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A B S T R A C T   

Novel coronavirus (SARS-CoV2) replicates the host cell’s genome by interacting with the host proteins. Due to 
this fact, the identification of virus and host protein–protein interactions could be beneficial in understanding the 
disease transmission behavior of the virus as well as in potential COVID-19 drug identification. International 
Committee on Taxonomy of Viruses (ICTV) has declared that nCoV is highly genetically similar to the SARS-CoV 
epidemic in 2003 (~89% similarity). With this hypothesis, the present work focuses on developing a compu-
tational model for the nCoV-Human protein interaction network, using the experimentally validated SARS-CoV- 
Human protein interactions. Initially, level-1 and level-2 human spreader proteins are identified in the SARS- 
CoV-Human interaction network, using Susceptible-Infected-Susceptible (SIS) model. These proteins are consid-
ered potential human targets for nCoV bait proteins. A gene-ontology-based fuzzy affinity function has been used 
to construct the nCoV-Human protein interaction network at a ~99.98% specificity threshold. This also identifies 
37 level-1 human spreaders for COVID-19 in the human protein-interaction network. 2474 level-2 human 
spreaders are subsequently identified using the SIS model. The derived host-pathogen interaction network is 
finally validated using six potential FDA-listed drugs for COVID-19 with significant overlap between the known 
drug target proteins and the identified spreader proteins.   

1. Introduction 

COVID-19 evolved in the Chinese city of Wuhan (Hubei province) 
[1]. The first case of human species affected by nCoV was observed on 
31st December 2019 [2]. Soon it expands its adverse effect on almost all 
nations within a brief period [3]. World Health Organization (WHO) 
observes that the massive disastrous outbreak of nCoV is mainly due to 
mass community spreading and declares a global health emergency on 
30th January 2020 [4]. After proper assessment, WHO presumes its 
fatality rate to be 4% [5] which urges the global researchers to work 
together to discover an appropriate treatment for this pandemic [6,7]. 

Coronaviridae is the family to which a coronavirus belongs. It also 

infects birds and mammals besides affecting human beings. Though the 
common symptoms of the coronavirus are common cold, cough, etc., it is 
accompanied by severe acute, chronic respiratory disease and multiple 
organ failure leading to human death. Severe Acute Respiratory Syn-
drome (SARS) and Middle East Respiratory Syndrome (MERS) were the 
two major outbreaks in 2003 and 2012 before SARS-CoV2. The source of 
origin of SARS was located in Southern China. Its fatality rate was within 
14%–15% [8], due to which 774 people lost their lives among 8804 
affected cases. Saudi Arabia was marked as the base for the 
commencement of MERS. 858 persons among 2494 infected cases were 
defeated in their battle against the MERS virus. Thus it generated a much 
higher fatality rate of 34.4% [9] when compared to that of SARS. 

Abbreviations: PPIN, Protein-Protein Interaction Networks; SARS, Severe Acute Respiratory Syndrome; MERS, Middle East Respiratory Syndrome; BC, 
Betweenness Centrality; CC, Closeness centrality; LAC, Local average centrality. 
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All three epidemic creators SARS, MERS, and SARS-CoV2, are bio-
logically included in the genus Beta coronavirus under the Coronavir-
idae. Both structural and non-structural proteins are involved in the 
formation of SARS-CoV2. Out of the two, structural proteins like the 
envelope (E) protein, membrane (M) protein, nucleocapsid (N) protein 
and the spike (S) protein play a significant role in transmitting the dis-
ease by binding with the receptors after entering into the human body 
[10]. So, there is an urgent need to understand and analyze the mech-
anism of disease transmission of this new virus. 

In this research work, Protein-Protein Interaction Networks (PPIN) 
are the most significant attribute to study the disease propagation 
mechanism from SARS-CoV2 to humans. It plays a crucial role in iden-
tifying essential proteins [11–15] responsible for various diseases. They 
are also significant in identifying protein functions [16–19]. According 
to Lotem et al. [20], though human PPIN is constantly expanding, very 
little information is available about the human PPIN, which gets 
generated in disease conditions. With the enhancement in the avail-
ability of the human PPIN data, the primary focus of research has been 
shifted from the basic understanding of the PPIN to the study of the PPIN 
underlying various kind of human diseases [21]. According to the work 
of Ideker et al. [22], PPIN study mainly falls under four categories: 1) 
Identification of human disease genes based on network analysis, 2) 
Implication of additional genes involved in the disease by using protein 
networks, 3) Identification of protein subnetworks involved in diseases 
and 4) Classification of case-control studies based on protein PPIN. 

Host-pathogen PPINs are significant for understanding the mecha-
nism of transmission of infection, which is essential for developing new 
and more effective therapeutics, including rational drug design. Pro-
gression of infection and disease results due to the interaction of proteins 
in between pathogen and host. Pathogen plays an active role in 
spreading infection. Pathogen and host PPIN permit pathogenic micro-
organisms to utilize host capabilities by manipulating the host mecha-
nisms to abscond from the host’s immune responses [23–25]. Detection 
of target proteins, through the analysis of pathogen and host, PPIN is the 
central point of research [13,26,27]. Topologically significant proteins 
having a higher degree of interactions are generally found to be an 
important drug targets. However, proteins with fewer interactions or 
topologically not substantial may be involved in the mechanism of 
infection because of some biological pathway relevance. 

