocyte activation, antigen processing, TCR

anchoring, and cytotoxic functions. M_MPs are less diverse, including pathways related to cell migration, adhesion, and antiviral response

(Figure 1B; Table 1). A few MPs are related to core cellular processes, such as cell cycle and metabolism.
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A

B

Figure 1. Analytic workflow and constructed gene sets

(A) Gene set construction analysis workflow: we downloaded 83 immunology relevant human studies and performed NMF on each of the qualifying dataset. We

curated robust NMF programs and merged them into meta gene sets. We performed over-representation enrichment analysis for each meta gene set using

KEGG pathways, Hallmarks, and biological process terms from GO. The name and annotation of each meta gene set was determined based on counts and

false discovery rate (FDR) adjusted p values of the highly enriched terms. We seek relevant multimodal datasets to functionally name and validate each gene

set, and further examined the translational utilities of these gene sets.

(B) The roles of the constructed gene sets in central immunity: constructed gene sets overlaid near themost relevant processes during central immune activities in

tumor-immune microenvironment. Created with BioRender.com.
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Tobenchmark our irMPswith existing database, we compared andquantified their constituent genes overlap (see STARMethods) with 231

manually curated Spectra immune gene sets,24 5,000 ImmuneSigDB pathways, 50 Hallmark pathways, and 29 immune-related KEGG

(irKEGG). We observed significant distinction (false discovery rate [FDR]-adjusted p value < 0.05) in 99.5%, 98%, 99%, and 87% of the com-

parison with Spectra gene sets (Figure S2), ImmuneSigDB (Figures S3 and S4), Hallmark (Figure S5), and irKEGGs (Figure S6), respectively.

Functional characterization of the irMPs

To validate the functional annotation of irMPs and demonstrate their general applicability, we compiled 12 publicly accessible gene expres-

sion datasets encompassing a diverse range of immune contexts, captured through various sequencing techniques (see STARMethods Data

Sources). These datasets were derived from well-designed immunological experiments with well-defined phenotypes, providing indepen-

dent and orthogonal evidence required to validate annotations of irMPs.

Compared to RNA expression, protein expression is often a more direct indicator of biological activity and reflects real physiological pro-

cesses. We, therefore, leveraged two CITE-seq datasets,25,26 in which the whole transcriptome and �200 surface antibodies were simulta-

neously profiled in the peripheral bloodmononuclear cells (PBMCs) of healthy human andCOVID-19 patients, respectively. irMPswere scored

for each cell in the RNA level using single sample gene set enrichment analysis (ssGSEA)27 (see STARMethods). For each irMP of interest, cells

were dichotomized into MP-high or MP-low (see STAR Methods) and the abundance of proteins indicative of the function described by the

irMP was compared between MP-high and MP-low groups to show consistency between the irMP and proteomic measurement. For irMP

without relevant proteins in the CITE-seq data, we defined highly relevant phenotypes in appropriate scRNA-seq data or The CancerGenome

Atlas (TCGA) pan-cancer data and checked for gene set enrichment in a pre-defined phenotype. In addition, we utilized PPI network con-

structed by the StringDB database28 to elucidate the activity cascade of each irMP (Figures S7 and S8).

Interestingly, the irMPswe obtained can be broadly classified into categories that alignwith the sequential progression of a typical immune

response: cytokine/chemokine production, cell adhesion, cell chemotaxis, antigen processing, antigen presentation, lymphocyte activation,

and cytotoxicity (Figure 1B), indicating the key importance of these functional components and the rich molecular programs that have been

under-explored.

In the following, we describe the function of each irMP and evidence from orthogonal validations.

Cytokine/chemokine production

There are two cytokine/chemokine related irMPs frommyeloid data (M_MP3 andM_MP9) and two from lymphoid data (L_MP7 and L_MP18).

To validate their annotations, we examined scRNA-seq data profiled from two severe COVID-19 patients, with symptoms consistent with in-

flammatory cytokine storms (ICS).29 If the irMPs are in fact related to pathogenic cytokine/chemokine activities, they should be enriched in

cells deriving from patients rather than health controls. As myeloid cells were concluded to be the source of ICS,29 we extractedmyeloid cells

Table 1. Annotations for the 9 myeloid-derived irMPs and 19 lymphoid-derived irMPs

Myeloid-derived gene sets Lymphoid-derived gene sets

1 Antiviral defense network Cell cycle progression

2 Antigen processing TCR anchoring

3 Cytokine production Histone-associated lipid antigen presentation

4 Cell adhesion 1 Interleukin-induced Tregs

5 Modulation of cell migration Antigen presentation

6 Cell adhesion 2 Cell cycle mitosis

7 Eosinophil chemotaxis Chemokine-mediated T cell activation

8 MHC2-mediated lymphocyte activation MHC-mediated immunity

9 Chemokine activity Metabolic process

10 Lipid localization TCR synapse

11 Cell cycle immune response

12 Lymphocyte activation

13 Interferon induced antiviral defense

14 Type-I interferon

15 Cell adhesion 1

16 Cell adhesion 2 (CD52+)

17 IFN-gamma-induced cytotoxicity

18 Cytokine receptor signaling

19 T cell activation
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and performed gene set enrichment analysis (GSEA) on fold-changes of genes expression between ICS and healthy controls. Indeed, we

found that all four irMPs were significantly enriched in ICS patients relative to healthy controls (Figure 2A).

Upon further examining the PPI network constructed from the genes inM_MP9 (Figure S7.9), we found thatM_MP9 has a central module of

chemokine genes (CXCL10, CXCL9, CCL4, CCL2, CCRL2, CCL7, and CCL8), connected with antigen presenting cell (APC)-specific human

leukocyte antigen (HLA) class II genes (HLA-DPA1, HLA-DMA, and HLA-DRA) by CD74, a chaperone responsible for antigen presentation.30

This further supports the hypothesis that M_MP9 captures the signaling cascade via chemokine secretion leading to the activation of APCs.

Interferon-signaling pathways

There is one antiviral response irMP (M_MP1) frommyeloid data and two interferon-mediated viral defense irMPs (L_MP13 and L_MP14) from

lymphoid data. To validate these annotations, we used cytokine dictionary curated by Cui et al.,31 in which the authors have profiled scRNA-

seq on 17 different immune cell types extracted from lymph nodes (LNs) of mice treated with 86 different cytokines in vivo or phosphate

buffered saline (PBS) as control. As these gene sets are associated with interferon signaling, they should be induced upon stimulation by inter-

feron rather than other cytokines. For each cytokine treatment in each cell-type, we performed differential expression relative to correspond-

ing PBS controls followed byGSEA. Across cell-types, we observed that all three irMPs show a general trend of significantly higher enrichment

under interferon treatments (IFN-a1, IFN-b, IFN-ε, IFN-k, IFN-g, and IFN-l2) relative to other cytokine treatments (Figure 2B), indicating that

these three irMPs are all signaling pathways downstream of interferon stimulation.

