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Abstract 

 The biases revealed in protein sequence alignments have been shown to provide information 

related to protein structure, stability, and function. For example, sequence biases at individual positions 

can be used to design consensus proteins that are often more stable than naturally occurring counterparts. 

Likewise, correlations between pairs of residue can be used to predict protein structures.  Recent work 

using Potts models show that together, single-site biases and pair correlations lead to improved 

predictions of protein fitness, activity, and stability.  Here we use a Potts model to design groups of 

protein sequences with different amounts of single-site biases and pair correlations, and determine the 

thermodynamic stabilities of a representative set of sequences from each group.  Surprisingly, sequences 

excluding pair correlations maximize stability, whereas sequences that maximize pair correlations are less 

stable, suggesting that pair correlations contribute to another aspect of protein fitness.  Consistent with 

this interpretation, we find that for adenylate kinase, enzyme activity is greatly increased by maximizing 

pair correlations.  The finding that elimination of covariant residue pairs increases protein stability 

suggests a route to enhance stability of designed proteins; indeed, this strategy produces hyperstable 

homeodomain and adenylate kinase proteins that retain significant activity. 

 

Significance statement 

 Recent methods for protein structure analysis and design have used sequence covariance to help 

predict protein structure, stability, and function.  Here, by designing homeodomain and adenylate kinase 

sequences with different amounts of single-site bias and pairwise covariance, we find that stability is 

solely determined by single-site bias but not pairwise covariance.  However, pairwise covariance makes 

an important contribution to catalysis in adenylate kinase.  Our findings suggest a new way to generate 

highly stable proteins: by separating single-site biases from pairwise covariance, the single-site 

coefficients can be used to design proteins with stabilities even higher than those obtained by consensus 

design.  
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Introduction 

Most proteins fold into stable, well-defined native structures and perform specific biological 

functions. Over evolutionary time, mutations introduce random amino acid substitutions which are 

subject to physiochemical constraints that retain native-state structure and biological function. Because 

protein structure and function are determined by the many cooperative interactions among their amino 

acids,1 these residue-residue interactions play a role in shaping and constraining protein sequence 

evolution, and lead to statistical correlations among pairs of residues within protein sequences.  

Residue covariance has been shown to be important for specifying protein structure and function. 

Using an approach called statistical coupling analysis (SCA), Ranganathan and coworkers demonstrated 

that maintaining residue covariances found in a multiple sequence alignment (MSA) is necessary for 

proper folding of WW domains.2 Subsequent studies showed that SCA-based protein designs retain 

expected biological activity3,4 More recently, a complementary approach using residue co-evolution 

called direct coupling analysis (DCA) has gained popularity for analyzing protein structure and function. 

DCA uses a Potts formalism from statistical mechanics to separate position-specific single-site biases 

from pairwise coupling biases.5,6 Starting with an MSA, the Potts model infers single-site and pairwise 

coupling energy coefficients.  Including both single-site biases and pair correlations from the Potts 

formalism has been shown to improve predictions of protein structure5, predictions of effects of mutations 

on protein stability and function7,8, and have been used to design non-natural sequences that retain 

biological function.9,10 

Although correlations between pairs of residues have been shown to contribute to protein 

structure and function, design strategies that do not explicitly include these correlations have been quite 

successful. These strategies include ancestral reconstruction and consensus design, which infer residues 

independently at each site without considering interactions between residues.11 12 Despite this potentially 

naïve assumption of site-independence, both strategies have widely demonstrated success in producing 

folded, stable, and biologically-active proteins with sequences.13–17 In many cases, ancestral and 
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consensus proteins show greater stabilities than natural proteins, highlighting the effectiveness of site-

independent models in capturing information specifying protein stability.18,19  

To better understand the contributions of sequence covariance to protein stability and function, 

and to explore why single-site models achieve high levels of success in protein design while ignoring 

covariance, we used a Potts model to generate and analyze a large set of sequences for two well-studied 

families: the DNA-binding homeodomain family and the adenylate kinase enzyme family.  For each 

family we designed sequences that differ in the relative amounts of pairwise coupling and single-site bias, 

allowing us compare the effects of these two biases to protein stability and activity. 

 

Results 

Potts model inference and sequence design for homeodomains 

 To determine single-site and coupling energy coefficients (hi(a) and ji,k(a,b), where i and k 

indicate positions and a and b indicate amino acid types) we fit a Potts model to a large alignment of HD 

sequences (Fig 1; see Methods).  This fitting procedure produces hi(a) coefficients for all residues at all 

positions and ji,k(a,b) coefficients for all pairs of residues at all pairs of positions Using these Potts 

coefficients, we generated energy functions that include different amounts of single-site and pairwise 

coupling energies.  These include an energy function that includes all of the pairwise coupling energies 

along with the single-site energies (ℰ(𝑠𝑒𝑞)!", equation 6) and an energy function that omits pairwise 

terms, using only single-site energies (ℰ(𝑠𝑒𝑞)!, equation 9). 

In addition, we fit the same HD MSA with a model that infers only single-site energies, ignoring 

all pairwise couplings (Figure 1, equations 12 and 13).  The single-site energies (Ii(a)) inferred from this 

model, which are closely related to the marginal residue frequencies in the MSA were used to construct 

an energy model (ℰ(𝑠𝑒𝑞)#) for generating sequences based solely in single-site conservation.  Sequences 

designed using ℰ(𝑠𝑒𝑞)# are closely related to consensus sequences (indeed, the designed HD sequence 

with the lowest I(seq) score is identical to the consensus sequence for the MSA used here).  
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Figure 1.  Figure 1. Potts-based design of protein sequences. Single-site and pairwise coupling energies are 
inferred from an MSA using a Potts model (here the homeodomain family, PDB: 1ENH).  Energy functions are 
created using different amounts of single-site versus pairwise energies in the sequence design, and are used to 
generate sequences with a Monte Carlo search.  These sequences, which contain different relative amounts of 
intrinsic and pairwise coupling energy, are characterized for stability and activity.  
 

 For each of these energy functions, we used a Monte Carlo search procedure to generate 1,000 

independent low-energy homeodomain sequences.  The sequences generated from these energy models 

show features that are consistent with the energy functions used to create them.  Sequences designed with 

ℰ(𝑠𝑒𝑞)!, referred to as H-optimized sequences, have high H(seq) values but low J(seq) values (green, 

Figure 2), whereas sequences designed with ℰ(𝑠𝑒𝑞)!", referred to as HJ-optimized sequences, have high 

J(seq) values but low H(seq) values.  Although hi(a) and ji,k(a,b) are equally weighted in ℰ(𝑠𝑒𝑞)!", there 

are many more ji,k(a,b) terms in J(seq) than there are hi(a) terms in H(seq) (212×L(L-1)/2 versus 21L for a 

hi(a) Ji,j(a,b)

MSA

Infer single-site 
and coupling 
coefficients

Define Monte 
Carlo energy 
function

e(seq)HJ = H(seq) + J(seq)
e(seq)H = H(seq)
e(seq)I = I(seq)
e(seq)S = H(seq) + {j}strongest
e(seq)C = H(seq) + {j}closest

E F L S K

E I L Q K

D P L Q R

E G L K R

Seq1
Seq2

Seq3

Seq4

Q P L T RSeq5

Design sequences using 
Monte Carlo energy function

Protein family

Figure 5.1 Evolution-based design of protein sequences. For a particular protein family of 
interest, single-site and pairwise coupling energies inferred from an MSA are used to 
design sequences. Using different amounts of single-site versus pairwise energies in the 
sequence design, we can create sequences that are free from positively covariant residue 
pairs (green), and other sequences that contain both single-site and pairwise biases 
(orange). Designed sequences are experimentally characterized for folding, stability and 
function. Representative structure of an extant homeodomain, the main protein family 
used for study, is shown on top (PDB: 1ENH).
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sequence of length L residues).  Thus, HJ-optimization is dominated by the ji,k(a,b) coupling energies (for 

the HJ-optimized HD sequences the total J(seq) values are about seven times larger than the total H(seq) 

values; Figure 2).  As a result, HJ-optimized sequences are quite similar to sequences optimized with 

ji,k(a,b) terms alone. 

 
Figure 2. Sequence design of HDs. Distributions of total single-site energies (A) and total pairwise 
coupling energies (B) for the 1,000 sequences optimized using different energy functions.  Green: 
ℰ(𝑠𝑒𝑞)!; orange and blue: ℰ(𝑠𝑒𝑞)!"; grey, ℰ(𝑠𝑒𝑞)#; pink: ℰ(𝑠𝑒𝑞)!"$; yellow: ℰ(𝑠𝑒𝑞)!"% .  Insets 
show distributions for the 19,221 extant HDs in the MSA.   
 

 Interestingly, HJ-optimized sequences have a bimodal distribution of H(seq) and J(seq) values 

(Figure 2), suggesting that designing sequences with high pairwise coupling energies captures higher-

order sequence correlations across three or more sites.  Consistent with this, pairwise identities among the 

1000 HJ-optimized sequences have a bimodal distribution (Figure S1).  This distribution of identities 

results from two distinct clusters of sequences of roughly equal size, which we designate as clusters A and 

B.  Within clusters A and B, sequences have high identities (89 and 88 percent respectively, Figure S1), 

whereas between clusters sequences have lower identity (55 percent).  In contrast, sequences designed 

using the ℰ(𝑠𝑒𝑞)! energy function have unimodal H(seq), J(seq), and sequence identity distributions 

(Figures 2, S1). 

 Comparison of sequences generated using the independent model (with the ℰ(𝑠𝑒𝑞)# energy 

function, referred to as I-optimized sequences) to those generated from the Potts model reveal some subtle 

differences.  Although the H(seq) values of the I-optimized sequences are high, as might be expected for a 

design strategy based on single-site frequencies, values are not as high as those of the H-optimized 

Figure 5.2. Sequence design of HDs . (A) Simulated annealing Monte Carlo sequence 
optimization using HD single-site energies (left) and single-site plus pairwise coupling 
energies (right). (B) Histograms of total single-site  energies ((H(seq), Eq 5.2A, left) and 
total pairwise coupling energies (J(seq), Eq 5.2B, right) for sequences optimized by 
different energy functions.  Green: sequences optimized using H only; orange and blue, 
sequences optimized using both H and J; grey, sequences optimized using the independent 
model; brown, the 19,221 extant HDs in the MSA.

A B
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sequences (grey and green, Figure 2A).  Likewise, the J(seq) values of the I-optimized sequences are low, 

but they are not as low as those of the H-optimized sequences (Figure 2B).  Rather, their J(seq) values are 

midway between those of the H-optimized and HJ-optimized sequences.  These differences are reflected 

in sequence identities (Figure S1): the I-optimized sequences are closer to both the H-optimized 

sequences (78 percent average pairwise identity) and HJ-optimized sequences (63 and 58 percent identity 

to clusters A and B) than the H-optimized and HJ-optimized sequences are to one another (53 percent 

identity to both clusters A and B).  The finding that I-optimized sequences have J(seq) values midway 

between the H- and HJ-optimized sequences demonstrates that I-optimization inadvertently introduces 

pairs of residues that are positively covariant, which might be expected for covariant pairs that are 

strongly conserved.  This observation also indicates that sequences designed using ℰ(𝑠𝑒𝑞)! are purged of 

pairs of correlated residues.  Thus, along with the HJ-optimized sequences, the H-optimized sequences 

provide a stringent test set to evaluate the relative effects of single-site biases and pair correlations on 

protein stability and function, maximizing H(seq) values and minimizing J(seq) values beyond what is 

obtained with commonly used single-site strategies such as consensus design. 