However, clinically validated Human-nCoV protein interaction data 
is limited in the current literature. This has motivated us to develop a 
new computational model for the nCoV-Human PPI network. We have 
subsequently validated the proteins involved in the host-pathogen in-
teractions with respect to potential Food and Drug Administration (FDA) 
drugs for COVID-19 treatment. Key aspects of this research work are 
highlighted below: It has been reported that SARS-CoV has ~89% 
[28,29] genetic similarities with nCoV. SARS-CoV-Human protein–-
protein interaction network has also been studied widely and available 
in the literature [30–32]. Recently, we developed a computational 
model to identify potential spreader proteins in a HumanSARS CoV 
interaction network using the SIS model [14]. In addition, sequence 
information of 29 nCoV proteins has been released [33]. Gene onto-
logical (GO) information (Biological Process (BP), Molecular Function 
(MF), Cellular Component (CC)) of 14 of the nCoV proteins are available 
[33,34]. We have recently developed a method to predict interaction 
affinity between proteins from the available GO graph [35]. Assessment 
of interaction affinity between nCoV proteins with potential Human 
target/bait proteins, which are susceptible to SARS-CoV infection, has 
been done. Fuzzy affinity thresholding is done to detect High-Quality 
nCoV-Human PPIN. The selected human proteins are considered as 
level-1 human spreader nodes of nCoV. Level 2 spreader nodes in nCoV- 
Human PPIN are detected using the spreadability index and validated by 
SIS [14,36] model. Our developed model is validated for the target 
proteins of the potential FDA drugs for COVID-19 treatment [37]. All the 
related terminologies referred in this work like Ego Network [38] 
(please see Fig S1 in the supplementary document), spreadability index 

[14], Node weight [39], Edge ratio [38], Neighborhood density [38], 
Betweenness Centrality (BC) [40], Closeness centrality (CC) [41], De-
gree centrality (DC) [42] and Local average centrality (LAC) [43] are 
discussed in the supplementary document. 

2. Methodology 

Our developed computational model for nCoV-Human PPIN consists 
of two crucial methodologies 1) identification of spreader nodes by 
spreadability index along with the validation of SIS model and 2) Fuzzy 
PPI model. First, the SIS model identifies spreader nodes of SARS-CoV 
proteins (candidate set of nCoV interactors). Then, the Fuzzy PPI 
model is applied to extract the nCoV-Human interactions, and finally, 
nCoV spreaders are identified using the SIS model. 

2.1. Identification of spreader nodes by spreadability index along with the 
validation by SIS model 

In nCoV-Human PPIN, the former acts as a pathogen/bait while the 
host, the human, acts as ‘Prey’. The transmission of infection starts when 
a pathogen enters a host body and infects its protein, affecting its 
directly or indirectly connected neighbor proteins. Considering this 
method of transmission, PPIN of humans and SARS-CoV are considered 
to detect spreader nodes. Spreader nodes are those nodes/proteins 
which transmit the disease fast among their neighbors. But not all the 
nodes in a PPIN are spreaders. So, proper detection of spreader nodes is 
crucial. Thus, spreader nodes are identified by the spreadability index, 
which measures the transmission capability of a node/protein. 
Furthermore, the compactness of PPIN and its transferal capability are 
evaluated using centrality analysis. Nodes with high centrality values 
are usually considered spreader nodes or the most critical node in a 
network. 

The spreadability index [14] is one of the centrality-based measures 
that combines three major topological neighborhood-based features of a 
network. They are 1) Node weight [39] 2) Edge ratio [38] and 3) 
Neighborhood density [38]. Nodes having a high spreadability index are 
considered spreader nodes. The spreader nodes thus identified are also 
validated by the SIS model [36]. The SIS model is implemented to design 
the SARS-CoV and SARS-CoV2 outbreak into a disease model consisting 
of proteins based on their present infection status. A protein can be in 
either of the three states: 1) S: Susceptible, which means that every 
protein is initially susceptible though not yet infected but at risk of 
getting infected by the disease. 2) I: Infected, which means that the 
disease already infects the protein and 3) S: Susceptible, which means 
proteins again become susceptible after getting recovered from the 
infected state. This model is implemented to generate the overall 
infection capability of a node after a certain range of iterations. Thus the 
sum of the infection capability of the top selected spreader nodes is 
computed by this model, which is compared against the sum obtained 
for the selected top critical nodes by other existing centrality measures 
like Betweenness Centrality (BC) [40], Closeness centrality (CC) [41], 
Degree centrality (DC) [42] and Local average centrality (LAC) [43] 
(Please see the supplementary document for more details). 