Cell adhesion/cell migration

There are two cell adhesion (M_MP4 and M_MP6) and two chemotaxis related (M_MP5 and M_MP7) irMPs from myeloid data, and two cell

adhesion irMPs (L_MP15 and L_MP16) from lymphoid data. Cell adhesion and migration are essential steps in the immune response, as they

facilitate downstream immune cell trafficking, activation, and effector function.32 In general, the three steps in cell adhesion are rolling, weak,

and strong adhesion.33 Rolling involves selectin molecules (L-selectin, E-selectin, and P-selectin) loosely moving immune cells on endothelial

surface. Weak adhesion occurs when integrin molecules (CD49d, CD29, CD11a, CD11b, and CD11c) weakly bind to ligands (ICAM) on endo-

thelial cells, slowing down the immune cell movement. Strong adhesion occurs when integrin molecules firmly anchor the immune cells to the

endothelial surface, allowing them to extravasate through the endothelium and into surrounding tissues. If the irMPs are associated with cell-

adhesion and chemotaxis, their activity should be concordant with the expression of relevant protein markers discussed previously.

To validate the functional annotation of these irMPs, we dichotomized cells in the PBMC CITE-seq data34 by their RNA-based MP activity

levels and examined the abundance levels of relevant proteins (see STAR Methods). We found that, among myeloid cells, the activity of

M_MP4 and M_MP6 are associated with the abundance of cell adhesion proteins related to both rolling and weak adhesion (Figure S9A).

In particular, myeloid cells with higherM_MP4 have the highest CD62L abundance, suggesting thatM_MP4 is driven by L-selectin, a cell adhe-

sionmolecule on the surfaces of leukocytes. In contrast, the activity levels ofM_MP5 andM_MP7 that are associatedwith cellularmigration are

associated with lower abundance of cell adhesion marker proteins (Figure S9A), consistent with their contrasting functional annotation.

Among lymphoid cells, we found that L_MP15 shows strong association with integrins (CD49d, CD29, CD11a, CD11b, and CD11c), and

L_MP16 with selectins (CD62P and CD62L) (Figure S9B). These two irMPs differ from myeloid-derived cell adhesion irMPs in that L_MP15

and L_MP16 are enriched in HLA genes, suggesting possible cell adhesion through antigen presentation.

Core cellular process

Besides highly immune-specific gene sets, there are also gene sets related to core cellular processes. In particular, there are three irMPs

(L_MP1, 6, and 11) annotated as cell cycle irMPs from lymphoid data. To validate their functions, we used a COVID-19 single cell gene expres-

sion atlas,35 where author identified a cluster of proliferative CD8+ effector T cells. Since proliferative lymphocytes undergo clonal expansion,

we expect cell cycle pathways to be upregulated in this cluster.28 Indeed, we observed significantly higher gene set activities26 for all three

cell-cycle irMPs in the proliferative lymphocyte cluster (Figure 2C) than in the other clusters.

There is one metabolism-related gene set (L_MP9), enriched in glycolysis genes (ENO1, PGK1, ALDOA, PGAM1, TPI1, STMN1, LDHA,

HMMR, ENO2, and PPIA). To confirm its relevancy to metabolism, we utilized a study in which authors perform in vitro stimulation of naive

CD8+ T cells and characterized metabolic programs at different activation stages,36 showing activation of T cells is accompanied with

increased metabolism. We observed that the activity of L_MP9 increases as T cells become more activated, which also coincided with the

trend of glycolysis and oxidative phosphorylation (Figure 2D).

Besides the aforementioned gene sets that represent shared functions in bothmyeloid and lymphoid compartments, we have also discov-

ered irMPs that are highly specific to a cell type or a contact interface between two immune cells.

Leukocyte activation

Two of the lymphoid irMPs (L_MP12 and L_MP19) were annotated as lymphocyte activation and T cell activation, respectively. The activation

of these pathways should coincide with high expression of protein markers reflective of lymphocyte activation. As COVID-19 induces immune

cell activation, we leveraged the COVID-19 PBMCCITE-seq data.26 We extracted natural killer (NK) and CD8 T cells based on SingleR37 anno-

tation (see STAR Methods) and observed that NK/T cells with higher L_MP12 activity have higher abundance of CD16, CD56, KLRG1, CD8,

and CD69 (Figure 3A), which are known to be expressed by activated T and NK cells. It is also known that CD8 can be expressed by cytotoxic
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Figure 2. Functional characterization of the generic immune gene sets

(A) Barcode enrichment plot of 4 cytokine/chemokine release irMPs; all genes from the data are ranked along x axis according to enrichment score (y axis). There

is a significant upregulation in all 4 irMPs in samples with severe COVID-19 patients with cytokine storm, and the ranked position of each gene within a signature is

shown in the x axis.

(B)Density plot comparing thenormalizedenrichment score of three antiviral irMPs indifferent immunecell typeswhen stimulatedwith interferon vs. non-interferon.

(C) Violin plot comparing cell cycleMP activities calculated usingGS density across different cell types identified fromCOVID-19 single cell atlas. ANOVA test was

performed for multi-group comparison.

(D) UMAPs labeled with T cell activation stages, L_MP9 activity, glycolysis, and oxidative phosphorylation activities from Hallmark using GS density.
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NK cells.38 Cells with higher L_MP19 activity have higher abundance of CD3, CD4, CD8, and CD69 (Figure 3A), which are known to be ex-

pressed by activated T cells. In addition, L_MP12 and L_MP19 appear to be associated with checkpoint proteins, TIGIT, CD152 (CTLA4),

and CD279 (PD-1), which also indicate activation and regulation of immune homeostasis.39

Interferon-induced cytotoxicity pathway

One lymphoid irMP (L_MP17) was annotated as IFN-gamma induced cytotoxicity. As COVID-19 induces cytotoxicity, we leveraged the

COVID-19 PBMC CITE-seq data.26 Extracting NK and CD8 T cells based on SingleR annotation, we observed that cells with higher
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Figure 3. Functional characterization for the specific irMPs

(A) COVID-19 PBMC cells annotated as NK or CD8+ T cells were dichotomized into two groups (high vs. low) based on the activity levels of 2 lymphoid-derived

gene sets: L_MP12 and 19, estimated respectively from the RNA expression data. Shown in the heatmap table (and colored accordingly) are the average

Z-transformed protein abundance of surface proteins: CD16, CD56, KLRG1, CD8, CD3, CD4, CD69, TIGIT, CD279, and CD152 in each of the respective cell

groups.

(B) Shown in violin plots are the abundance of 6 surface proteins: CD16, CD8, CD69, CD152, CD279, TIGIT in two dichotomized COVID-19 PBMC cells (annotated

as NK or CD8+ T cells) groups with respectively low and high L_MP17 activity levels, determined from the RNA expression data. In all the cases, dichotomization

was performed using Gaussian mixture models. Activities between two groups were compared using t test with significance level 0.05.

(C) Violin plot comparing two TCR-related irMPs across different T cell activation states using ssGSEA. Activities between two groups were compared using t test

with significance level of 0.05.