 

Biophysical characterization of designed and extant HD proteins 

 To examine how single-site and pairwise coupling energies influence stability and biological 

activity, we selected proteins from each Monte Carlo optimization to express, purify, and characterize 

experimentally (Table S1).  Because each Monte Carlo sequence optimization generates some sequence 

variation (Figure S1), we characterized multiple proteins for each optimization.  For each optimization, 

we picked the sequence with lowest ℰ(𝑠𝑒𝑞) value (which we refer to as Seq1), the sequence with the 

mean ℰ(𝑠𝑒𝑞) value (Seq3), the sequence with an ℰ(𝑠𝑒𝑞) value one standard deviation below the mean 

(Seq2), and the sequence with an ℰ(𝑠𝑒𝑞) value one standard deviation above the mean (Seq4).  Thus for 

each optimization, ℰ(𝑠𝑒𝑞) values increase monotonically from Seq1 to Seq4.  For the HJ-optimized 

sequences, we characterized four such proteins from each of the A and B clusters. The sequences selected 

from each Monte Carlo sequence optimization have in-group identities ranging from 65% to 96% (Fig 
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S3). To attempt to provide an unbiased representation of the biophysical properties of extant HD proteins, 

we also expressed and characterized five proteins from the MSA as well as the Engrailed HD from D. 

melanogaster used in our previous study (Table S1).15 These extant sequences share 26% to 53% identity 

to one another (Fig S3). All of these extant homeodomains expressed in E. coli; however, one of these 

proteins displayed limited solubility and was not characterized biophysically. Sequences are referred to as 

X_Seq#, where X indicates the energy function used for sequence generation (H for H-optimization, HJA 

and HJB for HJ-optimization cluster A and B, I for independent sequence optimization, and E for extant 

protein). 

 Most of the Monte Carlo designed HD proteins expressed and were soluble. However, three out 

of four sequences from HJ cluster 2 had limited solubilities and could not be characterized.  For all 

remaining proteins, far-UV CD spectra show minima at 208 and 222 nm that are similar in magnitude to 

those of extant HDs, indicating that all designed proteins adopt stable a-helical structures (Fig S3). To 

examine how the single-site and pairwise coupling energies contribute to stability, we collected GdnHCl-

induced unfolding transitions for the designed and extant HD proteins (Fig 3A). All proteins show 

sigmoidal unfolding transitions with similar slopes indicating that the designed HDs retain similar folding 

cooperativity as the extant HDs. Extant HDs have folding free energies ranging from -2.38 to -5.45 kcal 

mol-1 with a mean of -3.91 kcal mol-1 (Fig 3B, Table S2). HD sequences from the ℰ(𝑠𝑒𝑞)!" optimization 

are more stable than the extant HDs, with sequences from cluster A having folding free energies ranging 

from -6.84 to -9.36 kcal mol-1 with a mean of -8.20 kcal mol-1; the single sequence we were able to purify 

from cluster B (HJB_Seq1) has a folding free energy of -6.45 kcal mol-1.  (Fig 3B, Table S2). Thus, 

including both the single-site and pairwise coupling information from the MSA increases protein 

stabilities compared to the extant sequence collection (by an average DDG of -4.29 and -2.54 kcal mol-1 

for cluster A and HJB_Seq3, Figure 3B).  This result is consistent with previous studies that show 

correlation between protein stability and Potts energies determined by equally weighting single-site and 

pairwise coupling information. 
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Figure 3. Stabilities of Potts-designed HDs. (A) Representative GdnHCl-induced unfolding transitions 
of HDs at 25 °C. Solid lines represent the fit of a two-state unfolding model; for sequences with 
incomplete high-temperature baselines, fits included additional GdnHCl transitions at higher temperatures 
(Figure S4). (B) Folding free energies of HDs determined from the two-state unfolding analyses as in 
panel B. Vertical bar indicates the mean folding free energy of each distribution. (C and D) Correlation of 
folding free energies and sequence single-site energies (C) and sequence coupling energies (D).  
Sequences were generated with a sequence reweighting XID=0.8 and regularization parameters 
lh=lj=0.01. 
 

 To determine how the relative contributions of the single-site and pairwise coupling energies to 

protein stability, we measured GdnHCl-induced unfolding transitions of HD sequences generated by 

optimizing ℰ(𝑠𝑒𝑞)!.  To our surprise, these H-optimized sequences are significantly more stable than 

fraction_fo
lded_all.pd

f

A

B

C

D

Figure 5.3. Stabilities of HDs. (A) Representative GdnHCl-induced unfolding transitions of HDs. All transitions 
were collected at 25 °C. Solid lines represent the fit of a two-state unfolding model. Sequences for which stability 
at 25 °C was determined using a global model to fit GdnHCl transitions at multiple temperatures indicated in 
FigSXX. All other proteins were analyzed using individual GdnHCl transitions at 25 °C. (B) Folding free energies 
of HDs determined from the two-state unfolding analyses as in panel B. Vertical bar indicates the mean folding 
free energy of each distribution. (C and D) Correlation of folding free energies and sequence single-site energies 
(C) and sequence coupling energies (D).
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those generated by HJ-optimization.  In fact, the sampled H-optimized sequences were so stable that the 

unfolded baseline was not resolved at 25 °C (Figure 3A).  For these proteins, stabilities at 25 °C had to be 

determined using a global analysis including unfolding transitions at elevated temperatures (see Methods, 

Fig S4).  Folding free energies of H-optimized sequences at 25 °C ranged from -12.0 to -15.2 kcal mol-1, 

with a mean of -14.0 kcal mol-1.  This observation does not support the idea that increases in stability of 

Potts designed sequences result from optimizing pairwise sequence energies (the HJ-optimized sequences 

have much larger J(seq) values than the H-optimized sequences, Figure 2, but are significantly less 

stable).  Rather, it suggests that the stability increase results from optimizing single-site energies (the H-

optimized sequences have much larger H(seq) values than the HJ-optimized sequences, Figure 2); indeed, 

a positive correlation is seen between stability and H(seq) values for all of the HD sequences examined 

here (Potts, independent, and extant; Figure 3C).  Alternatively, it is possible that positively covariant 

residue pairs are destabilizing, although analysis with a larger set of sequences (see below) does not 

support such a correlation. 

 The magnitude of the increase in protein stability for the H-optimized sequences is large, 

especially considering the small size of the Homeodomain sequences (57 residues).  The average folding 

free energy of the H-optimized sequences increases by -10.1 kcal mol-1 compared to the average for 

extant HD sequences (-13.4 versus -3.9 kcal mol-1, Figure 3B).  This is a considerably larger stability 

increase than we saw previously for consensus homeodomains designed from a smaller sequence 

alignment.  To compare to stabilities of a consensus-like sequences designed from the same alignment 

and Monte Carlo design methods used here for Potts analysis, we measured stabilities of sequences 

designed using the ℰ(𝑠𝑒𝑞)# energy function.  The Ii(a) coefficients in this energy function are generated 

from local biases without consideration of pair correlations, as is also the case for consensus design.  

These ℰ(𝑠𝑒𝑞)#-optimized HDs have folding free energies ranging from -8.49 to -12.5 kcal mol-1 with a 

mean of -10.5 kcal mol-1 (Fig 3C, Table S2).  On average, the H-optimized sequences are more stable 

than the ℰ(𝑠𝑒𝑞)#-optimized sequences by a DDG° value of -3.5 kcal mol-1.  A similar stability increment 
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(DDG° = -2.7 kcal mol-1) is seen between the most stable H-optimized sequence (H_Seq2) and the most 

stable I-optimized sequence (the consensus, Ind_Seq1).  Thus, at least for HD sequences, it appears that 

designing sequences using H-optimized coefficients can substantially increase stability beyond that 

obtained by consensus design. 

 In contrast, the I-optimized sequences are more stable than the HJ-optimized sequences by an 

average DDG° value of -2.2 kcal mol-1 (cluster A) and -4.0 kcal mol-1 (cluster B HJB_Seq3).  This 

increase in stability for the consensus-like sequences generated from the independent model may be due 

to the larger H(seq) energies for the I-optimized versus HJ-optimized sequences (Figure 2A). 

 

Stabilities of HD sequences with restricted pairwise coupling energies 

 Our finding that HD sequences designed using pairwise coupling information are less stable than 

sequences designed using single-site bias (either through H-optimization or consensus-like I-

optimization) is unexpected, given previous work demonstrating the importance of residue couplings in 

promoting folding and predicting structural contacts.2,5 One possible explanation for this finding is that 

optimization using pair coupling terms is dominated by a large number of noisy ji,k(a,b) terms from 

uncoupled sites.  To mitigate the effects of potential noise that may be introduced by small coupling 

terms, we designed sequences using energy functions in which small coupling terms are omitted.  In one 

design, we optimized sequences using an energy function, ℰ(𝑠𝑒𝑞)%, in which coupling terms are 

restricted to the ten percent of residue pairs that have the strongest couplings (see Methods).  In another 

design, we optimized sequences using an energy function, ℰ(𝑠𝑒𝑞)& , in which coupling terms are 

restricted to the ten percent of residue pairs that are closest in the D. melanogaster Engrailed HD structure 

(PDB: 2JWT).  These two subsets of pair positions are similar (but not identical, Figure S9A, right), 

consistent with the idea that strongly coupled residue pairs are close in three dimensional structure20. 

 Using the ℰ(𝑠𝑒𝑞)% and ℰ(𝑠𝑒𝑞)&  energy functions, we designed HJS- and HJC-optimized HD 

sequences using the Monte Carlo approach described above (Table S1) .  These two sets have H(seq) and 
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J(seq) values midway between HJ and H-optimized sequences (Figure 2).  HJS- and HJC-optimized sets 

of proteins are similar in stability (Figure 3, mean DG° values of -11.1 and -10.2 kcal mol-1 respectively, 

Figure 3).  The HJS- and HJC-optimized sequences are more stable than the HJ-optimized sequences 

(mean DDG° values are -2.9 and -2.0 kcal mol-1), but are less stable than H-optimized sequences (mean 

DDG° values are +2.9 and +3.8 kcal mol-1).  These results suggest that the lower stabilities of the HJ-

optimized sequences compared to the H-optimized sequences are not the result of noise introduced from 

weak coupling coefficients, but from the stabilizing effects of single-site hi(a) energy terms and the 

potential destabilizing effects of pairwise ji,k(a,b) energy terms. 

 

Sensitivity of HD stabilities to global Potts fitting parameters. 

Fitted values of Potts hi(a) and ji,k(a,b) terms can be affected by three global parameters: two 

regularization parameters (lh and lj) and a sequence reweighting parameter (XID).  The regularization 

parameters help prevent overfitting of the hi(a) and the many ji,k(a,b) terms (~700,000 for homeodomain), 

most of which correspond to unobserved or infrequently observed residue pairs and are thus poorly 

defined by the MSA.  The sequence weighting parameter down-weights highly similar sequences in the 

MSA to avoid taxonomic sequencing biases.  For the HD sequences described above, we used the 

parameters lh=lj =0.01 and XID=0.8, which have been used in previous Potts analyses of protein 

families21. To test whether the findings above are dependent on the values we chose for regularization and 

sequence reweighting, we generated a set of HD sequences using the parameters lh=lj=0.1 and XID=0.2.  

Increasing the regularization parameters by a factor of 10 should decrease potential noise in the fitted 

hi(a) and ji,k(a,b) coefficients but may bias these coefficients to small values .  Decreasing the sequence 

reweighting parameter should result in a more uniform weighting, since nearly all sequences are identical 

to one another at the 20 percent threshold (Figure S1). 

Using this new set of global parameters, Potts coefficients were inferred from the same HD MSA 

used for the analysis above.  These coefficients are similar to those determined in the previous section.  In 
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both cases, the two sets of coefficients are linearly related, with Pearson correlation coefficients of 0.94 

and 0.65 respectively (Figure S5).  As above, these Potts coefficients were combined in different 

proportions into energy functions for Monte Carlo sequence generation (Table S2).  These included an 

energy function using only H(seq) values (ℰ(𝑠𝑒𝑞)!, equation 9), a function equally weighting H(seq) and 

J(seq) values (ℰ(𝑠𝑒𝑞)!", which again generated two clusters of sequences), and a function that down-

weights J(seq) by a factor of 20 so that it is equal in magnitude to H(seq) (ℰ(𝑠𝑒𝑞)!'(.(*"). 