Our proposed method for selecting spreader nodes in SARS-CoV PPIN 
[14] has performed better than the other existing state-of-the-art like 
Betweenness Centrality (BC) [40], Closeness Centrality (CC) [41], De-
gree centrality (DC) [42], and Local average centrality (LAC) [43]. The 
comparison and results are included in our recently published work [14] 
(Please see Fig. S2 and Tables S1–S5 in the supplementary document for 
more details). The complete source code is available online here. A 
synthetic PPIN is considered in Fig. 1 to demonstrate the entire meth-
odology of the spreadability index (see Table 1). In addition, computa-
tional analysis of the spreadability index of our proposed model with one 
of the other methodology LAC (computed by using CytoNCA [44]) has 
been highlighted in Table 2. ESi

out is the total number of edges that are 
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outgoing from the ego network Si [14] (for details please see the sup-
plementary document) whereas ESi

in is denoted as the total number of 
interconnections in the neighbor of node i [38]. ES3

out of node 3 is 6 while 
ES3

in of node 3 is 3, which highlights that node 3 has the highest trans-
mission ability from its ego network to outside when compared to other 
nodes. Node 3 also has the highest spreadability index. But LAC failed to 
rank node 3 in the first position. The same scenario can be observed for 
some other nodes in the synthetic network too. Besides SIS validation 
result shows that the selected top-ranked spreader nodes in this pro-
posed model have the highest infection capability compared to the other 
ranked nodes. 

2.2. Fuzzy PPI model for potential SARS-CoV2-human interaction 
identification 

The binding affinity between any two interacting proteins can be 
estimated by combining the semantic similarity scores of the GO terms 
associated with the proteins [26,35,45–47]. A greater number of 
semantically similar GO annotations between any protein pair indicate 
higher interaction affinity. The fuzzy PPI model is a hybrid approach 
[35] that utilizes both the topological [48] features of the GO graph and 
information contents [47,49,50] of the GO terms. 

GO is organized in three independent directed acyclic graphs 
(DAGs): molecular function (MF), biological process (BP), and cellular 
component (CC) [34]. The nodes in each GO graph represent GO terms, 
and the edges represent different hierarchical relationships. In this work, 
the two most essential relations, ‘is_a’ and ‘part_of,’ have been used for 
GO relations [51]. 

The semantic similarity between any two proteins is estimated by 
considering the similarities between their all 

pairs of annotating gene ontology (GO) terms belonging to a 
particular ontological graph. The similarity of a GO term pair is deter-
mined by considering specific topological properties (shortest path 
length) of the GO graph and the average information content (IC) [52] of 
the disjunctive common ancestors (DjCAs) [45,46] of the GO terms as 
proposed in [35]. Fuzzy PPI first relies on a fuzzy clustering of the GO 
graph where the selection of GO terms as cluster center is based on the 
level of association of that GO term in the GO graph. Then, the cluster 
centers are selected based on the proportion measure of GO terms. The 
proportion measure for any GO term t is computed as 

PrM(t) =
|An(t) | + |Dn(t)|

|NO|
(1)  

where (t), Dn(t) represents the ascendant and descendant of term t, and 
NO is the total number of GO terms in ontology O. A higher value of the 
proportion measure (PrM) signifies higher coverage of ascendants and 
descendants associated with the specific node. Finally, the GO terms for 
which this proportion measure is above a predefined threshold are 
selected as cluster centers. In this work, the cluster centers are chosen 
based on the threshold values as suggested in [26,35]. 

After selecting the cluster centers, the degree of membership of a GO 
term to each of the selected cluster centers 

is calculated using its respective shortest path lengths to the corre-
sponding cluster centers. The membership of the GO term to a cluster 
decreases with an increase in its shortest path length to the cluster 

Fig. 1. Synthetic protein–protein interaction network. The network consists of 10 nodes and 25 edges. The neighborhood density (ND), Node Weight (NW), and 
Spreadability Index (SI) of the top 5 nodes have been highlighted. While the thickness of the edges highlights the rank according to SI, the thickness of the boundary 
of the nodes highlights the rank according to NW. 

Table 1 
Computation of spreadability index of Fig. 1 and validation of selected top 5 spreader nodes by the SIS model.  

Rank Proteins ESi
out  ESi

in  
Edge Ratio Neighborhood Density Node Weight Spreadability Index Sum of SIS infection rate of top 5 nodes 

1 Node 3 6 3  1.75  6.94  2.83  14.99 1.19 
2 Node 9 5 4  1.20  7.07  3.00  11.48 
3 Node 6 5 2  2.00  3.93  2.60  10.46 
4 Node 8 6 2  2.33  2.27  3.25  8.55 
5 Node 1 5 4  1.20  4.21  3.40  8.45  

Table 2 
Computation of the LAC of the synthetic network (Fig. 1) and validation of 
selected top 5 spreader nodes by the SIS model.  