(D) Barcode enrichment plot of L_MP3 and L_MP5; All genes from the TCGA are ranked along x axis according to enrichment score (y axis). There is a significant

upregulation in both L_MP3 and L_MP5 in samples with a high persistent tumor mutational burden, and the ranked position of each gene within a signature is

shown in the x axis. Statistical significance was determined by a rank-based test.
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L_MP17 activity have significantly higher abundance of CD8, CD16, and CD69 (FDR adjusted p value < 0.05), which are protein markers for

cytotoxic CD8 T cells and cytotoxic NK cells (Figure 3B). In addition, higher abundance of TIGIT, CD152 (CTLA4), and CD279 (PD-1) in L_MP17

high cells indicate activation, required for achieving cytotoxicity and regulating immune response to avoid over-activation.39 The PPI network

for this MP suggests the following activity cascade (Figure S7.17): Activated NK cells (NKG7 andGNLY) secrete IFNG, inducing the activation

of granzyme-producing (GZMH, GZMB, GZMK, and GZMA) cytotoxic macrophages (LYZ). Moreover, downstream targets of leukocyte acti-

vation are also captured by L_MP17, specificallyNFKBIA, KLF6, and nuclear receptor genes (NR4A2 andNR4A3), which work harmoniously to

ensure T cell homeostasis and proper proliferation.40,41

To further validate the cytotoxicity nature of this irMP, we used a COVID-19 single cell atlas data.35 We observed that lymphoid cells with

higher L_MP17 activities correspond to cells with higher cytotoxicity scores (Figure S9C), calculated usingGSDensity with the following genes:

PRF1,GZMA,GZMB,GZMH, andGNLY.35 In addition to cytotoxicity, L_MP17 scored high in the CD8 effector T cell cluster, a cluster defined

as highly proliferating T cells in the paper, suggesting that L_MP17 describes not only a cytotoxic but also a proliferative cell state. Indeed,

immediately connected to the granzyme modules (Figure S7.17) are TUBA4A and TUBA1C, which are known to be involved in forming and

stabilizing microtubules in proliferating T cells during various stages of cell cycling, contributing to spindle formation during mitosis and

ensuring proper chromosome segregation and accurate cell division.42

TCRs

Two lymphoid irMPs (L_MP2 and L_MP10) were annotated as TCR-anchoring and lipid localization at TCR synapse, respectively. L_MP2 shows

significant enrichment in antigen receptor-mediated signaling pathways (Table S1.2). In addition, L_MP2 is enriched in genes related to T cell

surface glycoprotein and transmembrane adapter (CD247, CD2, CD28, CD3D, TRAT1, CD52, and HLA-E) and genes that have key roles in

T cell antigen receptor-linked signal transduction pathways (ICOS, SLAMF1, LCK, and LAT)43–46 (Figure S7.2). As we expect TCR signaling

to be upregulated when T cells are activated, we examined scRNA-seq from T cells isolated from bone marrow (BM) and LNs of healthy do-

nors that were cultured in resting condition vs. activated by anti-CD3/anti-CD28 antibodies.47 As expected, T cells showed higher L_MP2 and

L_MP10 activities, indicating cell-type specificity (Figure 3C). Further, the activities of these gene sets were significantly higher in activated

T cells indicating their relevance to TCR engagement upon T cell activation (Figure 3C).

Antigen presentation and processing pathway

Two of the 19 lymphoid irMPs (L_MP3 and L_MP5) are related to antigen-presentation mediating immunity. We named L_MP3 as histone-

associated lipid antigen presentation and L_MP5 as antigen presentation. L_MP3 is enriched in chromatin organization histones genes

with lipid antigen presentation genes connected by a V(D)J recombination gene RAG1. Histone genes play an important factor in V(D)J

recombination and formation of antigen receptors on lymphocytes.48 The PPI network of L_MP3 (Figure S7.3) shows a HISTONEgenemodule

and aCD1 genemodule connected by RAG1. L_MP5 is enriched in genes responsible for cell cycle regulation (DLGAP5, BUB1B, andCCNB1)

and genome stability (TUBB, HMGB4, HNRNPA2B1, PTTG1, and HMGB1), each of which is an important element for V(D)J recombination

fidelity49 (RAG1 and RAG2) (Figure S7.5).

To validate the antigen presentation function of L_MP3 and L_MP5, we used pan-cancer mutational and gene-expression data from

TCGA.50 Persistent tumor mutational burden (pTMB), defined as the number of single copy and multiple copy mutations,51 informs immune

activation. Tumors with higher pTMBburdens aremore likely to be visible to the immune system and are associated with sustained anti-tumor

immune responses and improved response to ICB.51 These tumors should therefore have higher activity of antigen presentation pathways.

We performed differential gene expression analysis (DGE) between TCGA samples with high vs. low pTMB, regardless of cancer type and

stage (see STARMethods). GSEA with 19 lymphoid irMPs was performed. Both L_MP3 and L_MP5 are significantly upregulated among sam-

ples with high pTMB (Figure 3D), confirming the antigen presentation function of these two irMPs. Notably, L_MP3 and L_MP5 are the only

two irMPs (out of the 19) that are significantly enriched among high pTMB samples in the full GSEA profiles (FDR adjusted p value < 0.05)

(Figure S9D).

pMHC-TCR contact interface

Among myeloid irMPs, M_MP2 was annotated as antigen processing. Figure S10A depicts a typical antigen uptake by an APC, such as, den-

dritic cell (DC), in which an immature DC (iDC) transforms into a mature DC (mDC) upon detecting pathogen-associated molecular patterns

(PAMPs). This activation process involves the DC recognizing PAMPs, leading to upregulation of major histocompatibility complex (MHC)

molecules for antigen presentation and the co-stimulatory molecules CD80/CD86, crucial for T cell activation.52,53 Simultaneously, there is

a change in cytoskeleton organization, notably the F-actin, to facilitate processing and presentation of the peptide-MHC (p-MHC) complexes

on their surface for downstream T cell activation.

Concordant with Figure S10A, we observed that APCs (dendritic cells and macrophages, identified by SingleR37) with higher ssGSEA in

M_MP2 also have significantly (p value < 0.05) higher abundance in MHC proteins in the COVID-19 CITE-seq data (Figure S10A), such as

HLA-F, HLA-A-B-C, and HLA-DR, suggesting APC activation. In addition, these cells with higher M_MP2 activity also have significantly

(p value < 0.05) higher abundance in CD11a/CD18, which facilitate downstream T cell binding, and in CD86, a co-stimulatory molecule for

T cells activation.

Among lymphoid irMPs, L_MP8 was annotated as MHC mediated immunity. Figure S10B depicts a typical interaction between an mDC

and a T cell at the TCR synapse: Upon recognition of the p-MHC complex by TCR, the T cell upregulates CD69, indicating that the T cell has
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been successfully engaged and activated. Concordant with Figure 3F, we observed that cells with higher M_MP2 activity also have signifi-

cantly (p value < 0.05) higher abundance in MHC molecules, CD69, and TCRab from COVID-19 CITE-seq data, indicating successful TCR

engagement at the immunological synapse.