 Overall, the HD sequences designed with the global parameters XID=0.2, lh=lj=0.1 show the 

same stability patterns as those described above (Figure S6, Table S4).  The HJ sequences optimized with 

the global parameters XID=0.2, lh=lj=0.1 are more stable than extant sequences (by an average DDG of -

2.4 and -3.6 kcal mol-1 for cluster A and B), although they are considerably less stable than H-optimized 

sequences (by an average DDG of +5.3 and +4.1 kcal mol-1).  On average, the H sequences optimized with 

XID=0.2, lh=lj=0.1 are more stable than the consensus (I-optimized) sequence, (also generated with 

XID=0.2) by an average DDG of -1.3 kcal mol-1, and the most stable H-optimized sequence is more stable 

than consensus by -4.2 kcal mol-1.  These trends are consistent with stability increases in Potts constructs 

result from optimizing H(seq) rather than J(seq).  Consistent with this observation, sequences optimized 

from the XID=0.2, lh=lj=0.1 Potts coefficients where J(seq) is damped 20-fold (so that H(seq) and J(seq) 

values are weighted equally in the Monte Carlo search) have folding free energies midway between the 

H- and HJ-optimized sequences (Figure S6, Table S4). 

 

Correlation between HD stability, single-site, and pairwise coupling energies 

 Together, the HD sequences characterized here from the various Potts design strategies (Tables 

S1, S2, S5; 62 sequences total including extant sequences) provide a large data set to evaluate how 

stability is related to the H(seq) and J(seq) scores.  Using the negative of the folding free energy as a 

measure of stability, we find a moderate positive correlation between −∆𝐺°!+,values and H(seq) values 

(calculated with the Potts coefficients obtained using global parameters XID=0.8. lh=lj=0.01), with a 
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Pearson correlation coefficient of 𝜌-! = +0.77	(p=1.49x10-13, Figure 4A).  In contrast, we find a weaker 

negative correlation between −∆𝐺°!+,values and J(seq) values, with a Pearson correlation coefficient of 

𝜌-" = −0.42 (p=7.5x10-4, Figure 4B).  Although this negative correlation may be taken as evidence that 

positively covariant residues are destabilizing, it may alternatively reflect an underlying negative 

correlation between H(seq) and J(seq) values (Figure 4C).  To isolate the correlation of H(seq) and J(seq) 

to stability from the indirect effects of correlation between H(seq) and J(seq), we calculated partial 

correlation coefficients between H(seq) and −∆𝐺°!+, (𝜌-!•", equation 17) and between J(seq) and 

−∆𝐺°!+, (𝜌-"•!, see Methods).  The value of 𝜌-!•" is nearly the same as 𝜌-! (0.73 versus 0.77), 

whereas the value of 𝜌-"•! is significantly smaller than 𝜌-" (+0.15 versus -0.42).  This indicates that 

H(seq) is the main determinant of stability for Potts designed HD sequences, whereas the correlation to 

J(seq) is an indirect effect of H(seq) on J(seq). 

 

Figure 4.  Correlation of stabilities of Potts-designed HD sequences with single-site and pair coupling 
scores. Stabilities (represented by negative DG°H2O values) show a strong positive correlation (pearson 
correlation coefficient given as rGH, p=1.49x10-13) with H(seq) values (A), but a weaker negative 
correlation with J(seq) (B, p=7.5x10-4).  Partial correlation coefficients (rGH•J, rGJ•H) indicate that the 
correlation between DG and J(seq) is indirect, resulting from a negative correlation between J(seq) and 
H(seq) (C).  Sequences in this analysis include all Potts designs with all combinations of l and XID, as 
well as extant sequences (Tables S1A, S1B, and S3); values of H(seq) and J(seq) were all calculated 
using hi(a) and ji,k(a,b) coefficients generated using lh=lj=0.01, XID=0.8. 
 

Stabilities of Potts-designed adenylate kinase sequences 

 To test whether our findings from the homeodomain family that the hi(a) coefficients are the 

primary determinants of protein stability are general, we performed Potts analysis on a second unrelated 
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protein family, the enzyme adenylate kinase (AK).  Because proteins in the AK family are significantly 

longer than proteins of the HD family (214 versus 57 residues in the MSA), there are many more pairs of 

residues in AK (22,791 versus 1,596); thus, we used the more aggressive regulation parameters 

(lh=lj=0.1) along with a sequence reweighting of XID = 0.8 for estimation of Potts coefficients. We used 

the resulting Potts coefficients in the ℰ(𝑠𝑒𝑞)!, ℰ(𝑠𝑒𝑞)!", and ℰ(𝑠𝑒𝑞)# energy functions (equations 9, 6, 

and 13) to optimize AK sequences with the Monte Carlo search procedure (Table S7), and expressed and 

purified the lowest energy sequence from each optimization. 

 

  
 

Figure 5. Structure and stability of Potts-designed adenylate kinases. (A) Far-UV CD spectra of 
lowest-energy AK sequences for H- (green), HJ- (orange), and I-optimization (black). Inset is a 
representative structure of E. coli AK (PDB: 1AKE). (B) GdnHCl-induced unfolding transitions of 
designed AK sequences (colors as in A). All transitions were collected at 20 °C. Solid lines represent the 
fit of a two-state unfolding model. 
 

 As with most of the designed HD proteins, all three designed AK proteins expressed, were 

soluble, and have far-UV CD spectra consistent with the secondary structure of AK (Fig 5A). The 

stabilities of the designed AK sequences show the same trends as the stabilities of the designed HD 

sequences. Of the three AK proteins, the HJ-optimized sequence has the lowest stability, with a folding 

free energy of -11.2 kcal mol-1 and a Cm of 3.11 M GdnHCl (Fig 5B, Table S8). The H-optimized AK 

sequence significantly more stable than the HJ-optimized sequence, with an apparent folding free energy 

of -17.9 kcal mol-1 and a Cm of 5.50 M GdnHCl.  Although the consensus AK protein generated from 

ℰ(𝑠𝑒𝑞)# optimization has the same fitted folding free energy as the H-optimized sequence (-18.1 and -

A B

NOTE: No changes from previous figure

Figure 5.5. Secondary structure and stability of designed adenylate 
kinases. (A) Far-UV CD spectra of lowest-energy AK sequences for each 
indicated sequence optimization. Inset in left plot is a representative 
structure of E. coli AK (PDB: 1AKE). (B) GdnHCl-induced unfolding transitions 
of designed AK sequences. All transitions were collected at 20 °C. Solid lines 
represent the fit of a two-state unfolding model.

No changes here
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17.9 kcal mol-1; Fig 5B, Table S8), the m-value for the H-optimized sequence is lower than that of the 

consensus protein (3.25 versus 5.67 kcal mol-1 M-1), indicating that folding of the H-optimized (and HJ-

optimized) AK sequence may be multi-state. Thus, fitted folding free energies may not provide accurate 

representations of stability. As an alternative measure of stability, the Cm of the H-optimized AK 

sequence is significantly greater than that of the consensus protein (5.50 versus 3.87 M GdnHCl; Fig 5B, 

Table S8) demonstrating that the H-optimized sequence is significantly more resistant to GdnHCl 

denaturation than the consensus sequence. As with the Potts-designed HD sequences, the results with AK 

indicate that stability is maximized by optimizing H(seq), exceeding the stability obtained either by 

optimizing J(seq) along with H(seq) or by consensus design. 

 

Functional properties of Potts-designed proteins 

 Our results for the HD and AK families suggest that, on the whole, positively-covariant residue 

pairs do not increase protein stability, and to the extent that they conflict with single-site pair preferences, 

they may decrease stability. Since protein sequence alignments show clear statistical covariation patterns, 

it seems that covariance must contribute to some other aspect of protein fitness. We thus sought to 

determine how optimizing covariance (as opposed to pairwise conservation) impacts biological function. 

 The main function of homeodomains is to site-specifically bind to duplex DNA sequences to 

direct transcriptional activation.22 We thus determined DNA-binding affinities for H- and HJ-optimized 

sequences.  Based on conserved sequence features, both proteins are predicted to bind to the 5’-

TAATTA-3’ binding site typical for many HD families.23 Whereas all of these proteins retain the ability 

to bind DNA, H-optimized sequences bind with significantly higher affinity (Kd = 8.9 nM) than the HJ-

optimized sequences (Kd = 343 nM, Figure 6, Table S11). This tighter binding affinity is achieved 

through a more favorable enthalpy of binding and is slightly offset by a less favorable entropy of binding. 

The H-optimized HD binds with similar binding affinity as a consensus HD we characterized in a 

previous study (Kd = 8.1 nM, Table S9), and is similar to the binding affinity of Ind1 (4.2 nM), whereas 
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both the H- and HJ-optimized proteins bind with higher affinity than the extant D. melanogaster 

Engrailed HD (Kd = 787 nM, Table S9).15 

 

 

Figure 6. Functional analysis of Potts-designed proteins.  (A-C) Isothermal titration calorimetry for 
designed HDs binding to DNA. HD sequences were generated using Potts coefficients lh=lj=0.01, XID = 
0.8.  Differential power (DP, top) and integrated heat peaks (middle) for titration of (A) H1, (B) HJA1, 
and (C) Ind1 into DNA at 20°C. Solid lines represent fits using a single-site binding model.  (D) AK 
steady-state turnover numbers. Each point is the turnover number determined from a single replicate. Bars 
extend to the mean of the three replicates. AK activity measurements were carried out at 25 °C.  
 

 AK enzymes catalyze the reversible conversion of ATP and AMP to two molecules of ADP. We 

determined the turnover number in the direction of ADP formation under steady-state conditions for all 

three designed AK proteins. Although all designed AKs retain measurable catalytic activities for the 

phosphotransfer reaction (Figure S10), there are significant activity differences among the three proteins. 

Both the H and the HJ-optimized AK proteins have significantly higher turnover numbers (244 and 68 

sec-1) than consensus AK (1.01 sec-1; Figure 6B, Table S10); both of these values are within the range 

seen for extant AK enzymes under similar conditions (Table S10).  

 

Discussion 

 The above results indicate that to the extent that Potts design increases protein stability, it does so 

not by including positively covariant residue pairs, but by including single-site biases.  Consensus design, 

which has been shown to generate stable proteins24,25 also generates sequences that capture single-site 

NOTE: No changes from previous figure

Figure 5.6. Functional analysis of designed proteins. (A) Isothermal titration 
calorimetry for designed HDs binding to DNA. Differential power (top) and integrated 
heat peaks (middle) for titration of H-optimized (left) and H+J-optimized HD proteins 
(right) into DNA. Both sequences were fit with Potts coefficients obtained using using 
XID = 0.2 and lJ = 0.1. Solid line represents the fit of a single-site binding model. 
Residuals for each fit are shown in the bottom panel. (B) AK steady-state turnover 
numbers. Each point is the turnover number determined from a single replicate 
reaction. Bars extend to the mean of the three replicates. DNA binding and AK-activity 
measurements were carried out at 25 °C. 

No changes here, but 
notes these are not 
from the set Katie has 
been working with

A CB D
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biases; however, because positively covariant residues tend to occur frequently, consensus design is 

expected to inadvertently include positively covariant residues.  The Potts model provides a way to 

separate single-site biases from and pair correlations.  Our finding that sequences generated by optimizing 

H(seq) are more stable than those generated with partial or full J(seq) optimization is consistent with the 

interpretation that single-site biases rather than pairwise coupling stabilize proteins. 