Rank Proteins LAC Sum of SIS infection rate of top 5 nodes 

1 Node 1  2.00 0.86 
2 Node 9  1.60 
3 Node 5  1.33 
4 Node 8  1.33 
5 Node 3  1.20  
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center. The membership function is defined as 

MmFc(t) = e−
− (x− ci )

2

2k2 (2)  

where ci is i − th center and k is the width of the membership function, 
and x is the shortest path length from t to ci. The difference D

(
ti, tj

)
in 

membership values between the GO pair ti and tj for each cluster center, 
is computed to find the weight parameter. The weight parameter is 
defined as 

Wt
(
ti, tj

)
= 1 − maxD(ti, tj) (3) 

This weight value determines how different two GO terms can be 
with respect to the cluster centers. Next, the shared information content 
(SIC) is computed using the average information content (IC) [52] of the 
DjCAs of the GO term pair (ti, tj) for all three GO graphs. The SIC is 
defined as 

SIC
(
ti, tj

)
=

∑
a∈DjCA(ti ,tj)IC(a)

|DjCA
(
ti, tj

)
|

(4)  

where DjCA
(
ti, tj

)
represents the disjunctive common ancestors of GO- 

term ti and tj. The semantic similarity (SS) between the GO term pair 
ti and tj defined as 

SS(ti, tj) = Wt(ti, tj)SIC(ti, tj) (5) 

The semantic similarity of protein pair (Pi,Pj) for each GO-type (CC, 
MF, and BP), is estimated by utilizing the maximum similarity of all 
possible GO pairs from the annotations of proteins Pi and Pj for each type 
of GO. The interaction affinity of protein pair (Pi, Pj) is defined as the 
average of CC, MF, and BP-based semantic similarity. 

This work uses the available ontological information to calculate the 
fuzzy interaction affinity score between the protein pairs of SARS-CoV2 
and spreader human proteins (please see Fig. 3). Here, the SARS-COV’s 
level-1 and level-2 spreader proteins are employed as the primary target 
for the proposed fuzzy PPI model for interaction affinity computation. A 

bipartite relation of GO pairs is primarily generated from each pair of 
proteins for each type of GO annotations (CC, MF, and BP) indepen-
dently (Fig. 3A). To reduce the computational overhead and time, se-
mantic similarity scores are previously computed between all GO pairs 
belonging to a particular GO type using equation (5) [35]. The semantic 
similarity is computed by exploring the topological properties of the GO 
subgraphs. For each type of GO subgraphs, a different set of cluster 
center nodes (GO terms) are identified based on proportion measure 
(equation (1)) that rely on the annotation score and GO relationship 
graph hierarchy. The GO semantic similarity is estimated with a 
distance-based measure between the target GO pair by exploring the 
membership score (equation (2), 3) and values (equation (4)) compared 
to respective cluster canters of each GO subgraphs (Fig. 3B). For each GO 
type, the max of all possible scores of the bipartite links in a particular 
GO subgraph is considered the final semantic score of that type of GO. 

Similarly, all three different scores are evaluated and averaged to 
find the interaction affinity for the annotated protein pair. Then, the 
fuzzy score of interaction affinity is computed by normalizing the 
interaction affinity using max–min normalization. Finally, with high 
specificity threshold (please see Fig. 6), high-quality interactions (78 
interactions involving 37 human level-1 spreaders) are extracted for 
human-SARSCoV2. 

3. Dataset description 

SARS-CoV-Human PPIN serves as a baseline for our model. The po-
tential level-1 and level-2 human spreaders of SARS-CoV become the 
possible candidate set for selecting level-1 human spreaders of SARS- 
CoV2. Various datasets have been curated for this purpose which has 
been outlined below: 

3.1. Human PPIN 

The dataset [53,54] consists of all possible interactions between 
human proteins experimentally documented in humans. Human 

Fig. 2. A computational model for the selection of spreader nodes in Human-SARS-CoV PPIN by spreadability index. Red-coloured nodes represent SARS-CoV 
proteins, while blue-colored nodes are the selected spreader nodes in it. Deep green colored nodes represent level-1 human connected proteins with SARS-CoV 
proteins, while yellow-coloured nodes represent the selected human spreaders. Light green colored nodes represent level-2 human spreaders of SARS-CoV. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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proteins are represented as nodes, while edges represent the physical 
interactions between proteins. It is a collection of 21,557 nodes and 
includes 342,353 edges/interactions. 

3.2. SARS-CoV PPIN 

The dataset [30] consists of interactions between SARS-CoV proteins. 
It contains 7 unique proteins and the involvement of 17 interacting 
edges. Only the densely connected proteins are considered rather than 
the isolated ones since the former play a more active role in the trans-
mission of infection than the latter. 

3.3. SARS-CoV-human PPIN 

The dataset [30] comprises 118 interactions between SARS-CoV and 
humans. It is used to fetch the level-1 human interactions of SARS-CoV. 

3.4. SARS-CoV2 proteins 

This data is collected from the pre-released dataset of available 
SARS-CoV2 protein from UniProtKB [33 55], which includes 14 
reviewed SARS-CoV2 proteins. 

3.5. GO graph and protein-GO annotations 

GO graph types (CC, MF, and BP) are collected from GO Consortium 
[34,51]. In addition, the protein to GO-annotation map is retrieved from 
the UniProtKB database. 

3.6. Potential COVID-19 FDA drugs 

Six potential FDA drugs: Lopinavir [56], Ritonavir [57], Azi-
thromycin [58], Remdesivir [59–61], Favipiravir [62,63], and Dar-
unavir [64] have been identified from the DrugBank [65] published 

white paper [37] which have been used for validation in our proposed 
model. 