Among myeloid irMP, M_MP8 was annotated as MHC-II-mediated lymphocyte activation because it is enriched in MHC-II markers

(HLA-DRB4, HLA-DQB1, HLA-DMA, and HLA-DMB) and TCR complex (TRAC and TRBC1), suggesting MHC-II dependent CD4 T cell activa-

tion (as MHC-II presents to helper T cells).54 To confirm if this gene set is describing functions at the interface betweenmacrophages and CD4

T cells, we extracted macrophages and CD4 T cells based on SingleR annotation and observed that cells with high activity in M_MP8 have

higher protein abundance in M2-like macrophages (CD163 and CD206), T cell activation (CD45RO and TCR), and MHC-II (HLA-DR)

(Figure S10C), suggesting CD4 T cell activation via MHC-II on M2-like macrophages.

Interleukin-induced Tregs

There is one lymphoid irMP (L_MP4) annotated as interleukin induced Tregs because it is enriched in Treg activation markers (CTLA4, IL2RA,

TIGIT, TNFRSF9, and IL1R2). Figure S10D depicts one of the mechanisms for Treg survival: binding between IL2 and CD25 (IL2RA) promotes

the growth and suppressive functions of Tregs, upregulatingCD3955,56, eliciting amore suppressive Treg phenotype, definedby upregulation

of TNFRSF9 and checkpoint transcripts.56 Using COVID-19 CITE-seq data, we extracted all Tregs based on SingleR annotation and found that

Tregs with higher L_MP4 activity do have significantly (p value < 0.05) higher abundance in IL2 receptors (IL2RA and IL2RB), CD39, CTLA4,

TIGIT, and TNFRS9 (Figure S10D), which are all protein markers over-expressed in effector Tregs, suggesting possible interleukin-induced

Treg activation.

irMPs redefine immune subtypes in TCGA pan-cancer data

In TCGA pan-cancer immunity study, tumor samples were previously categorized into six major immune subtypes (C1: wound healing, C2:

IFN-gamma dominant, C3: inflammatory, C4: lymphocyte depleted, C5: immunologically quiet, and C6: TGF-beta dominant), based on

160 immune signatures.57 We performed Uniform Manifold Approximation and Projection (UMAP) based on ssGSEA27 scores with the 28

irMPs (Figure S11A). Since C4 andC6 are composed of less than 10% and 2%of TCGA samples, respectively, we did not see a clear separation

of these two clusters, but C4 is mostly distributed in the bottom left and C6 is mostly distributed in the top right of the UMAP (Figure S11A).

Nevertheless, the UMAP well assigned the tumor samples into C1+C2, C3, or C5 subtypes with significant (log rank p value < 0.0001) differ-

ential overall survival between C1+C2 and C3+C5 (Figures 4A and 4B), but the overall survival difference between C3 and C5 is insignificant

(p value = 0.623), despite having significantly (p value < 2.2e�16) different levels of lymphocyte infiltration. Through k-mean clustering with

k = 6 based on the same UMAP, we re-clustered the same set of TCGA samples into 6 new subtypes (Figure 4C), each of which is enriched in

different types of cancer (Figure 4D).

Upon re-clustering, C3 and C5 are resolved into new clusters 2, 4, and 5 (Figure 4E) that well delineate patients by their overall survival

(Figure 4F), with cluster 2 having the best overall survival. To further study the molecular characteristics of cluster 2, we assessed selected

TCGA signature scores on tumor characteristics57 (see STAR Methods) across our clusters and found that cluster 2 has significantly

(p value < 0.05) lower scores, compared to other k-mean clusters in terms of aneuploidy score, neoantigen loads, intratumor heterogeneity,

and hallmark pathways indicative of proliferation (mitotic spindle, G2M checkpoint, andMYC targets V1) (Figure 4G), suggesting that cluster 2

contains more indolent tumors, corroborated with the observed low cell proliferation. In addition, cluster 2 has significantly lower expression

in cytotoxicmarkers (GZMK, PRF1, andCD8A) and exhaustionmarkers (CTLA4, PDCD1, and TIGIT) (Figure 4H), suggesting less immunogenic

environment. Cluster 2 is also enriched in lower grade glioma, prostate adenocarcinoma, and thyroid carcinoma (Figure 4D), which are often

lower grade cancers with indolent to slower growth58 and are less likely to invade nearby tissues or metastasize to distant organs. These tu-

mors generally have better prognosis59 compared to higher-grade cancers. Therefore, the superior survival of cluster 2 is mainly driven by its

simple tumor composition, low proliferation, and low immunogenicity, showing that our irMPs can also discern tumor intrinsic differences via

their associated immunological states. Clusters 4 and 5 are both characterized by low tumor proliferation and high tumor development

Figure 4. irMPs redefine immune subtypes in TCGA pan-cancer data

(A) UMAP of subsets of TCGA samples (n = 7,768) using single sample gene-set enrichment (ssGSEA) scores calculated from the 28 irMPs. Each dot is a TCGA

sample colored by its immune subtypes defined by Thorsson et al.

(B) Kaplan-Meier curves for overall survival between TCGA immune subtypes. Log rank test is performed between comparisons of interests, with corresponding

lymphocyte infiltration scores compared on the top right (p value is calculated with one-way ANOVA test).

(C) UMAP of all TCGA samples (n = 10,128) using ssGSEA scores calculated from the 28 irMPs. Each dot is a TCGA sample colored by clusters identified using

k-mean clustering.

(D) Stacked plot showing the proportions of cancer types across k-mean clusters.

(E) Sankey River plot showing the shuffling of each TCGA immune subtype into each of the k-mean clusters.

(F) Kaplan-Meier overall survival curves across the different k-mean clusters. Log rank test is performed between pairs of interests (2 vs. 5, 2 vs. 4, 4 vs. 5). Risk table

is shown below with clusters ordered from best survival (top) to worst survival (bottom).

(G) Violin plot comparing tumor intrinsic characteristics between cluster 2 and the rest of the clusters by scoring programs with ssGSEA. Activities between two

groups were compared using t test with significance level 0.05.

(H) Violin plot comparing the gene expression levels of 3 classical activation and exhaustion markers across the k-mean clusters. Activites across multiple groups

were compared using anova with significance level 0.05.
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(Figure S11B). In term of immune landscape, cluster 4 has significantly (p value < 0.05) higher immune infiltration (Th1 cells and Gamma-Delta

T cells) than clusters 2 or 5 and cluster 5 has significantly (p value < 0.05) higher level of activated NK cells compared to clusters 2 or 4

(Figures S11B and S11C).