The observation that pairwise couplings do not contribute to protein stability is surprising. 

Inferred couplings from the Potts model have been shown to correlate with structural contacts20,26 and 

have been important for recent advances in protein structure prediction.  Since protein structures are 

generally considered to be free energy minima27, pairwise couplings might be expected to help define 

such minima.  Moreover, analysis of deep mutational screens have showed a positive correlation between 

various aspects of protein fitness (including stability) and Potts energy scores28–30, and design using Potts 

energy scores have been shown to generate stable folded proteins.31  One explanation for this apparent 

discrepancy is that these studies have optimized both hi(a) and ji,k(a,b) scores, and have compared these 

proteins to extant proteins.  Indeed, when we compare stabilities of extant proteins with HJ-optimized 

sequences, in which hi(a) and ji,k(a,b) scores are equally weighted, the stabilities of the HJ-optimized 

sequences are more than the extant sequences.  This stabilization is likely the result of the modest 

increases in H(seq) values (Figure 2) that result from HJ-optimization.  Although our designed sequences 

that maximize couplings are more stable than extant sequences, they are considerably less stable than 

those in which H(seq) values are maximized at the expense of J(seq) values.   

Previous work by Ranganathan and coworkers indicate that including residue coupling is 

necessary to generate artificial sequences that properly fold.2 They found that artificial WW domain 

proteins designed to preserve only the single-site residue frequencies were not folded (0 out of 43 

designs), whereas designs that preserved covariance were more often folded (12 out of 43 designs).  

Although these results seem at odds with our findings, the Ranganathan study designed sequences to 

preserve the average biases of extant proteins, whereas our strategy maximizes these biases. 
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Our findings single-site hi(a) values determine thermodynamic stability is consistent with a recent 

high-throughput study from Lehner and coworkers that showed that protein abundance in a yeast 

expression system could be well-explained by a simple thermodynamic model including only single-site 

biases32.  However, in that study, including pairwise couplings improved the accuracy of the 

thermodynamic model, consistent with previous deep-mutational studies28–30 but at least superficially at 

odds with the results here.  One possible explanation for this discrepancy is that the improved accuracy 

from including pairwise terms in the Lehner study need not reflect a favorable contribution of pairwise 

correlations to stability, but may provide a more accurate determination of the single-site biases. 

While the residue coupling information does not appear to contribute to protein stability, it may 

be important for protein function. For the HD and AK families, sequences designed optimizing single-site 

information alone as well as optimizing single-site and coupling information maintained expected 

biological activities. For the HD family, the protein optimizing J(seq) has a higher DNA binding affinity 

than the extant Drosophila Engrailed HD, although not to the same extent as the protein optimizing 

H(seq).  For AK activity, the protein optimizing J(seq) increased kcat by 240-fold compared to the 

consensus AK protein.  It is rather surprising that the protein optimizing H(seq) also increased kcat 

significantly compared to the consensus protein, although not to the same level as for the HJ-optimized 

protein.  Determining whether J(seq) scores determine enzyme activity will require a more systematic 

analysis of Potts constructs in the AK and other enzyme families, but our findings here are consistent with 

studies linking Potts scores to enzyme activity28.  We note that our results with AK activity are not 

consistent with the stability-activity tradeoff relationship that has been described for other enzymes. 

The observation that stability can be increased by maximizing single-site Potts energies has 

implications for protein design. Optimizing stability using single-site energies may provide a route to 

further enhance stabilities beyond the stabilization typically afforded by consensus design25, and may 

provide a route to stabilization in what seems to be the minority of cases where consensus sequences do 

not increase stability33. One limitation of consensus design is that it appears to generate enzymes with 

decreased catalytic proficiencies.24  To the extent that H-optimized sequences retain (or have enhanced) 
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rates of catalysis, as we have found for H-optimized AK, the use of Potts-based H-optimization may 

provide a general route to enzymes that are both highly stable and highly active. 

 

Materials and Methods 

Obtaining multiple sequence alignments 

 For the HD family, we obtained the “Full” alignment from Pfam (PF00046, accessed on 

10/23/18).34 Positions with gap frequencies greater than 50% were removed, resulting in a sequence 

length of L=57 for all sequences. Resulting sequences that contained greater than 50% gap characters 

were removed from the alignment, as were identical sequences.  The resulting in an alignment contained 

m=19,221 sequences. 

 For the AK family, we obtained sequences from the InterPro database (IPR007862, accessed on 

5/13/19).35 Sequences containing nonstandard amino acids and sequences shorter than 172 residues or 

longer than 258 residues were removed from the sequence set. Sequences were then aligned using 

MAFFT.36 Positions with gap frequencies greater than 50% were removed, resulting in a sequence length 

of L=214 for all sequences. Sequences that contained greater than 10% gap characters were removed 

from the alignment, as were identical sequences.  The resulting alignment contained m=14,090 sequences. 

 

Inference of single-site and coupling energy coefficients using the Potts model 

 Single-site and pairwise coupling energies were inferred from MSAs using a Potts-like 

formalism.5 In this formalism, sequence probabilities are assumed be governed by an equilibrium 

Boltzmann distribution: 

 𝑃(𝑠𝑒𝑞) = /!(#$%)'(

0
 (1) 

where Z is a normalization constant (similar to a partition function in statistical mechanics) such that 

probabilities of all sequences sum to one.  E(seq)HJ is the energy of a sequence computed from single-site 

and pairwise coupling energies: 
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 𝐸(𝑠𝑒𝑞)!" = 𝐻(𝑠𝑒𝑞) + 𝐽(𝑠𝑒𝑞) (2) 

where H(seq) is the total single-site energy and J(seq) is the total pairwise coupling energy for a given 

protein sequence: 

 

 𝐻(𝑠𝑒𝑞) = ∑ ℎ1(𝑎)2
134  (3) 

 𝐽(𝑠𝑒𝑞) = ∑ ∑ 𝑗15(𝑎, 𝑏)2
561

2
134   (4) 

Note that in this formalism, favorable hi(a) and jik(a,b) terms have large positive values; thus the exponent 

in the Boltzmann expression (1) lacks a negative sign. 

 To infer the 𝐿 × 21 (for the 20 amino acids plus a gap) single-site energy coefficients and the 

21+ × 2(284)
+

 coupling energy coefficients, we used the pseudolikelihood optimization procedure of 

Aurell and coworkers.37,38 Due to the finite sampling of sequences in the MSA combined with the large 

number of jik(a,b) coefficients, the Potts model is prone to overfitting. To mitigate overfitting, the 

objective function used to infer hi(a) and jik(a,b) coefficients contains an ℓ+ regularization penalty 

term	given as: 

 

  𝑅(ℎ, 𝑗) = 𝜆: ∑ ‖𝒉1‖++2
134 + 𝜆; ∑ ∑ ‖𝒋𝒊𝒌‖++2

561
2
134  (5) 

 

where ‖𝑿‖++ is the squared ℓ+-norm of coefficient matrix X, and lh and lj are parameters tuning the 

magnitude of the regularization for the single-site and coupling coefficients respectively. In separate fits 

of the HD MSA, we applied values of lh=lj=0.1 and lh=lj=0.01 to explore the effects of the magnitude 

of regularization on sequences generated from the Potts formalism and their properties. Because AK is 

significantly longer than HD and thus has many more residue pairs, we applied the more aggressive 

regularization (lh=lj=0.1) for Potts analysis of AK. 

 To decrease the effect of phylogenetic biases on the sequence composition of the MSAs, the 

contribution of each sequence to the model objective function was weighted based on sequence identities. 
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A threshold sequence identity (XID) was chosen to identify sequences with high similarities. For a 

sequence b in the MSA, we determined the number of sequences in the MSA, mb, with identities to 

sequence b greater than the threshold XID, and weighted the contribution of sequence b in the 

pseudolikelihood function by 𝑤> = 1 𝑚>⁄ . Thus, a sequence with high similarity  to many other 

sequences in the MSA (average pairwise identity above XID) is given low weight. For the HD MSA, we 

used sequence identity thresholds of XID = 0.2 and XID = 0.8 to examine the effects from sequence 

weighting on the model fit. For the AK MSA, we used a value of XID = 0.8.  

 

Sequence design using single-site and coupling energy energies 

 To design sequences using the single-site and pairwise coupling energies determined from the 

Potts model, we performed simulated annealing Monte Carlo simulations similar to those described by 

Best and coworkers.9 We defined a set of Monte Carlo energy functions ℰ(𝑠𝑒𝑞) that combine the single-

site and pairwise coupling energies in different proportions: 

 

ℰ(𝑠𝑒𝑞)!" = −K𝐻(𝑠𝑒𝑞) + 𝐽(𝑠𝑒𝑞)L = −𝐸(𝑠𝑒𝑞)!"   (6) 

ℰ(𝑠𝑒𝑞)% 		= −(𝐻(𝑠𝑒𝑞) + 𝐽(𝑠𝑒𝑞)%)     (7) 

ℰ(𝑠𝑒𝑞)& 		= −(𝐻(𝑠𝑒𝑞) + 𝐽(𝑠𝑒𝑞)&)     (8) 

ℰ(𝑠𝑒𝑞)! 		= −𝐻(𝑠𝑒𝑞)       (9) 

 

The sign convention in equations 6-9 inverts the Potts energy scores so that the most stabilizing scores 

lead to low values of ℰ(𝑠𝑒𝑞) in the Monte Carlo sequence optimization.  The ℰ(𝑠𝑒𝑞)!" energy function 

includes all single-site and pairwise coupling energies and is equivalent to the Potts energy function used 

for maximum likelihood estimates of hi(a) and jik(a,b) terms (equation 1).  The ℰ(𝑠𝑒𝑞)% energy function 

is analogous to ℰ(𝑠𝑒𝑞)!", but it only includes the strongest pairwise coupling energies.  Strongly coupled 

pairs were identified by calculating the average product-corrected Frobenius norms of the 21x21 coupling 
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coefficient matrices (‖𝑗15‖?@&) for all residue pairs, and selecting only the pairs with norms in the top 10 

percent.  Similarly, the ℰ(𝑠𝑒𝑞)&  energy function only includes only jik(ab) values for residues that are 

close to one another in the homeodomain structure.  Close residue pairs were identified by determining 

the distances between all pairs of Cb atoms (Ca atoms for glycines) in the D. melanogaster Engrailed HD 

structure (PDB: 2JWT) and selecting only the pairs with distances in the top 10 percent.  These two 

ji,k(a,b) filters were implemented using a Heaviside step function 𝜃: 

 

𝐽(𝑠𝑒𝑞)% = ∑ ∑ 𝑗1,5(𝑎, 𝑏) × 𝜃 NO𝑗1,5O?@& − ‖𝑗‖?@&,B(%P
2
561

2
134    (10) 

𝐽(𝑠𝑒𝑞)& = ∑ ∑ 𝑗1,5(𝑎, 𝑏) ×2
561

2
134 𝛩(𝑟4(% − 𝑟1,5)    (11) 

 

where O𝑗1,5O?@&  is the average product corrected Frobenius norm of the coupling matrix between the ith 

and kth positions, ‖𝑗‖?@&,B(% is the 90th percentile average product corrected Frobenius norm, ri,k is the 

Cb-Cb distance of the of the ith and kth position pair, and r10% is the Cb-Cb distance at the 10th percentile 

rank.  The ℰ(𝑠𝑒𝑞)! energy function uses only the hi(a) coefficients determined from the maximum 

likelihood estimation of Potts coefficients (hi(a) and ji,k(a,b) terms), and can be considered to be an energy 

function dependent only on single-site information that is free from inadvertant statistical biases produced 

by pair correlations. 