4. Results and discussion 

Our developed computational model of nCoV-Human PPIN contains 
high-quality interactions (HQI) and proteins identified by Fuzzy affinity 
thresholding and spreadability index validated by the SIS model. The 
sources of input and the generated results always play a crucial role in 
any computational model, which is also true for our proposed model. 

4.1. Spreader nodes selection in Human-SARS CoV interaction network 
using spreadability index 

SARS-CoV-Human PPIN (up to level-2) is formed by the combination 
of SARS-CoV-Human and Human-Human PPIN datasets. SARS-CoV- 
Human dataset generates the direct level-1 human interactions of 
SARS-CoV, while the human–human PPIN dataset is used to fetch the 
corresponding level-2 human interactions. Potential spreader nodes are 
identified using the spreadability index validated by the SIS model [14]. 
The entire process of the detection of spreader nodes in SARS-CoV- 
Human PPIN is depicted in four steps in Fig. 2 (used only for descrip-
tion): 1) Spreader nodes (6 spreaders) in SARS-CoV PPIN are detected by 
spreadability index. 2) Corresponding level-1 human proteins of the 
spreader nodes in SARS-CoV PPIN are identified. 3) Spreader nodes (24 
spreaders) in level-1 human proteins of the spreader nodes in SARS-CoV 
PPIN are detected. 4) The same process is repeated, and spreader nodes 
(9 spreaders) in level-2 human proteins of the spreader nodes in SARS- 
CoV PPIN are identified. The selected spreader nodes in SARS-COV- 
Human PPIN are highlighted in additional Table A1, Table A2, and 
Table A3. The network view of SARS-CoV-Human PPIN at each level and 
various selected thresholds of spreadability index are also available 
online (SARS-CoV human spreaders link: L-1, human spreaders at the 
high threshold of spreadability index link: L1 & L2:high, and human 

Fig. 3. Schematic diagram of Fuzzy PPI model. A) The fuzzy PPI model finds the interaction affinity between the SARS-CoV2 and Human proteins (L1 and L2 
spreader of SARS-CoV) using ontological gene information. B) All GO pair-wise interaction affinities are assessed from three independent GO-relationship graphs CC, 
MF, and BP. The fuzzy interaction affinity of a protein pair is computed from all three pair-wise scores of all GO-pair affinities. C) Heatmap representation of Fuzzy 
PPI score. D) Network representation of Human and SARS-CoV2 proteins with 0.2 onward thresholds of Fuzzy PPI score at high specificity. Finally, high-quality 
interactions are extracted to retrieve the potential human prey for SARS-CoV2 at the 0.4 threshold. 
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spreaders at the low threshold link: L1 & L2:low). 

4.2. Identification of the nCoV-Human proteins interactions using fuzzy 
PPI model 

The GO information can be helpful to infer the binding affinity of any 
pair of interacting proteins using three different types of GO hierarchical 
relationship graphs (CC, MF, and BP) [34]. The fuzzy PPI model has been 
applied to find the interaction affinity between the SARS-CoV2 and 
Human proteins using GO-based information (please see Fig. 3 and 
section 2.2 for details). To identify the interactors of SARS-CoV2 on 
humans using the Fuzzy PPI model, a set of candidate proteins are 
selected, which are identified as the L1 and L2 spreader nodes of SARS- 
CoV using the SIS model (as depicted in Fig. 2). The fuzzy PPI model is 
constructed from the ontological relationship graphs by evaluating the 
affinity between all possible GO pairs annotated from any target protein 
pair. Finally, the fuzzy score of interaction affinity of protein pair is 
computed from these GO pair-wise interaction affinity into a range of 
[0,1]. 

We have used experimentally validated human protein interactions 
(physical only) from publicly available interaction databases, such as 
HIPPIE [66], STRING [67], BioGRID [68], DIP [69], HuRI [70] for 
positive data and Negatome 2.0 [71], Trabuco et al. [72] for negative 
data. The positive interactions are also filtered by removing the edges 
that are common in both positive and negative interaction sets. In each 
database, Gold standard data is curated by using the scoring scheme 
provided by the respective databases. The selection criteria are 
described in Table S6 in the supplementary document. 

With this benchmarking data set, the FuzzyPPI Model has been 
assessed with different fuzzy scoring cut-off values. The performance of 
this assessment is reported in Table S7 in the supplementary document. 
In any classification task, specificity signifies the ability to identify a 
positive sample correctly. In order to identify high-quality positive in-
teractions, we used the specificity metric. With the increasing value of 
specificity, the number of false-positive (FP) interactions has shown a 
sharp fall as depicted in the following table. At threshold ≥0.2 and ≥0.4, 
the FP is 0.0048% and 0.0001% of total negative interactions respec-
tively. Thus, the Specificity threshold is set at ≥0.4. The heatmap rep-
resentation of fuzzy interaction affinities (with a score ≥of 0.2 for very 
high specificity ~99%) is shown in additional Fig. A1 and Table A4. The 
high-quality interaction (HQI) is retrieved at threshold 0.4 (almost 
~99:98% Specificity), which results in a total of 78 interactions between 
SARS-CoV2 and humans (37 human level-1 spreaders). The interaction 
networks predicted from the Fuzzy-PPI model are shown in Fig. 4. 