The k-mean algorithm also redistributed C1 and C2 into clusters 1, 3, and 6 (Figure 4E). Specifically, we identified a transitional subtype

between C1 and C2 (cluster 3 in Figure 4C)30,31 characterized by in-between expression levels of characteristic IFNG-subtype (C2) markers

(IFNG, JAK1, and STAT1)60 and classical wound-healing (C1) markers (S100A1, E2F1, and APC)61 (Figure S11D). Cluster 3 has significantly

(p value < 0.05) worse overall survival compared to clusters 1 and 6, respectively (Figure S11E), and it is characterized by high tumor prolif-

eration, significantly (p value < 0.05) higher tumor glycolysis and oxidative phosphorylation than cluster 6 (Figure S11B). Clusters 1 and 6

are both characterized by high tumor proliferation (Figure S11B). In term of immune landscape, cluster 1 has significantly (p value < 0.05)

higher infiltration of CD8 T cells andM1macrophages (Figure S11C) than the other clusters, suggesting high level of immune activation, which

is related to the observed high expression of exhaustion markers62 (Figure S11F). Cluster 6 is characterized by significantly (p value < 0.05)

lower hallmark immune pathway scores than other clusters (Figure S11B).

In summary, our irGSs redefine TCGA subtypes with significantly distinct survival patterns, unveiling not only the intrinsic traits of tumors

such as their proliferation andmetabolic profiles, but also the dynamic immune activities within the tumormicroenvironment. Compared with

the immune archetypes defined by Combes et al.,63 we are defining differential functional states rather than cell type compositions.

Figures S11B and S11C contain detailed information on hallmark pathway scores and the relative abundance of immune cell infiltration for

each cluster.

irMPs better distinguish ICB response

We investigated if the irMP expression at baseline could be used to differentiate ICB responders and non-responders. We utilized four

ICB melanoma cohorts,64–67 details in Table 2. To account for differences in sequencing depth and coverage, we calculated the frag-

ments per kilobase of transcript per million mapped reads (FPKM) for each of the four RNA-seq data and obtained 104 RNA samples at

baseline. We calculated ssGSEA score for each RNA expression sample in the integrated ICB cohort using (1) 50 Hallmark pathways,9 (2)

29 immune-relevant KEGG (irKEGG) pathways,10 (3) lymphoid irMPs (L_MPs), (4) myeloid irMPs (M_MPs), or (5) lymphoid-myeloid com-

bined irMPs. We randomly divided 104 baseline samples into 70% training (ntrain = 73) and 30% testing (ntest = 21). To avoid over-fitting,

we fitted five generalized linear models (GLM) with LASSO regularization adjusting for the aforementioned gene set variables. Using the

best model selected from 10-fold cross-validation, we fitted the model on the test data and evaluated model performance by

comparing classification accuracy, which is the average of sensitivity and specificity. To deal with randomness in data splitting, we per-

formed the procedure 1,000 times and computed the range for classification accuracy from each of the five models (see STAR Methods

and Figure 5A). Our gene sets resulted in the highest mean accuracy of 0.71, followed by Hallmark (0.69) and irKEGG (0.62), with most of

the gene sets being negatively associated with response (Figure S12A). The classification accuracy is comparable (p value = 0.13) be-

tween Hallmark and combined irMPs (Figure 5A). However, Hallmark contains 50 gene sets with relatively large (146 G 67) gene set

sizes, whereas the combined irMPs has only 28 gene sets with 50 genes each, possessing comparable predictive power using fewer

parameters. We also compared the classification accuracies with the 18-gene tumor inflammation signature (TIS),68 which has been

approved for use as an investigational use-only (IUO) criteria to stratify patients based on potential to respond to ICB, and the classi-

fication accuracy with TIS only on the test data is 52.83%.

To corroborate if our gene sets can better separate ICB response with baseline gene expression only, we extracted the top 10 most

selected irMPs across the 1,000 LASSO models (Figure 5B) and calculated their activities at baseline using BulkRNAseq profiled from lung

cancer,69 melanoma,70 and liver cancer.71We again observed that these 10 irMPs can better separate ICB response in comparison to irKEGGs

or Hallmarks (Figure 5C). These data indicate that the irMPs can be useful to develop tumor type agnostic general prognostic signatures to

predict ICB response.

To understand what these irMPs explain, we calculated the ssGSEA for exhaustion, cytotoxicity, and tissue resident memory (TRM) using

their respective marker gene expression (full marker list detailed in STAR Methods). Computing the correlation between irMPs activity and

these signature expressions at baseline (Figure S12B), we observed significant (FDR adjusted p value < 0.05) positive correlation between

most of the irMPs and exhaustion, cytotoxicity, and TRM, suggesting that at baseline non-responders show phenotype of activation induced

exhaustion, a result of prior antigen stimulation. To confirm our observation, we deconvoluted each of the bulk RNA sample into exhausted

(TEX), tissue residentmemory (TRM), tissue effectormemory (TEM), naive (TN), and effector T cells (TEFF) usingCibersortX72 and pan-cancer T cell

Table 2. Number of samples contained in each of the melanoma ICB cohort

GEO ID Disease Treatment Pre (n) Post (n) Responder (n) Non-responder (n)

91061 Metastatic melanoma Anti PD-1 51 58 60 49

115821 Metastatic melanoma Anti PD-1 9 18 1 26

78220 Metastatic melanoma Anti PD-1 25 0 13 12

145996 Metastatic melanoma Anti PD-1 14 0 9 5

Total (n) 99 76 83 92
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Figure 5. irMPs better separate ICB responses

(A) Distribution of ICB classification accuracy in each of the five model across 1,000 iterations. Distribution of accuracies was compared using t test with

significance level 0.05.

(B) The average fitted coefficients for top 10 selected irMPs across 1,000 iterations.

(C) UMAP derived from 10 most selected irMPs activities (left), 50 Hallmarks (middle), and 29 irKEGGs (right) in lung (top), melanoma (middle), and liver (bottom)

cancer. Color represents different responses.

(D and E) Baseline cell-cell communications for responders (D) and non-responders (E) inferred from cell chat. Nodes are the 11 cell types annotated in the

original single cell data, edges represent significant interactions (adjusted p value < 0.05) and the thickness of the edges represents the probability of

interactions.
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signaturematrix73 as reference (see STARMethods). Indeed, non-responders show higher TEX and TRM and lower TEM and TN at baseline (Fig-

ure S12C). However, whenwe fit themodel with only exhaustion, cytotoxicity and TRM score, the classification accuracy is only 54%, suggesting

that irMPs have captured addition factors that dictate response to ICB in addition abundance of T cell states.

As cellular communication plays an important role in orchestrating the immune response,74,75 we hypothesize that irMPs have also

captured differential cellular interactions between responders and non-responders. Utilizing an independent scRNA-seq dataset76 from

baseline melanoma patients later treated with anti-PD1, we converted the data into pseudo-bulk expression (see STAR Methods), calcu-

lated activity for selected irMPs (top 10 most frequently selected irMPs from 1,000 LASSO regressions in the previous analysis), Hallmarks

and irKEGGs pathways, and projected the 12 samples onto a UMAP. Once again, we observed that irMPs more effectively separated out

responders and non-responders (Figure S12D) and these 10 irMPs are also associated with exhaustion, cytotoxicity and TRM (Figure S12E).