 In addition to generating sequences using various combinations of the Potts coefficients hi(a) and 

ji,k(a,b), we generated sequences using coefficients from an independent model in which pair correlations 

are ignored during pseudolikelihood optimization.  In this optimization, sequence probabilities are 

assumed to be governed by a Boltzmann model analogous to equation 1: 

 

 𝑃(𝑠𝑒𝑞) = /!(#$%))
0

 (12) 

where 
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 𝐸(𝑠𝑒𝑞)# = 𝐼(𝑠𝑒𝑞) = ∑ 𝐼1(𝑎)2
134  (13) 

 

The 𝐼1(𝑎) coefficients from the independent model are analogous to the ℎ1(𝑎) of the Potts model in that 

they are single-site coefficients.  However, these two sets of coefficients differ in that the ℎ1(𝑎) 

coefficients were inferred in a model that explicitly analyzed biases from pair correlations and separated 

these biases into the ji,k(a,b) terms, whereas pair biases are ignored in the independent model, and end up 

contributing to the 𝐼1(𝑎) coefficients. 

Sequences were generated from the independent model using the Monte Carlo search procedure 

described below with the energy function  

ℰ(𝑠𝑒𝑞)# = −𝐼(𝑠𝑒𝑞)     (14) 

 

I-optimized sequences are closely analogous to consensus sequences, where residue selection at each 

position ignores the surrounding sequence context, and is inadvertently influenced by biases from pair 

correlations. 

Using the energy functions defined above (equations 6-9, 14), Monte Carlo sequence generation 

was initiated from a random sequence generated by choosing (with uniform probabilities) a non-gap 

residue at each position from the set of residues found at the same aligned position in the MSA. At each 

Monte Carlo step, one residue is randomly chosen and substituted with a different non-gap residue found 

at the same position in the MSA, resulting in a substituted sequence. The residue substitution is accepted 

with a probability 

 

 𝑃DEE = 𝑚𝑖𝑛
⬚
V1, 𝑒8G(ℰIJ/K*L8ℰ(J/K))W (15) 

 

where ℰ(𝑠𝑒𝑞) and ℰ(𝑠𝑒𝑞′) are energies of starting and substituted sequences.  Accordingly, a substitution 

that lowers the energy will always be accepted, whereas a substitution that raises the sequence energy will 
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be accepted with a Boltzmann-weighted probability based on the difference in energies the two 

sequences.  b is a factor that scales the energy change associated with sequence substitution, analogous to 

an inverse temperature.  Each simulation begins at a b value of 0.1, where unfavorable substitutions are 

accepted with high probabilities. Each simulation runs for 100,000 Monte Carlo steps, and b is increased 

(temperature decreases) every 5,000 steps such that probability of accepting unfavorable substitutions 

decreases. The increment in b is chosen to ensure convergence of the simulation to low-energy sequences 

by the end of the simulation. For each energy function, we run 1,000 independent simulations starting 

from different randomly generated sequences, producing 1,000 sequences optimized by the given energy 

function. 

 

Gene synthesis, protein expression, and preparation 

 Gene sequences encoding proteins studied were synthesized by Twist Bioscience and cloned into 

pET28 expression vectors between the NcoI and XhoI restriction sites. HD constructs included sequences 

encoding an N-terminal Met-Gly-Ser sequence for translation initiation and cloning, as well as a C-

terminal His6-tag for purification. AK constructs included sequences encoding a Gly-Ser-Trp sequence 

inserted after the N-terminal Met for cloning and quantification, as well as a C-terminal His6-tag for 

purification.  

 E. coli BL21(DE3) cells containing plasmids for HD and AK expression were grown at 37 °C to 

an OD600 of 0.6-0.8 and induced with IPTG at a final concentration of 1 mM. HDs were expressed 

overnight at 20 °C and AKs were expressed for 4-6 hours at 37 °C. Cell pellets were harvested by 

centrifugation and resuspended in buffer containing 50 mM Tris (pH 8.0) for HDs or 50 mM Tris (pH 

8.0) and 1 mM TCEP for AKs. Buffers were supplemented with a cocktail of protease inhibitors (Roche 

cOmplete EDTA-free) to inhibit protein degradation. Cells were lysed by sonication and the cell lysate 

was clarified by centrifugation. The supernatant was collected, supplemented with MgCl2 and CaCl2 to a 

final concentration of 2 mM for each, and incubated with 1 mg DNaseI and 250 units of Benzonase 
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nuclease for 1-3 hours at room temperature. Proteins were then purified by Ni-NTA and cation exchange 

chromatographies. Purified HDs were dialyzed into buffer containing 25 mM NaPO4 (pH 7.0) and 150 

mM NaCl, and purified AKs were dialyzed into 25 mM Tris (pH 8.0), 50 mM NaCl, and 1 mM TCEP.  

 Two of the AK proteins (the single-site optimized protein and the consensus protein) were found 

to co-purify with endogenous substrate after undergoing the above protocol. These proteins were loaded 

back onto the NiNTA column, washed with buffer containing 25 mM Tris (pH 8.0), 50 mM NaCl, 1 mM 

TCEP, and 6-8 M guanidine hydrochloride (GdnHCl) to unfold the proteins, thereby dissociating and 

removing substrate, washed with buffer containing 25 mM Tris (pH 8.0), 50 mM NaCl and 1 mM TCEP 

to refold the proteins on the Ni-NTA column, then eluted off the column under native conditions. Purified 

proteins were then dialyzed back into buffer containing 25 mM Tris (pH 8.0), 50 mM NaCl, and 1 mM 

TCEP. All proteins were flash frozen in liquid nitrogen and stored at -80 °C. 

 

Circular dichroism spectroscopy 

CD experiments were performed using Aviv spectropolarimeters. Far-UV CD spectra were 

collected at 25 °C using an 0.1-cm cuvette. For HDs, samples were prepared with protein concentrations 

of 10-15 uM in buffer containing NaPO4 (pH 7.0) and 150 mM NaCl. For AKs, samples were prepared 

with protein concentrations of 3 uM in buffer containing 25 mM Tris (pH 8.0), 50 mM NaCl, and 0.5 mM 

TCEP.  

 Equilibrium GdnHCl-induced unfolding was monitored by CD at 222 nm. For all AKs, protein 

samples at varying concentrations of GdnHCl were incubated for two days at room temperature and CD 

was read for each sample. Protein concentrations ranged from 1-3 uM and samples were read at 20 °C. 

For HDs, a Hamilton automated titrator was used for GdnHCl titrations. Samples were allowed to 

equilibrate for five minutes after each injection of titrant. Protein concentrations ranged from 6-12 uM 

and samples were read at 25 °C. Folding free energies in the absence of GdnHCl were determined using a 

two-state linear extrapolation model.39  
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For the most stable HD proteins, GdnHCl titrations at 25°C inadequately resolved the unfolded 

baseline, preventing an accurate determination of folding free energies. To better define unfolded 

baselines, we combined GdnHCl titrations at 25 °C with titrations at three elevated temperatures, and fit 

all four unfolding transitions to a global model to determine a folding free energy at 25 °C. In the global 

model, each unfolding transition was fit with a local native baseline, a free energy in the absence of 

denaturant, and an m-value parameters, but all four unfolding transitions were fit to a common unfolded 

baseplane (sunfolded): 

 𝑠MNOPQR/R = 𝛼M + 𝛽M𝑇 + 𝛾M[𝐺𝑑𝑛𝐻𝐶𝑙] (16) 

where au is the intercept of the unfolded baseplane at zero Kelvin and in the absence of denaturant, bu is 

slope of the baseplane with respect to temperature, and gu is the slope of the baseplane with respect to 

GdnHCl. To minimize melt-to-melt variability, all four denaturation experiments were performed 

successively on the same spectrophotometer with the same protein sample and titrant stocks. 

 

Correlation analysis between HD stability, H(seq), and J(seq). 

As shown in Figure 4, the correlations between −∆𝐺°!+, and the H(seq) and J(seq) scores may 

be the indirect result of correlation between H(seq) and J(seq).  To isolate the effects of H(seq) and J(seq) 

on −∆𝐺°!+, from the potentially confounding effects of the other variable, we calculated partial 

correlation coefficients, 𝜌-!•" and 𝜌-"•!.  Numerically, 𝜌-"•! is the correlation coefficient between the 

residuals from linear regression of −∆𝐺°!+, on the H(seq) scores (𝑟1,-! , Figure 4A) and the residuals 

from the regression of the J(seq) scores on the H(seq) scores (𝑟1,"! , Figure 4C): 

 

𝜌-"•! =
∑ T+,-'T+,('.
+/0

U∑ IT+,-'L
1.

+/0 U∑ IT+,('L
1.

+/0

     (17) 
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The residuals in linear regression represent the variation in the dependent variable that cannot be 

accounted for from variation of the independent variable.  Thus, a large value of 𝜌-"•! indicates that the 

variations in −∆𝐺°!+, that are independent of the H(seq) scores (represented by the 𝑟1,-! values) are 

correlated with the variations in the J(seq) scores that are independent of the H(seq) scores (represented 

by 𝑟1,"! values).  Conversely, a small value of 𝜌-"•! indicates that the variations in −∆𝐺°!+, that are 

independent of H(seq) are also independent of the variation in J(seq) values that are independent of 

H(seq).  That is, removing the correlation of J(seq) with H(seq) also removes the correlation of −∆𝐺°!+, 

with J(seq), implying that the apparent correlation of −∆𝐺°!+, with J(seq) is an indirect result of 

correlation of −∆𝐺°!+, with H(seq). 

 

Isothermal titration calorimetry of HD DNA binding 

 The self-complementary DNA oligonucleotide 5’-CGACTAATTAGTCG-3’ was purchased from 

IDT. Oligonucleotides were resuspended in buffer containing 25 mM NaPO4 (pH 7.0) and 250 mM NaCl, 

and duplex DNA was formed by incubating the oligonucleotide at 95 °C for 5 minutes and slowly cooling 

to room temperature. Protein and DNA stocks were dialyzed against the same buffer, 25 mM NaPO4 (pH 

7.0) and 250 mM NaCl. The concentrations of protein and DNA samples were determined after dialysis 

by UV absorbance. For all titrations, protein concentrations between 30 – 95 µM were injected into DNA 

samples at a concentrations 10 times lower than the protein (3 -  9 µM).  All titrations were performed at 

20 °C. Thermograms and binding isotherms were analyzed using the SEDPHAT software suite and fit to 

a single site binding model to determine DNA binding affinities.40 

 

AK steady-state enzyme kinetics 

 Steady-state kinetic rates under saturating substrate conditions were determined using a coupled 

spectroscopic assay in the direction of ADP formation.41 Reactions were carried out in 50 mM HEPES 

(pH 7.5), 100 mM NaCl, 20 mM MgCl2, 0. 5mM TCEP, 10 mM phosphoenolpyruvate, 0.1 mM NADH, 
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7.4 mM AMP, 9.2 mM ADP, 27-42 units/mL lactate dehydrogenase, and 18-30 units pyruvate kinase. All 

reactions were collected at 25 °C. Reactions were initiated by addition of AK enzyme to final 

concentrations of 0.9 nM for the single-site optimized AK, 0.4 nM for the single-site and coupling 

optimized AK, and 122 nM for the consensus AK. 
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Supplementary Figures and Tables 
 

 

 
 

Figure S1. Identities among groups of designed and extant HD sequences. Plots on the diagonal show all 
pairwise sequence identities among 1000 sequences optimized with the given energy function or among 
extant sequences (bottom row). Plots in the lower triangle (grey) show pairwise sequence identities 
between different sequence groups.  Sequences were generated with a sequence reweighting XID=0.8 and 
regularization parameters lh=lj=0.01.  
 