4.3. Identification of human spreader proteins for nCoV 

Human proteins present in the high-quality interactions of nCoV- 
Human PPIN fetched by applying fuzzy affinity threshold are consid-
ered level-1 spreaders. From these 37 level-1 spreaders, corresponding 
level-2 human interactions are obtained using the human–human PPIN 
dataset. Spreadability index is thus computed for these level-2 human 
proteins for the identification of level-2 human spreader nodes. The SIS 
model also verifies the selection. The selected spreader nodes in SARS- 
COV2-Human PPIN (2474 level-2 human spreaders under high 
threshold) are highlighted in additional Table A4, Table A5, and Tabl 
e A6. In addition, the computational model of nCoV-Human PPIN 
under a high threshold has been highlighted online https 
://kzeumvafuq8hob5bzpsphq-on.drv.tw/www.40highthreshold_sarsco 
v2.com/sarcov2_graph_40_percent_high_threshold.html. It highlights 
the human level-1 (marked in yellow) and level-2 spreader nodes 
(marked in green). The network view of SARS-CoV2-Human PPIN at 
each level and various selected thresholds are also available online 
(SARS-CoV2 Level-1 human spreaders, Level-1 & Level-2:high spreaders 
at the high threshold of spreadability index and Level-1 & Level-2:low 
human spreaders at a low threshold of spreadability index). 

4.4. Validation using potential FDA drugs for COVID-19 

After proper assessment of all potential drugs as mentioned in the 
DrugBank [65] white paper [37], six drugs: Lopinavir [56], Ritonavir 
[57], Azithromycin [58], Remdesivir [59–61], Favipiravir [62,63] and 
Darunavir [64] are identified which are showing expected results to 
some extent in the clinical trials done for SARS-CoV2 vaccine. All 
approved human protein targets for each of the five approved drugs are 
fetched from the advanced search section [73] of the drug bank [65,74]. 
When searched in our proposed model of nCoV-Human PPIN, these 
targets are found to play an active role in spreader nodes. This reveals 
that the selected spreader nodes are of biological importance in trans-
mitting infection in a network that makes them the protein drug targets 
of the potential FDA drugs for COVID-19. The target protein hits in our 
nCoV-Human PPIN for each of the 7 potential FDA drugs are highlighted 
in Fig. 5. It can be observed that 3 target proteins for Ritonavir, 2 target 
protein hits for each of Lopinavir, Darunavir, and Azithromycin, and 1 
target protein hit for Remdesivir and Favipiravir. Out of these protein 
targets, ACE2 is the most important one since it is considered one of the 
crucial receptors of humans for nCoV to transmit infection deep inside 
the human cell [75–77]. Based on this validation, further research is 
conducted along with drug repurposing study, docking study, and 
COVID-19 symptoms-based analysis in our next research work [78] 
which helps us to identify a possible potential drug for COVID-19 named 
Fostamatinib [79–81]. Clinical studies involving Fostamatinib are also 
in progress [82,83]. Though the research is at the initial level, yet it 
somehow supports our research findings to some extent. 

5. Conclusion 

In any host-pathogen interaction network, the identification of 
spreader nodes is crucial for disease prognosis. However, not every 
protein in an interaction network has an intense disease-spreading 
capability. In this work, we have used the SARS-CoV-Human PPIN 
network and the spreader nodes at both level-1 and level-2 using the SIS 
model. These spreader nodes are considered for computing the protein 
interaction affinity score to unmask the level-1 human spreaders of 
nCoV. In addition, GO annotations have also been considered along with 
PPIN properties to make this model more effective and significant. With 
the gradual progress of the work, it has been observed that the selected 

Fig. 4. Network representation of HQIs (score ≥ 0.4) between SARS-CoV2 and 
human proteins. Blue and yellow spherical nodes represent the SARS-CoV2 and 
human proteins, respectively. The edge width reflects the fuzzy score of binding 
affinity. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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human spreader nodes, identified by our proposed model, emerge as the 
potential protein targets of the FDA-approved drugs for COVID-19. 

The primary hypotheses of the work may be listed as follows: 1) 
There is a genetic overlap of ~89% [84] between SARS-CoV and SARS- 
CoV2, which also lead to a significant overlap in spreader proteins be-
tween human-SARS-COV and human-SARSCOV2 protein-interaction 
networks. 2) Fuzzy PPI approach can assess protein interaction affinities 
at very high specificity with respect to benchmark datasets, as shown in 
Fig. 6. High specificity signifies a meager false-positive rate at a given 
threshold. Thus, at a 0.4 threshold (~99:9% specificity), the proposed 
model evaluates high-quality positive interactions in Human-nCoV 

PPIN. 
Finally, we propose that the developed computational model effec-

tively identifies Human-nCoV PPIs with high specificity. The nCoV- 
Human interactions are inferred from another pandemic initiator 
SARS-CoV, which is highly genetically similar to nCoV. We also recog-
nize the spreadability index of the human spreader proteins (up to level- 
2), validated through the SIS model. Due to high network density in 
human interaction networks, the number of proteins increases with the 
transition from one level to another. So, our proposed model can also 
identify human spreader proteins in level-2 by using the spreadability 
index validated by the SIS model. 