We then performed CellChat77 analysis (see STAR Methods) to infer cell-cell interactions based on ligand-receptor expression and

observed that responders are enriched in interactions surrounding memory T cells, while non-responders are enriched in interactions sur-

rounding exhausted T cells at baseline (Figure 5D). To offer additional evidence of these differential interactions, we used scrublet78 to

identify doublets and double-annotated the doublets (see STAR Methods). Although doublets in droplet-based scRNA-seq data may

result from multiple sources, they have been shown to reflect true physical interactions between cell types.79 Responders were character-

ized by a limited repertoire of doublet phenotypes with a marked enrichment for doublets with memory T cells. In contrast, non-re-

sponders presented with a more varied doublet repertoire with frequent doublets involving various exhausted lymphocytes (Figure S12F).

These trends mirror results of the cell-cell communication analysis (Figures 5D and 5E). To confirm whether our irMPs have captured these

interactions, we calculated the activities of the 10 important irMPs in each type of doublets at baseline. We observed that the top 10

selected irMPs all have high activities in doublets that are enriched in non-responders at baseline (Figure S13). Taken together, the irMPs

may capture interactions between exhausted lymphocytes and other cell types at baseline, which have been associated with poor response

in anti-PD1 immunotherapy.80–82

irMPs granularly segment spatial transcriptomics data

irMPs can potentially enhance segmentation and phenotyping of spatially resolved transcriptomic (SRT) data. For illustration, we obtained

103 Visiumdata from an FFPE humanbreast tissue section.83 TheH&E slide from the tissue sectionwas segmentedby pathologists intomajor

cell types (Figure 6A). We calculated the activity scores of the irMPs from the SRT sample and observed that irMPs consistently isolate out the

tumor regions (dark blue), aligning with pathologist’s annotation (Figures 6B and S14). Besides identifying tumor regions, our irMPs can also

be characterized by the infiltrated immunological patterns on the H&E image. We used CellTrek84 to project single cells from a reference

breast cancer patient profiled by scRNA-seq in Tumor Immune Single-cell Hub 2 (TISCH2)85 onto the spatial spots84 (see STAR Methods).83

We then visualized the average irMP activity score for each projected cell type in Figure 6C using a clustered dot plot and observed that clus-

tering of irMPs was largely driven by lineages (3 clusters from top to bottom): myeloid, lymphoid, and cycling. On one hand, some irMPs are

strongly lineage specific. For example, the ‘‘TCR anchoring’’ score is prominent among T cells, nearly absent in other cell types (Figure 6C). On

the other hand, some irMPs also provide functional insight across the TIME, not limited to a cell type. For example, ‘‘IFN-gamma induced

cytotoxicity’’ exhibits the highest score in T cells and a notable score in macrophages (Figure 6C), suggesting a co-enforcement feedback

loop between activated T/NK cells and cytotoxic macrophages mediated by potent interferon gamma, a hub gene in the PPI network (Fig-

ure S7.17), which alignswith the annotation of this irMP. Benchmarkingwith immune-related KEGGpathways andHallmarks, we observed that

Hallmark pathways are mostly specific to cancer and endothelial regions (Figure S15A) and irKEGG pathways are myeloid-specific (Fig-

ure S15B). To examine the generalizability of our results, we repeated the aforementioned experiments on an FFPE human ovarian tumor

tissue and an FFPE human intestine tumor tissue using ovarian cancer patients86 and colorectal cancer87 patients as single cell references,

respectively. We obtained coherent results (Figure S16). Together, we found the irMPs can be applied to not only segment spatial transcrip-

tomic data aligning with standard pathological segmentation but also reveal granular spot-level cell type information and multicellular pro-

cesses in TIME.

To further assess how gene sets explain spatial heterogeneity and identify niches with distinct functions, we referred back to Figure 6D and

observed that TCR_anchoring shows high activities in regions dominated by B and T cells.We further plotted the activity of TCR_anchoring on

intestine, breast, and ovarian cancer Visium data and observed that, in each of the three tumor slides, there is a region with TCR_anchoring

activity (Figures 7A–7C, left panel) that is significantly higher than the rest of the spots (Figures 7A–7C, right panel). To further define these

regions, a board-certified pathologist (Sharia Hernandez) performed pathological review from respectively matched H&E images and

concluded that the identified regions corresponded to a tertiary lymphoid structure (TLS) and two lymphoid aggregates (LAs), respectively

(Figures 7A–7C,middle panel). TLS has recently gained attention in cancer research as their presence in the TIME often reflect active and local

immune response against the tumor, contributing to favorable prognosis.88,89,90 LA, on the other hand, is often considered the precursor to

TLS.89 Therefore, the strong association between TCR_anchoring scores and TLS/LA regions demonstrated the potential of applying our

irMPs to delineate spatial heterogeneity and identify functionally active regions.

DISCUSSION

Our study aims to address the lack of objectively defined immune-specific gene sets in cancer immunology research. We developed these

gene sets based on different studies representing immune cell involvement from bulk samples challenged with infections and immune per-

turbations. We further utilized CITE-seq and other orthogonal data to validate the immunological functions of the irMPs we identified in our
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study. Most importantly, we demonstrated that these transcriptional programs, derived from high-throughput experiments, can provide valu-

able insights into various aspects of cancer immunological research. Specifically, (1) irMPs improved tumor immune subtype clustering and

identified new subtypes with distinct survival outcomes, enhancing our understanding of immune heterogeneity; (2) irMPs demonstrated

higher accuracy in separating ICB response, highlighting their potential for predicting ICB outcomes by providing insights into baseline cyto-

toxicity and cellular communications; and (3) irMPs offered enhanced granularity in delineating tumor-immune boundaries and niches in

spatial transcriptomic data. These findings suggest promising translational applications in diverse immunological contexts, as these irMPs

are originated from non-cancerous experiments, implying common immunological mechanisms shared by cancer and other pathophysiolog-

ical conditions.

Ourwork also shows the importance of cross-lineage coordination and the interconnectivity between immune and tumor compartment. By

leveraging BulkRNAseq data, we have discovered transcriptional programs that span across multiple cell lineages. These observations are

important as they underpin the intricate web of cellular communications, orchestrating functional phenotypes crucial for mounting effective

immune responses. By unraveling these shared transcriptional signatures across diverse cell populations, this research enhances our funda-

mental understanding of signaling cascades within the immune system. Communication between tumor and immune cells was demonstrated

in Figures 4F–4H, when samples grouped based on immune activities also show differences in tumor-specific characteristics. There is a
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Figure 6. irMPs granularly segment spatial transcriptomics data

(A) Pathologist-annotated 103 Genomics-acquired FFPE human breast tissue spatial image with colored-boundaries separating different cell types.

(B) Module score overlaid on spatial spots for L_MP2 (TCR anchoring).

(C) CellTrek projected single cells onto the breast tumor tissue spatial slide. Color represents different cell types (important compartments are myeloid (yellow),

lymphoid (pink/red), and tumor (green).