 
  

Figures 5.S1. Identities among designed and extant HD sequences. Plots on 
the diagonal show all pairwise sequence identities among 1000 sequences 
optimized with the given energy function (first six rows; in order: H, 
Hjcluster1, HJ cluster2, Independent, Hjclosest, Hjstrongest), or among extant 
sequences (bottom row). Plots on the lower triangle (grey) show all pairwise 
sequence identities between distributions.
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Figure S2.  Sampled HD sequence identities. Pairwise sequence identities among the HD sequences 
selected for biochemical characterization, including sequences derived from the Potts energy functions 
(H, HJA HJB, HJS, and HJC), from the independent model (I) and extant sequences from the multiple 
sequence alignment.  Sequences were generated with a sequence reweighting XID=0.8 and regularization 
parameters lh=lj=0.01. 
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Figure S3.  Circular dichroism spectra of Potts-designed HD proteins with sequence reweighting 
XID=0.8, lh=lj=0.01.  Spectra were collected at 25 °C for H1 (green), H4 (light green), Ind1 (black), Ind3 
(gray), HJA1 (blue), HJs1 (magenta), HJS3 (light magenta), HJC1(yello) Potts-designed proteins. 
  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2025. ; https://doi.org/10.1101/2025.01.09.632118doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.09.632118
http://creativecommons.org/licenses/by-nd/4.0/


 37 

 

 
 

Figure S4. GdnHCl induced unfolding transitions at different temperatures for HDs with high 
stabilities. Protein identity and Potts model parameterization are indicated inset in each plot; temperatures 
are indicated in the legend, right. Solid lines are from fits of a global model to all four unfolding 
transitions using a common denatured baseplane. Each unfolding transition contains local native baseline 
parameters, local free energies, and local m-values.  Sequences were generated using regularization 
coefficients lh=lj=0.01 and a sequence reweighting threshold of XID=0.8.   
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Figure S5. The effects of model parameterization on inferred Potts coefficients. Comparison of all 
single-site (A) and coupling (B) energy coefficients from fitting the Potts model with different values of 
sequence identity reweighting threshold XID and regularization coefficients lj=lh to the same HD MSA. 
Pearson correlation coefficient (r) shown for each comparison is shown on each plot. 
 
 
  

Figure 5.S5. The effects of model parameterization on inferred Potts coefficients. 
Comparison of all single-site (top) and coupling (bottom) energy coefficients from 
fitting the Potts model with different values of sequence identity reweighting 
threshold (XID), regularization coefficient (lJ), and gauge transform to the same HD 
MSA. Pearson correlation coefficient (r) is shown on each plot.
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Figure S6. Stabilities of Potts-designed HDs with XID=0.2, lj=lh=0.1. (A) Far-UV CD spectra of 
exatant and Potts-designed HDs.  (B) Representative GdnHCl-induced unfolding transitions of HDs at 25 
°C. Solid lines represent the fit of a two-state unfolding model; for sequences with incomplete high-
temperature baselines, fits included additional GdnHCl transitions (Figure S7). (C) Folding free energies 
of HDs determined from the two-state unfolding analyses as in panel B. Vertical bar indicates the mean 
folding free energy of each distribution. (D and E) Correlation of folding free energies and sequence 
single-site energies (D) and sequence coupling energies (E). 
  

Figure 3. Secondary structure and stabilities of HD sequences. (A) Far-UV CD spectra of designed 
(top four panels) and extant (bottom panel) HDs. For designed HDs, the energy function used for 
design is indicated in the panel. The fraction at the bottom right of each panel indicate the fraction of 
sequences that expressed and remained soluble in solution. (B) Representative GdnHCl-induced 
denaturation curves of HDs. All  denaturations were collected at 25 °C. Solid lines represent the fit of 
a two-state unfolding model. Seq1, Seq3, and Seq4 in the H distribution were analyzed using a global 
model of GdnHCl denaturations at multiple temperatures (see Methods, Fig 4.S4). All other proteins 
were analyzed using individual GdnHCl denaturations at 25 °C. (C) Folding free energies of HDs 
determined from the two-state unfolding analyses as in panel B. Hash marks represent the mean 
folding free energy of each distribution. The vertical offset is used for clarity. (D) Correlation of 
folding free energies and sequence single-site energies determined by Eq 4.2a. (E) Correlation of 
folding free energies and sequence coupling energies determined by Eq 4.2b. In panels D and E, 
Pearson correlation coefficients (r) and p-values for correlation coefficients (p) are shown. 

A B C

D

E

5/5

r = 0.89
p = 4x10-9

r = 0.33
p = 0.12
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Figure S7. GdnHCl induced unfolding transitions at different temperatures for HDs with high 
stabilities. Protein identity and Potts model parameterization are indicated inset in each plot; temperatures 
are indicated on the legend, right. Solid lines are from fits of a global model to all four unfolding 
transitions using a common denatured baseplane. Each unfolding transition contains local native baseline 
parameters, local free energies, and local m-values.  Sequences were generated using regularization 
coefficients lh=lj=0.1 and a sequence reweighting threshold of XID=0.2.   
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Figure S4. GdnHCl denaturations at different temperatures for HDs with high 
stabilities. GdnHCl denaturation curves for HDs at multiple temperatures shown. 
Protein identity and Potts model parameterization used for each protein are indicated 
inset in each plot. Solid lines are determined from the fit of a global model to all four 
unfolding transitions. In the global model, unfolding transitions are fit with a common 
denatured baseplane containing a single GdnHCl dependence and and a single 
temperature dependence. Each unfolding transition contains local native baseline 
parameters, local free energies, and local m-values.
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Figure S8. Far-UV CD spectra of Potts-designed HD proteins with different global Potts fitting 
parameters. Sequence identity reweighting thresholds XID and regularization coefficients (lj=lh) are 
given in each panel.  Spectra were collected at 25 °C for H (green), HJ (orange), Ind (black), HJD (red), 
HJS (pink) , HJC (gold) Potts-designed proteins. 
 
  

Figure 5.S5. The effects of model parameterization on inferred Potts coefficients. 
Comparison of all single-site (top) and coupling (bottom) energy coefficients from 
fitting the Potts model with different values of sequence identity reweighting 
threshold (XID), regularization coefficient (lJ), and gauge transform to the same HD 
MSA. Pearson correlation coefficient (r) is shown on each plot.
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Figure S9.  Analysis of Potts model parameterization and designed protein stabilities. The three 
columns show analyses using single-site and coupling coefficients determined from different fits of the 
Potts model to the same HD MSA, but using different values of sequence reweighting threshold (XID) and 
regularization coefficients (lj=lh) when fitting the model. (A) Comparison of top 10% of pair positions 
closest in structure (yellow, upper triangle) and positions with the top 10% strongest coupling from the 
Potts model (grey, lower triangle). The Matthews correlation coefficient (f) between the position pairs 
with the strongest coupling coefficients and closest contacts shown on each plot. (B) GdnHCl-induced 
unfolding transitions of the single lowest-energy HD sequences for each energy function. All transitions 
were collected at 25 °C. Solid lines represent the fit of a two-state unfolding model. Proteins too stable to 
achieve an unfolded baseline at 25 °C were analyzed using a global model of GdnHCl transitions at 
multiple temperatures (see Methods, Fig S5). All other proteins were analyzed using individual GdnHCl 
transitions at 25 °C. (C) Correlation between folding free energies and sequence single-site energies 
determined by Eq 5.2A. (D) Correlation between folding free energies and sequence coupling energies 
determined by Eq 5.2B. In panels C and D, Pearson correlation coefficients (r) and p-values for 

Correlation of strongest and closest

Notes: NOT FINAL! – exact figure will change but it will be some figure outlining the 
data from the sequences for the other model parameter fits.

Maybe score them by the ”correctly” transformed set by each model
Do you mean that for the middle, lower three panels, use hi and jij vals from the 
lambda=0.01, Xid=0.8?  Seems like a good idea to me.  
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correlation coefficients are shown. Colors as in Figure S8. All fitted parameters and sequences shown in 
Tables S4 and S5.  
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Figure S10. Steady-state enzyme kinetics of designed AKs. Activities of the H-optimized (A), HJ-
optimized (B), and consensus (C) AKs were measured using a spectroscopic assay by monitoring the 
coupled oxidation of NADH by absorbance at 340 nm. Reactions were carried out with AK 
concentrations of 0.9 nM for the single-site optimized, 0.4 nM for the single-site and coupling optimized, 
and 122 nM for the consensus. All reactions were at 25 °C. 
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Table S1. Homeodomain sequences from Potts design with lj=lh=0.01, XID=0.8. 

Monte 
Carlo 
energy 

function 

Sequence 
namea Sequence 

H 

Seq1 RRKRTRFTPEQLAILEEYFAKNPYPSKEEIEELAKELGLTEKQVKNWFQNRRRKEKK 
Seq2 RRKRTRFTPEQLAILEAYFQKNPYPSKEEIEELAEELGLTEKQVKNWFQNRRRKERK 
Seq3 RRKRTRFTPEQLAILEEYFKKNPYPSKEEIEELAEELGLSEKQVKNWFQNRRRKERR 
Seq3a KRKRTRFTPEQLAILEAYFEKNPYPSKEEIEELAKELGLTERQVKNWFQNKRAKEKK 
Seq3b KRKRTRFTEEQLAILEEYFAKNPNPSKEEIEELAEELGLTEKQVKNWFQNRRAREKK 
Seq4 KRKRTRFTPEQLAILEELFAQNPHPSKEEIEELAKELGLTEKQVKNWFQNRRRKEKK 

Ind 

Seq1 RRNRTTFTPEQLEELEKAFERTHYPDVFAREELARRLNLTEARVQVWFQNRRAKWRK 
Seq2 RRKRTRFTPEQLEILEAEFEKNPYPSREEREELARELGLTERQVQVWFQNRRAKEKK 
Seq3 RRKRTRFSPEQLEILEKAFEENPYPSSEEREELAKELGLTERQVKVWFQNRRAKEKR 
Seq4 RRKRTRFTPEQLEVLEKSFEKNPYPSSEEREELAKELGLSERQVQVWFQNRRAKEKR 

HJ cluster A 

Seq1 RRNRTTFTPEQLEELEKAFERTHYPDVFAREELARRLNLTEARVQVWFQNRRAKWRK 
Seq2 RRPRTAFTSQQLLELEKEFHFNKYLSRPRRIELARSLNLTETQVKIWFQNRRMKWKK 
Seq3 RRNRTTFTPYQLEELEKVFQRTHYPDVFLREELAARLDLTEARVQVWFQNRRAKWRK 
Seq4 RRNRTTFTPLQLQELERAFQRTHYPDVFAREELARRTGLTEARVQVWFQNRRAKWRR 

HJ cluster B 

Seq1 RRPRTAFTSAQLLELEKEFHFQKYLSRPRRIELATSLNLTETQVKIWFQNRRMKWKR 
Seq2 RRPRTAFTSQQLLELEKEFHFNKYLSRPRRIELARSLNLTETQVKIWFQNRRMKWKK 
Seq3 KRPRTAFTSYQLLELEKEFHFQKYLTRPRRIELARSLNLTETQVKIWFQNRRMKWKR 
Seq4 RRPRTAFTSQQLLELEKEFHFQKYLSRPRRLELAHTLNLTETQVKIWFQNRRMKWKR 

HJ closest 

Seq1 RKPRTSFTPEQLAILEEAFKENPRPDAATRKKLAEETGLTERQVQVWFQNRRAKERK 
Seq2 KRVRTSFTPEQLAILEEAFKENPRPDAATRKKLAEETGLTERQVQVWFQNRRAKERR 
Seq3 RKPRTSFTPEQLAILEAAFKENPRPDAATRKKLAEETGLTERQVQVWFQNRRAKDKK 
Seq4 KRTRTSFTPEQIAILEEAFKENPKPDAATRKKLAEETGLTERQVQVWFQNRRAKDRK 