Fig. 5. Validation of our developed computational model with respect to the target proteins of the FDA accepted drugs for COVID-19 treatment. Yellow- and green- 
colored nodes denote level-1 and level-2 human spreaders of nCoV, which acts as the drug-protein targets. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 6. Specificity at different threshold (x-axis) of binding affinity obtained from Fuzzy PPI model for complete human proteome interaction network. At 0.2 onward 
threshold, it produces high specificity with respect to benchmark positive and negative interaction data. High-quality interactions are extracted at a 0.4 threshold 
with ~99:9% specificity. 
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Our proposed method has identified the ACE2 and TMPRSS2 as an 
interactor of SARS-CoV2 proteins, which is essential for entry into the 
human host. SARS-CoV2 interacts with the SARS-CoV entry receptor 
ACE2 as SARS-CoV2 preserves those amino acid residues of SARS-CoV 
that are essential for ACE2 binding [85]. However, the binding 
strength of SARS-CoV2 with ACE2 is 10 to 20 times more than the SARS- 
CoV2-ACE2 attachment [86]. This is because several changes occur in 
the receptor-binding domains (RBDs) of SARS-CoV2 spike protein [87]. 
In addition, the cellular serine protease TMPRSS2 primes SARS-CoV2 for 
host entry, and a Serine protease inhibitor blocks SARS-CoV2 infection 
of lung cells [85,88]. Thus, TMPRSS2 activity is essential for viral spread 
and pathogenesis in the infected host [85,89]. 

In a recent study [90], Gordon et al. have identified 332 high- 
confidence SARS-CoV2-human protein–protein interactions where 
they have worked on the sequence analysis of SARS-CoV2 isolates. They 
cloned, tagged, and expressed 26 of the 29 SARS-CoV2 proteins in 
human cells and identified the human proteins that were physically 
associated with each using affinity-purification mass spectrometry (AP- 
MS). However, while comparing their seminal work with ours, we found 
that the SARS-CoV2 protein sequences used by Gordon et al. do not map 
directly with the available UniProt accession ids. In our case, we have 
worked only on the UniProt listed SARS-CoV2 proteins and applied a 
mathematical model of binding affinity assessment on a subset of Uni-
Prot listed reviewed Human proteins. Therefore, direct comparison and 
validation could not be possible with respect to Gordon et al., primarily 
because of the unavailability of direct mapping of SARS-CoV2 proteins 
into corresponding UniProt accession ids. However, an attempt has been 
made to map UniProt ids of SARS-CoV2 proteins of Gordon et al., from 
COVID-19 UniProtKB reference data [55] (please see Table S8 in the 
supplementary document). It is clear from Table S8 in the supplemen-
tary document that though UniProt ids are available for some of them 
but GO annotations for most of them are missing. Another interesting 
observation is that the entries marked in green have been also taken into 
consideration in this research work as well. It should be noted here that 
the current work depends heavily on the underlying GO Network of the 
host-pathogen PPIN. As evident from Table S8, GO annotations are often 
missing in the new protein list. Therefore we are working on a new 
strategy for the computational prediction of GO annotations for the set 
of proteins [16–19] in the Gordon’s list as well new mutant variants. 

One of the key highlights of our study may be underlined by the fact 
that the target proteins of the potential FDA drugs for COVID-19 overlap 
with the spreader nodes of the proposed nCoV-Human protein interac-
tion network. Target proteins of six potential FDA drugs: Lopinavir [56], 
Ritonavir [57], Azithromycin [58], Remdesivir [59–61], Favipiravir 
[62,63], and Darunavir [64] for COVID-19 as mentioned in the Drug-
Bank white paper [37] overlap with the spreader nodes of the proposed 
in silico nCoV-Human protein interaction model (see Fig. 5). Though 
clinical trials for the COVID-19 vaccine are on their way to date, three 
out of the six repurposed drugs, i.e., Remdesivir [91] and Favipiravir 
[92] are found to be the most promising as well as effective ones. Our 
proposed model successfully identified their protein targets R1AB 
SARS2, TLR9, ACE2, CYP3A4, and ABCB1 as spreader nodes. This 
assessment reveals the fact that these spreader nodes indeed have bio-
logical relevance relative to disease propagation. It also motivates us to 
further do a drug repurposing study on the generated SARS-CoV2- 
human PPIN in our subsequent research work [78], which highlights 
that the drug Fostamatinib/R406 might be one of the potential drugs to 
be used for SARS-CoV2. 
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Chabrière, B. La Scola, J.-M. Rolain, P. Brouqui, D. Raoult, Hydroxychloroquine 
and azithromycin as a treatment of COVID-19: results of an open-label non- 
randomized clinical trial, Int. J. Antimicrobial Agents (2020) 105949–105949. 