(D) Dot plot comparing the Z-transformed expression level of 28 irMPs across different celltrek-annotated cell types. Color represents the average expression

level, and the dot size represents the percentage of cells expressing the irMP activity.
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complex bidirectional dialogue between immune cells and cancer cells, thus the activities of irMPs provides valuable insights into the nature

of the tumor, its aggressiveness, and even its susceptibility to treatments like immunotherapy. Therefore, studying immune transcriptional

programs offers a window into understanding the broader dynamics of tumor biology and devising strategies to harness the immune system’s

potential in combating cancer.
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Figure 7. L_MP2 associates with lymphoid aggregates and tertiary lymphoid structure

(A–C) Gene set activity for L_MP2 (left), H&E image with pathologist-confirmed lymphoid aggregates (middle), and statistical test for gene set activities

comparing TLS/LA spots vs. other spots (right) for (A) intestine cancer, (B) breast cancer, and (C) ovarian cancer. (Red boxes are confirmed TLS, purple boxes

are LA with insufficient evidence to be TLS).
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Our work serves as a parallel effort to the cross-tissue immune atlas by Teichmann group, in which they leveraged scRNA-seq dataset and

developed CellTypist91 to classify immune cells into 101 distinct populations with context-dependent functional states across various human

healthy tissues. In a similar vein, our work leveraged BulkRNAseq and concentrate on elucidating immune activities in diseased samples.

Future studies are warranted to (1) analyze the immune landscape differences between healthy and diseased microenvironment and (2)

leverage scRNA-seq to derive cell type specific transcriptional programs.

Algorithms designed to enhance our comprehension of molecular-level functional states are crucial, offering abundant information unat-

tainable through individual laboratory experiments. By integrating extensive data sources, we often capture a broader spectrum of functional

states under varying conditions, offering insights into numerousbiological inquiries. For instance, recent research92 linkingmetabolic fitness to

the resistance of chimeric antigen receptor-engineered natural killer (CAR-NK) cells underscores the importance of comprehending cellular

characteristics in deciphering therapeutic resistance. In this study, we demonstrated the NMF can be used to efficiently output functional

gene sets with translational implications. Overall, our study constructed 28 immune-specific gene sets, taking a significant step toward

advancing our comprehension of TIME. This knowledge can empower cancer immunologists to gain deeper insights into ICB response

and cancer survival, potentially expediting thedevelopment of immunotherapies andbiomarkers, andultimately improvingpatient outcomes.

Limitations of the study

In this study, we constructed gene sets using extensive bulk RNAdata, offering valuable insights into themolecular landscape.We divided the

data by lymphoid andmyeloid lineages.While thatmay have enhanced the discovery of lineage-specific irGSs, it may bias against discovery of

irGSs shared between the lineages. Another inherent limitation in our work, as well as studies of similar nature,9,12,16,93,94 is the challenge of

annotating the functional roles of each gene sets. To address this limitation and enhance the reliability of our findings, we emphasize the

importance of employing various functional assays for validation. One promising avenue is the utilization of targeted perturb-seq experi-

ments, which can provide experimental evidence to corroborate our gene set annotations. As a matter of fact, there are already in silico ex-

periments to predict transcriptional profiles from combinatorial perturbations,95 and such predictions, if successfully validated in wet lab, can

further bolster our functional annotations. Another promising avenue is to apply these gene sets on scRNA data derived in different contexts,

thereby enhancing annotations with higher granularity and context-dependent information. By applying gene sets to single cell data, we can

precisely assess their functional relevance in distinct cellular contexts and unveil insights into the regulation of biological processes at the

single-cell level.
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RESOURCE AVAILABILITY

Lead contact

� Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ken Chen

(kchen3@mdanderson.org).

Materials availability

� This study did not generate new unique reagents.

Data and code availability

� All RNA-seq data had been deposited at GEO and are publicly available. DOIs are listed in the key resources table.
� All original code to generate the figures and tables presented in the paper can be accessed through https://github.com/chloehe1129/

immune-hallmark.

METHOD DETAILS

Bulk RNA-seq data curation

We referenced the 389 immunology relevant studies identified in the ImmuneSigDB publication12 and curated the corresponding available

bulk RNA-seq datasets deposited in NCBI Gene Expression Omnibus (GEO).96 Bulk RNA-seq datasets sourced from human samples with

more than 4 individuals were kept for downstream analysis. Since we focused on immune pathways represented in these datasets, mitochon-

dria genes and ribosomal genes were removed. In addition, we grouped the datasets based on broad immune lineages.97 As a result, 47

datasets sourced from lymphoid lineages and 36 datasets sourced from myeloid lineages were kept for further analysis.

‘‘Data-driven’’ statistical analysis

We performed the following analysis for each of the 47 lymphoid dataset and 36myeloid datasets. Non-negative matrix factorization (NMF)15

is a common approach to establish genes that have coordinated expression or consistently opposite expression pattern that underpin the

data. We performed NMF on each of the qualifying dataset with number of latent factors K = 4, 5, 6, and each NMF program is composed

of genes with top 50 loadings from one latent factor. We column-combined the loadings of 529 NMF programs and normalized them. To

ensure that the programs are not only non-redundant but also generalizable, we curated robust NMF programs,16 defined as programs

that (1) would reoccur across datasets (have at least 20% overlapping genes with at least one NMF program derived from outside of the cur-

rent data) and (2) is non-redundant within the same dataset (have less than 20% overlapping genes with all NMF programs derived from the

current dataset). To further reduce redundancy, we iteratively merged and updated the robust NMF programs into meta programs (MP)

based on algorithm proposed by Tirosh et al.16: we initiated the process by selecting two robust NMF programs with the greatest gene over-

lap. Combining these two robust NMF programs, we generated a fresh gene set consisting of 50 genes, comprising of both the common

genes present in both programs and selected genes unique to each program. The selected genes were chosen from all the unique genes

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

ICB Cohort 3 GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse78220

ICB Cohort 4 GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE145996

ICB validation 1 - lung GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111414

ICB validation 2 - melanoma GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE168204

ICB validation 3 - liver GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140901

ICB validation 4 - melanoma scRNA GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE120575

Breast cancer ICB scRNA-seq GEO http://tisch.comp-genomics.org/gallery/?cancer=BRCA&species=Human

Breast cancer spatial transcriptomic 10x https://www.10xgenomics.com/resources/datasets/

human-breast-cancer-ductal-carcinoma-in-situ-

invasive-carcinoma-ffpe-1-standard-1-3-0

Ovarian cancer ICB scRNA-seq GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154600

Ovarian cancer spatial transcriptomic 10x https://www.10xgenomics.com/datasets/human-ovarian-cancer-1-standard

Intestine cancer ICB scRNA-seq GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139555

Intestine cancer spatial transcriptomic 10x https://www.10xgenomics.com/datasets/human-intestine-cancer-1-standard

Deconvolution Signature Matrix GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE156728
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arranged in descending order of their loadings to ensuring that the gene set was populated to its full capacity of 50 genes. We then selected

another robust NMF programs with the highest overlap with this fresh gene set and repeated the same process until the overlap is < 5, in

which we restarted the process by selecting two robust NMF programs with the greatest gene overlap.