HJ strongest 

Seq1 KRTRTAFTPEQVARLEESFQRNPYPSVEERKRLAEELGLTERQVQVWFQNRRAKWRR 
Seq2 KRTRTAFTPEQVARLEESFRKNPYPSVEERKRLAEELGLTERQVQVWFQNRRAKERR 
Seq3 KRTRTAFTPEQVRRLEESFRRNPYPSVEERKRLAEELGLTERQVQVWFQNRRAKERR 
Seq4 KRIRTAFTPEQVARLEEVFRRTPYPDVNTRKKLAEELGLTERQVQIWFQNRRAKEKR 

 Seq 1b KKPRTFYSADQLEELEKMFQEDHYPDNEKRREIAAAVGVTPQRILVWFQNRRAKWRK 
 Seq 2c KRHRTRFTPAQLNELERSFAKTHYPDIFMREELALRIGLTESRVQVWFQNRRAKWKK 
Extant Seq 3d RRNRTTYKRWQIEELERAFALNPYPTSVFKKTLALRLGLRDSRVQVWFQNRRAKAKR 
 Seq 4e KKPRHRHSPAQLAALNELFEKDEHPALELRQSLAERLGMETKTVNAWFQNKRASSKK 
 Seq 5f KRVRTTIQPEQLDYLYQQYRLDSNPSRKQLELIATKTNLKKRVVQVWYQNTRARERK 
 Seq 6g KRPRTAFSSEQLARLKREFNENRYLTERRRQQLSSELGLNEAQIKIWFQNKRAKIKK 
aFor each group of designed sequences, Seq1 has the lowest Monte Carlo energy (out of 1000 sequences), 
Seq3 has the mean energy, Seq2 and Seq4 have an energies one standard deviation below and above the mean 
energy.  For the H-optimized sequences, Seq3a and Seq3b have nearly identical Monte Carlo energies to 
Seq3, which had poor solubility. 
bSource organism is Apaloderma vittatum (Uniprot ID A0A091PJR5_APAVI). 
cSource organism is Myotis lucifugus (Uniprot ID G1QC46_MYOLU).  
dSource organism is Stylophora pistillata (Uniprot ID A0A2B4SPW9_STYPI). 
eSource organism is Laccaria amethystine (Unitpro ID A0A0C9YAK7_9AGAR).  
fSource organism is Hypsibius dujardini (Uniprot ID A0A1W0WBB6_HYPDU). 
gSource organism is Drosophila melanogaster (Uniprot ID HMEN_DROME).  
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Table S2. Homeodomain sequences from Potts design with lj=lh=0.1, XID=0.2. 
Monte Carlo 

energy 
function 

Sequence 
name Sequence 

H 

Seq1a RRKRTRFTPEQLEILEAAFAKNPYPSREEREELAKELGLSERQVKVWFQNRRAKEKR 
Seq2 KRKRTRFTPEQLEILEAEFQKNPYPSREEREELAKELGLSERQVQVWFQNRRAREKR 
Seq3 RRKRTRFTPEQLEILERLFAKNPYPSREEREELAEELGLSERQVKVWFQNRRAKEKR 
Seq4 KRKRTRFTPEQLAVLEAYFAKNPYPSKEEREELAKELGLTEKQVKVWFQNRRAKERR 
Seq5 KRKRTRFTPEQLEILEAIFKQNPYPSREEREELAKELGLSEKQVKVWFQNRRAKERK 
Seq6 RRKRTRFTPEQLEVLEKAFQENPYPSREEIEELAKELGLSERQVKVWFQNRRKKERK 

 Seq1 RRSRTTFTPEQLEELEKAFERTHYPDVFAREELAARLGLTEARVQVWFQNRRAKWRK 
 Seq2 RRPRTAFTREQLLELEKEFHFNKYLTRRRRIEIAHALNLTERQVKIWFQNRRMKWKK 
HJ cluster A Seq3 RRARTAFTSAQLLELEKEFHFNRYLSRPRRIELARSLNLTERQVKIWFQNRRMKWKK 
 Seq4 RRKRTAFTSQQLLELEKEFHFNRYLSRPRRIEIAATLNLTERQVKIWFQNRRMKWKK 
 Seq5 RRQRTAYTREQLLELEKEFHFNRYLTRRRRIEIAHSLQLTETQVKIWFQNRRMKWKK 
 Seq1a RRNRTTFTSEQLEELEKAFEKTHYPDVFTREELALRLNLTEARVQVWFQNRRAKWRK 
 Seq2 RRSRTTFTSQQLEELEKAFQRTHYPDVFTREELALRLGLTEARVQVWFQNRRAKWRK 
HJ cluster B Seq3 RRHRTTFTSEQLEELEKAFQKTHYPDVFTREELAQRLDLTEARVQVWFQNRRAKWRK 
 Seq4 RRSRTTFTSQQLEELEKAFQRTHYPDVFAREELALKLNLTEARVQVWFQNRRAKWRK 
 Seq5 RRNRTTFTAHQLEELEKAFERTHYPDVFTREELALRIDLTEARVQVWFQNRRAKWRK 
 Seq6 RRHRTTFTPYQLEELEKAFQKTHYPDVFAREELALKLDLTEARVQVWFQNRRAKWRK 

H + 0.05J 

Seq1 RRKRTTFTPEQLEELEKAFEKNHYPDVEEREELAKKLGLTERQVQVWFQNRRAKWKK 
Seq2 RRSRTTFTPEQLEELEKAFEKTHYPDVFEREELAARLGLTEARVQVWFQNRRAKWRK 
Seq3 RRKRTTFTPEQLEELEKEFEENPYPDRERREELARRLGLTERQVQVWFQNRRAKWKK 
Seq4 RRSRTTFTPEQLEELEKAFERTHYPDVFAREELAARLGLTEARVQVWFQNRRAKWRK 
Seq5 RRKRTTFTPEQLEELEKAFQRTHYPDVFTREELAARLGLTERRVQVWFQNRRAKWRK 

aAs with the sequences generated with XID=0.8 and lj=lh=0.01 (Table S1), Seq1 is the lowest Monte Carlo 
sequence energy sequence within each group (e.g., ℰ(𝑠𝑒𝑞)2 for sequences in the H-optimization).  Unlike 
the sequences in Table S1, the remaining sequences in each group were chosen to have pairwise identities 
that match those of the 1000 Monte Carlo sequences as a whole.  
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Table S3. Unfolding thermodynamics for Potts and extant HDs with 
lj=lh=0.01, XID=0.8. 

Potts energy function DG°H2O
a
 

(kcal mol-1) 
m-valuea 

(kcal mol-1 M-1) 
Cm

a 
(M) 

H Seq1b -15.0 ± 0.3 1.89 ± 0.04 7.92 ± 0.22 
H Seq2b -15.2 ± 1.33 1.83 ± 0.18 8.30 ± 1.1 
H Seq3a -14.33 ± 0.51 1.77 ± 0.07 8.10 ± 0.4 
H Seq3b -13.38 ± 0.18 1.68 ± 0.02 7.96 ± 0.15 
H Seq4b -12.0 ± 0.15 1.71 ± 0.02 7.02 ± 0.12 
H mean -14.0   

    
HJA_Seq1c -7.48 ± 0.08 1.46 ± 0.01 5.13 ± 0.04 
HJA_Seq2c -9.12 ± 0.06 1.56 ± 0.01 5.84 ± 0.02 
HJA_Seq 3c -9.36 ± 0.02 1.62 ± 0.01 5.76 ± 0.01 
HJA_Seq4 -6.84 ±  0.38 1.49 ± 0.07 4.57 ± 0.03 
HJA mean -8.2   

    
HJB_Seq 3c -6.45 ± 0.13 1.46 ± 0.03 4.71 ± 0.01 

    
HJS_Seq1b -12.8 ± 0.23 1.75 ± 0.03 7.34 ± 0.19 
HJS_Seq2b -10.4 ± 0.11 1.49 ± 0.02 6.97 ± 0.10 
HJS_Seq3b -10.9 ± 0.09 1.61 ± 0.01 6.78 ± 0.08 
HJS_Seq4c -10.3 ± 0.18 1.61 ± 0.02 6.40 ± 0.02 
HJS mean -11.1   

    
HJC_Seq1c -10.5 ± 0.10 1.64 ± 0.02 6.42 ± 0.01 
HJC_Seqt2c -10.5 ± 0.2 1.62 ± 0.03 6.47 ± 0.02 
HJC_Seq3c -10.3 ± 0.05 1.63 ± 0.01 6.30 ± 0.01 
HJC_Seq4c -9.49 ± 0.06 1.56 ± 0.01 6.09 ± 0.01 
HJC mean -10.2   

    
Ind_Seq1b -12.5 ± 0.1 1.77 ± 0.02 7.07 ± 0.12 
Ind_Seq 2b -11.1 ± 0.17 1.56 ± 0.02 7.10 ± 0.16 
Ind_Seq 3c -9.83 ± 0.26 1.55 ± 0.04 6.33 ± 0.02 
Ind_Seq 4 -8.49 ± 0.04 1.44 ± 0.01 5.90 ± 0.01 
Ind mean -10.5   

    
Extant Seq1 -5.32 ± 0.12 1.42 ± 0.02 3.76 ± 0.01 
Extant Seq2 -5.45 ± 0.28 1.52 ± 0.06 3.57 ± 0.03 
Extant Seq3d ND ND ND 
Extant Seq4 -2.97 ± 0.03 1.44 ± 0.01 2.06 ± 0.01 
Extant Seq5 -2.38 ± 0.06 1.34 ± 0.02 1.77 ± 0.02 
Extant Seq6 -3.44 ± 0.01 1.43 ± 0.01 2.40 ± 0.01 
Extant mean -3.91   

aAll values reported for unfolding thermodynamics at 25 °C. Unless otherwise noted, values 
represent the mean from fits of a two-state model to two independent titrations and errors 
represent standard errors of the mean.  
bValues determined from a global fit of unfolding transitions at multiple temperatures. Errors 
represent standard errors determined from the fit.  
cValues are the mean determined from multiple experiments.  Errors are the standard 
deviation on the mean. 
dValues for extant Seq3 were not determined since the protein did not remain soluble. 
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Table S4. Unfolding thermodynamics for Potts HDs with alternative global fitting 
parameters. 
Global fitting 
parameters 

Potts energy function DG°H2O
a
 

(kcal mol-1) 
m-valuea 

(kcal mol-1 M-1) 
Cm

a 
(M) 

XID = 0.2 
l = 0.1 

H_Seq1b,c -12.2 ± 0.2 1.81 ± 0.03 6.70 ± 0.13 
H_Seq2b -11.5 ± 0.10 1.63 ± 0.01 7.03 ± 0.08 
H_Seq3 -8.40 ± 0.22 1.46 ± 0.03 5.76 ± 0.04 
H_Seq4b -13.4 ± 0.1 1.83 ± 0.02 7.33 ± 0.11 
H_Seq5 -9.74 ± 0.26 1.61 ± 0.03 6.05 ± 0.05 
H_Seq6b -14.5 ± 0.3 1.92 ± 0.04 7.57 ± 0.22 
H mean -11.62   

    
HJD_Seq1 -11.1 ± 0.5 1.71 ± 0.06 6.51 ± 0.04 
HJD_Seq2 -8.65 ± 0.07 1.54 ± 0.01 5.62 ± 0.01 
HJD_Seq3 -10.5 ± 0.7 1.62 ± 0.10 6.46 ± 0.02 
HJD_Seq4 -8.19 ± 0.20 1.50 ± 0.01 5.46 ± 0.07 
HJD_Seq5 -8.96 ± 0.31 1.50 ± 0.05 5.97± 0.01 
HJD mean -9.48   