[59] E. de Wit, F. Feldmann, J. Cronin, R. Jordan, A. Okumura, T. Thomas, D. Scott, 
T. Cihlar, H. Feldmann, Prophylactic and therapeutic remdesivir (GS-5734) 
treatment in the rhesus macaque model of MERS-CoV infection, PNAS 117 (12) 
(2020) 6771–6776. 

[60] Emergency Access to Remdesivir Outside of Clinical Trials, 2021. https://www. 
gilead.com/purpose/advancing-global-health/covid-19/emergency-access-to- 
remdesivir-outside-of-clinical-trials. (Accessed 28-02-2021 Access 2021). 

[61] Remdesivir Clinical Trials, 2021. https://www.gilead.com/purpose/advancing- 
global-health/covid-19/remdesivir-clinical-trials. (Accessed 28-02-2021 Access 
2021). 

[62] China approves antiviral favilavir to treat coronavirus - UPI.com, 2021. https:// 
www.upi.com/Health_News/2020/02/17/China-approves-antiviral-favilavir-to- 
treat-coronavirus/5291581953892/. (Accessed 28-02-2021 Access 2021). 

[63] Taiwan synthesizes anti-viral drug favilavir for COVID-19 patients - Focus Taiwan, 
2021. https://focustaiwan.tw/sci-tech/202003020012. (Accessed 28-02-2021 
Access 2021). 

S. Saha et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S1046-2023(21)00273-5/h0065
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0065
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0065
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0065
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0075
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0075
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0075
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0085
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0085
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0085
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0095
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0095
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0095
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0095
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0105
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0105
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0115
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0115
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0115
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0120
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0120
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0120
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0125
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0125
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0125
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0130
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0130
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0130
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0145
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0145
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0145
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0145
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0150
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0150
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0150
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0150
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0150
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0150
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0150
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0155
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0155
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0155
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0160
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0160
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0160
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0160
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0160
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0160
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0160
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0160
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0160
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0160
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0160
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0160
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0160
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0160
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0160
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0160
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0160
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0160
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0160
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0160
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0165
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0165
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0170
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0170
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0170
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0175
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0175
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0175
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0185
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0185
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0185
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0190
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0190
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0195
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0195
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0200
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0200
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0205
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0205
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0210
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0210
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0210
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0215
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0215
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0215
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0220
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0220
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0220
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0220
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0225
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0225
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0235
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0235
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0255
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0255
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0280
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0280
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0295
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0295
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0295
http://refhub.elsevier.com/S1046-2023(21)00273-5/h0295


Methods 203 (2022) 488–497

497

[64] Efficacy and Safety of Darunavir and Cobicistat for Treatment of COVID-19 - Full 
Text View - ClinicalTrials.gov, 2021. https://clinicaltrials.gov/ct2/show/ 
NCT04252274. (Accessed 28-02-2021 Access 2021). 

[65] D.S. Wishart, C. Knox, A.C. Guo, D. Cheng, S. Shrivastava, D. Tzur, B. Gautam, M. 
Hassanali, DrugBank: a knowledgebase for drugs, drug actions and drug targets, 
Nucleic acids research 36(Database issue) (2008) D901-D906. 

[66] M.H. Schaefer, A. Fontaine Jf Fau – Vinayagam, P. Vinayagam A Fau - Porras, E.E. 
Porras P Fau - Wanker, M.A. Wanker Ee Fau – Andrade-Navarro, M.A. Andrade- 
Navarro, HIPPIE: Integrating protein interaction networks with experiment based 
quality scores, (1932-6203 (Electronic)). 

[67] D. Szklarczyk, A.L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, 
M. Simonovic, N.T. Doncheva, J.H. Morris, P. Bork, L.J. Jensen, Christian v. 
Mering, STRING v11: protein–protein association networks with increased 
coverage, supporting functional discovery in genome-wide experimental datasets, 
Nucleic Acids Res. 47 (D1) (2018) D607–D613. 

[68] R. Oughtred, C. Stark, B.J. Breitkreutz, J. Rust, L. Boucher, C. Chang, N. Kolas, L. 
O’Donnell, G. Leung, R. McAdam, F. Zhang, S. Dolma, A. Willems, J. Coulombe- 
Huntington, A. Chatr-Aryamontri, K. Dolinski, M. Tyers, The BioGRID interaction 
database: 2019 update, (1362-4962 (Electronic)). 

[69] I. Xenarios, L. Rice Dw Fau - Salwinski, M.K. Salwinski L Fau - Baron, E.M. Baron 
Mk Fau - Marcotte, D. Marcotte Em Fau - Eisenberg, D. Eisenberg, DIP: the database 
of interacting proteins, (0305-1048 (Print)). 

[70] K. Luck, D.-K. Kim, L. Lambourne, K. Spirohn, B.E. Begg, W. Bian, R. Brignall, T. 
Cafarelli, F.J. Campos-Laborie, B. Charloteaux, D. Choi, A.G. Coté, M. Daley, S. 
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