Functional annotation

We performed over-representation enrichment analysis (ORA)98 for each MP using KEGG10 pathways, Hallmarks,9 and biological process

terms from GO.11 ORA was performed with ‘‘clusterProfiler’’ package.99 Annotation for each MP was determined by highly enriched terms

based on core enrichment count and False Discovery Rate (FDR) adjusted p-value < 0.05.100 The annotations were then manually reviewed

and refined by immunologists from MD Anderson Cancer Center.

Protein-protein interaction network for each MP

Weoverlaid thegenes fromeachgene set ontoprotein-protein interaction (PPI) network fromstringdatabase23 usingSTRINGdbpackage in R.

Benchmarking

We calculated the Jaccard distance between our gene sets with Hallmark, KEGG and GO to benchmark our gene sets.

JaccardðA;BÞ =
jA C‚ Bj
jA �E Bj

Significance of each pairwise Jaccard distance was computed by randomly choosing gene set of the same length 1000 times and p-value

was calculated as the number of times a permutated jaccard distance is larger than the actual jaccard distance divided by 1000. Multiple

testing was adjusted using FDR adjusted p-values.

Cell type annotation for CITE-seq

We performed cell type annotation using SingleR37 package in R with CHETAH101 as reference.

Cell dichotomization in CITE-seq

Wedichotomized cells into two groups based on their RNA activity levels of each irMP of interest using GaussianMixtureModels102 with G=2

usingmclust package in R and compared the relevant protein abundance between the irMP-high and the irMP-low groups with two sample

t-test.

Gene set scoring

Weperformed ssGSEA using ssgsea function in the corto package in R withmin.size=0.We performedGSDensity when scoring cell cycle and

metabolism activities using gsdensity package in R.

Antigen-related pathways validation

Persistent tumormutational burden (pTMB)was calculated for each sample in TCGA, as the total numberof single copymutations andmultiple

copy mutations.51 We grouped samples based on pTMB, dichotomized at mean. We performed Differential gene expression (DGE) analysis

between samples with high and low pTMB using function DESeq2.103 Results from DGE analysis with the whole transcriptome were further

analyzed in Gene set enrichment analysis (GSEA) with the 19 lymphoid MPs using function GSEA104 from the clusterProfiler package.

Cytotoxicity pathway validation

We calculated the IFN.gamma-induced cytotoxicity (L_MP17) score and exhaustion score based on GS Density.105 Exhaustion was calculated

using the expression of the following genes: TIGIT, TOX, PDCD1, CD160, CD244, CTLA4, BTLA, HAVCR2, and LAG3.

TCGA immune subtypes refinement

We calculated the single sample gene set enrichment score (ssGSEA score)27 for each of the MP across all patient samples in TCGA pan-can-

cer data and projected the samples onto a two-dimensional space through UMAP using umap function. We colored each sample with cor-

responding TCGA immune subtype information. In addition, we fitted Kaplan Meier (KM) survival curves for each of the four TCGA immune

subtypes. We also performed k-mean clustering with kmean function using the ssGSEA matrix with the value of K=6 selected by low within-

cluster sum of square and fitted KM survival curves for each identified cluster.

ICB response model

We calculated ssGSEA score for each patient from the combined ICB studies106–108 using (1) 50 MSigDB Hallmark pathways, (2) 29 immune-

related KEGG pathways (3) lymphoid-derived irMPs, (4) myeloid-derived irMPs and (5) lymphoid-myeloid combined irMPs. We fitted five
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generalized linear model with LASSO regularization using glmnet with binary response variable adjusting for each set of the above-

mentioned gene sets using 70% of the full data as training data. In cases where ICB response is defined in more than two categories, we

grouped complete and partial responder into responders and stable and progressive into non-responders. Using the best model selected

from 10-fold cross-validation, we fitted the model on the test data and evaluated model performance by comparing classification accuracy.

Classification accuracy is defined as the average of sensitivity and specificity. To deal with randomness in data splitting, we performed the

procedure 1000 times and computed a range of classification accuracy from each of the five models.

Marker genes for immune signatures

Exhaustion: PDCD1, TIGIT, HAVCR2, CTLA4, LAG3.

Cytotoxicity: NKG7, CCL4, CST7, PRF1, GZMA, GZMB, IFNG, CCL3.

Tissue resident memory: ITGAE, ZNF683, ITGA1, CD69, CXCR6, CXCL13, PDCD1.

Immune signatures were scored based on ssGSEA.

Pseudo-bulk aggregation

scRNA-seq data was converted into pseudo-bulk gene expression by using the function AggregateExpression with group.by = "sample".

Cell type deconvolution

We used breast cancer infiltrated T cells subtypes annotated by Zheng et al.73 to deconvolute the bulk RNA samples using CIBERSORTx109

with the following configuration: B-mode batch correction and 50 permutations for significance calculation.

Cell chat analysis

We performed cell chat analysis using the CellChat package in R.

Doublet detection and annotation

We used scrublet to calculate a doublet score for each cell and identified doublets with top 5% doublet score. We used FindAllMarkers with

adjusted p-value<0.05 and log fold change>0.25 to define differentially expressed genes for each cell type and calculate the cell type ssGSEA

for each doublet. We double-annotated each doublet with the top two positive scoring cell types.

Single cell level annotation on spatial transcriptomic

We calculated the irMPs score on each spatial spot using AddModuleScore function in R. We performed CellTrek to achieve single-cell level

spatial cell type mapping on breast cancer spatial transcriptomic (ST) data with an independent scRNAseq (SC) data as reference. Default

arguments were used for celltrek function in R.

scRNAseq data processing

All single cell RNA sequencing data were processed using standard Seurat procedure implemented by Seurat package in R. We performed

the following procedures for all scRNAseq data: NormalizeData(), FindVariableGenes(), ScaleData(), RunPCA(), FindNeighbors(),FindClus-

ters() and RunUMAP() with 10 PCs.

Differential gene expression and pathway analysis

For single cell data, we used FindAllMarkers() to identify differentially expressed genes. For BulkRNAseq data, we used Deseq2 to identify

differentially expressed genes. Pathway enrichment analysis was performed using clusterProfiler package in R. For gene set enrichment, sta-

tistical significance was determined by a rank-based test, in which the enrichment score (ES) reflects the degree to which genes in a set are

over-represented at the extremes of a ranked list, utilizing a Kolmogorov–Smirnov-like statistic. Then the statistical significance of the ES is

determined through a permutation test based on phenotypic labels, generating a null distribution for comparison to ascertain the gene set’s

dependency on these labels.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis were performed in R version 4.2.1 and Seurat version 4.3.0. Differences between continuous distributions were tested

using Standardized t test in case of two variables or ANOVA in cases of more than two variables. Multiple testing correction for false discovery

was performed using False Discovery Rate (FDR) with function p. adjust, and statistical significance is defined at FDR adjusted p-value < 0.05.
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