    
HJA_Seq1 -6.20 ± 0.12 1.55 ± 0.02 4.00 ± 0.02 
HJA_Seq2 -8.04 ± 0.07 1.56 ± 0.01 5.15 ± 0.01 
HJA_Seq3 -6.16 ± 0.16 1.47 ± 0.03 4.19 ± 0.02 
HJA_Seq4d -5.37 ± 0.13 1.46 ± 0.03 3.69 ± 0.12 
HJA_Seq5 -5.96 ± 0.24 1.46 ± 0.04 4.10 ± 0.03 
HJA mean -6.34   

    
HJB_Seq1c -8.16 ± 0.04 1.54 ± 0.01 5.32 ± 0.01 
HJB_Seq2 -8.34 ± 0.08 1.50 ± 0.02 5.55 ± 0.04 
HJB_Seq3 -6.89 ± 0.20 1.40 ± 0.02 4.94 ± 0.06 
HJB_Seq4 -7.24 ± 0.01 1.52 ± 0.02 4.78 ± 0.05 
HJB_Seq5 -6.08 ± 0.03 1.43 ± 0.01 4.25 ± 0.05 
HJB_Seq6c -8.40 ± 0.15 1.61 ± 0.03 5.22 ± 0.01 
HJB mean -7.51   

    
HJSc

 -6.18 ± 0.01 1.44 ± 0.01 4.29 ± 0.02 
HJCc -4.77 ± 0.01 1.31 ± 0.01 3.64 ± 0.02 

Consensusb -10.3 ± 0.1 1.59 ± 0.02 6.51 ± 0.10 
XID = 0.8 
l = 0.1 

Hb,c -12.7 ± 0.2 1.79 ± 0.03 7.01 ± 0.15 
HJc,d -8.02 ± 0.08 1.57 ± 0.01 5.44 ± 0.07 

HJDc,d -9.84 ± 0.12 1.51 ± 0.02 6.50 ± 0.12 
HJSb,c -8.92 ± 0.1 1.58 ± 0.02 5.66 ± 0.10 
HJCb,c -13.7 ± 0.2 1.90 ± 0.03 7.23 ± 0.19 

Consensusb,e -12.5 ± 0.1 1.77 ± 0.02 7.07 ± 0.15 
XID = 0.8 
l = 0.01f 

Hb,c -15.0 ± 0.3 1.89 ± 0.04 7.92 ± 0.22 
HJc,d -7.57 ± 0.06 1.53 ± 0.01 4.95 ± 0.05 

HJDc,d -9.95 ± 0.12 1.57 ± 0.02 6.33 ± 0.12 
HJSb,c -14.3 ± 0.2 2.05 ± 0.02 6.96 ± 0.12 
HJCb,c -7.02 ± 0.04 1.49 ± 0.01 4.71 ± 0.04 

Consensusb,e -12.5 ± 0.1 1.77 ± 0.02 7.07 ± 0.15 
aAll values reported for unfolding thermodynamics at 25 °C. Unless otherwise noted, values represent the mean 
from fits of a two-state model to two independent titrations and errors represent standard errors of the mean.  
bValues determined from a global fit of unfolding transitions at multiple temperatures. Errors represent standard 
errors determined from the fit. 
cLowest energy sequence by the given energy function for the respective Monte Carlo optimization.  
dValues determined from the fit of a single unfolding transition. Errors represent standard errors determined 
from the fit. 
eThe consensus sequence for both sets of regularization parameterizations using XID = 0.8 is identical. 
fSequences for the XID=0.8, lj=lh=0.01 set here differ slightly from those in Table S3 owing to a difference in 
the gauge used to specify h coefficients (here, the gauge is specified by ℓ3 regularization, elsewhere by zero-
sum gauge). 
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Table S5. HD lowest energy sequences. 
Global fitting 
parameters 

Potts energy 
function 

Amino acid sequence 

XID=0.2 
lj=lh=0.1 

Ha RRKRTRFTPEQLEILEAAFAKNPYPSREEREELAKELGLSERQVKVWFQNRRAKEKR 
HJa RRNRTTFTSEQLEELEKAFEKTHYPDVFTREELALRLNLTEARVQVWFQNRRAKWRK 
HJS KRPRTAFTSAQLLELEKEFHFNRYLTRERRIEIASRLDLTETQVKIWFQNRRMKNKR 
HJC KRKRTSFTPEQLLELEKEFHFNPKPDVFTREKLAQETGLTERQVQIWFQNRRAKWRK 

Consensus RRKRTRFTPEQLEELEKEFEKNPYPSREEREELAKELGLTERQVKVWFQNRRAKWKK 

   
XID=0.8 
lj=lh=0.1 

H RRKRTRFTPEQLEILEAAFEKNPYPSKEEREELAKELGLTERQVKVWFQNRRAKEKK 
HJ RRNRTTFTPEQLEELEKAFEENHYPDVETREELAARLNLTEARVQVWFQNRRAKWKK 

HJD RRKRTRFTPEQLEILEKEFEKNPYPSKEEREELAEKLGLTERQVQVWFQNRRAKEKK 
HJS RRKRTAFTPEQLERLEEVFKRTHYPDVFTRKKLAEELGLTERQVQVWFQNRRAKWRR 
HJC KRKRTTFTPEQLEILEAAFQRNPYPDVFTREKLAEETGLTERQVQIWFQNRRAKEKR 

Consensusb RRKRTRFTPEQLEILEKAFEKNPYPSREEREELAKELGLTERQVQVWFQNRRAKEKK 
   

XID=0.8 
lj=lh=0.01c 

H RRKRTRFTPEQLAILEEYFAKNPYPSKEEIEELAKELGLTEKQVKNWFQNRRRKEKK 
HJ RRNRTTFTPEQLEELEKVFERTHYPDVFAREELARRLNLTEARVQVWFQNRRAKWRK 

HJD KRKRTRFTPEQLEILEKEFEKNPYPSREQREELAKKLGLTERQVQVWFQNRRAKEKK 
HJS KRVRTAFTPEQVARLEEVFKTTHYPDVFLRKKLAEELGLTERQVQVWFQNRRAKWRR 
HJC KRIRTSFTPEQLEILEKEFHFNPRPDANTRKKLAEETGLTERQVQVWFQNRRAKDRR 

aSeq6 for each Potts energy function from Table S2.  
bThe consensus sequences for both model parameterizations using XID = 0.8 are identical. 
cSequences for the XID=0.8, lj=lh=0.01 set here differ slightly from those in Table S1 owing to a difference in 
the gauge used to specify h coefficients (here the gauge was specified by ℓ3 regularization, in Table S1 a zero-
sum gauge was used). 
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Table S6. Comparison of the HD lowest-energy sequences from different 
generated using different global fitting parameters. 

Potts energy 
function  

XID=0.2, lj=lh=0.1 
vs. 

XID=0.8, lj=lh=0.1 

XID=0.2, lj=lh=0.1 
vs. 

XID=0.8, lj=lh=0.01 

XID=0.8, lj=lh=0.1 
vs. 

XID=0.8, lj=lh=0.01 
H 93% 82% 86% 
HJ 89% 91% 88% 

HJD 88% 88% 93% 
HJS 49% 49% 89% 
HJC 72% 79% 77% 

Consensus 93% 93% 100% 
Values given are percent sequence identities between the lowest energy sequence from each 
indicated energy function using different values of for the sequence reweighting threshold 
(XID) and regularization strength (lh, lj) during Potts optimization. 
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Table S7. AK designed sequences. 
Potts energy function Amino acid sequence 

H MRIILLGPPGSGKGTQAELLAKKLGLPHISTGDLLREEIAKGTELGKE
IKKIIDSGKLVPDEIVNELVKERLEEPDCKNGFILDGFPRTLEQAEAL
DELLEEKGIKIDLVIYLDIPDEVLIERISGRRICPSCGRIYNLKFNPP
KVPGVCDVCGGELVQREDDTPEVIKKRLEIYHEETEPVLDYYRKKGIL
VEIDGNQSIEEVYEEILKILKK 
 

HJ MNLILLGPPGAGKGTQAEKIVEKYGIPHISTGDMFRAAIKEGTELGKK
AKEYMDAGELVPDEVTIGIVKERLAQPDCKKGFLLDGFPRTIPQAEAL
DKILAEKGKKLDAVINIEVPDEELVERLTGRRVCKSCGATYHVKFNPP
KVEGVCDKCGGELYQRDDDKEETVRNRLEVYHEQTAPLIDYYEKKGLL
KTIDGTQDIDEVFADIVAALGG 
 

Consensus MRIILLGPPGAGKGTQAKRLAEKYGIPHISTGDMLRAAVKAGTELGKK
AKSYMDAGELVPDEIVIGLVKERLAQPDCKNGFILDGFPRTIPQAEAL
DELLAEAGIKLDAVIELDVPDEELVERLSGRRVCPSCGAVYHVKFNPP
KVEGVCDVCGGELIQRDDDKEETVRKRLEVYHEQTAPLIDYYRKKGLL
VEVDGTGSIDEVFADILKALGK 
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Table S8. AK unfolding thermodynamics. 
Potts energy 

function 
DG°H2Oa 

(kcal mol-1) 
m-valuea 

(kcal mol-1 M-1) 
Cma 
(M) 

H -17.9 ± 1.0 3.25 ± 0.18 5.50 ± 0.40 
H + J -11.2 ± 0.6 3.62 ± 0.17 3.11 ± 0.21 

Consensus -18.1 ± 0.5 5.67 ± 0.12 3.87 ± 0.15 
aValues determined from the fit of a single unfolding transition to a two-state model. Errors 
represent standard errors determined from the fit. All unfolding transitions were determined at 20 
°C. 

 
 
 
  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2025. ; https://doi.org/10.1101/2025.01.09.632118doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.09.632118
http://creativecommons.org/licenses/by-nd/4.0/


 53 

Table S9. HD DNA binding thermodynamics. 
Protein Kd 

(nM) 
DH 

(kcal mol-1) 
-TDS 

(kcal mol-1) 

H Seq1a 8.9 ± 1.3 -11.1± 0.09 0.35 ± 0.13 
Ind Seq1a 4.2 ± 0.9 -14.0 ± 0.1 2.8 ± 0.14 
HJA Seq1a 340 ± 30 -8.8 ± 0.15 0.12 ± 0.21 

H Seq1b 7.7 ± 1.3 -15.4 ± 0.1 4.5 ± 0.1 
HJB Seq1b 110 ± 12 -10.1 ± 0.1 0.77 ± 0.15 
Consensusd 8.1 ± 1.6 -16.0 ± 0.2 5.0 ± 0.3 

D. melanogaster 
Engrailedd 737 ± 38 -9.2 ± 0.1 0.8 ± 0.1 

aProteins are the lowest-energy sequences from optimizations using coefficients from the XID = 0.8, lj=lh=0.01 
model parameterization.  
bProteins are the lowest-energy sequences from optimizations using coefficients from the XID = 0.2, lj=lh=0.1 
model parameterization.  
cValues are determined from the fit of a single titration to a one-site binding model. Errors represent standard 
errors determined from the fit. 
dValues for Consensus are from Tripp et al.18 This consensus differs from the consensus HDs in this study by 8 
residues (XID = 0.2) and 5 residues (XID = 0.8) owing to differences in the MSAs and reweighting parameters. 
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Table S10. AK steady-state turnover numbers.  

Protein kcat (s-1) 

H 67.9 ± 2.5a 

H + J 244 ± 3a 

Consensus 1.01 ± 0.02a 

E. coli 263 ± 30b 
A. aeolicus 30 ± 10b 

S. cerevisiae 520 ± 32c 

aTurnover numbers are the average of values determined 
from three reactions. Errors are the standard errors of the 
mean. Reactions were carried out at 25 °C. 
bValues from Wolf-Watz et al.42 Reactions were carried out 
at 20 °C. E. coli is a mesophilic bacterium and A. aeolicus is 
a hyperthermophilc bacterium.  
cValue from Tükenmez et al.43 Reactions were carried out at 
20 °C. S. cerevisiae is a eukaryote.  
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