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Abstract
Background: Influenza pandemic preparedness plans are currently developed and refined on
national and international levels. Much attention has been given to the administration of antiviral
drugs, but contact reduction can also be an effective part of mitigation strategies and has the
advantage to be not limited per se. The effectiveness of these interventions depends on various
factors which must be explored by sensitivity analyses, based on mathematical models.

Methods: We use the freely available planning tool InfluSim to investigate how pharmaceutical and
non-pharmaceutical interventions can mitigate an influenza pandemic. In particular, we examine
how intervention schedules, restricted stockpiles and contact reduction (social distancing
measures and isolation of cases) determine the course of a pandemic wave and the success of
interventions.

Results: A timely application of antiviral drugs combined with a quick implementation of contact
reduction measures is required to substantially protract the peak of the epidemic and reduce its
height. Delays in the initiation of antiviral treatment (e.g. because of parsimonious use of a limited
stockpile) result in much more pessimistic outcomes and can even lead to the paradoxical effect
that the stockpile is depleted earlier compared to early distribution of antiviral drugs.

Conclusion: Pharmaceutical and non-pharmaceutical measures should not be used exclusively.
The protraction of the pandemic wave is essential to win time while waiting for vaccine
development and production. However, it is the height of the peak of an epidemic which can easily
overtax general practitioners, hospitals or even whole public health systems, causing bottlenecks
in basic and emergency medical care.
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Background
The recent spread of highly pathogenic avian influenza
from Asia to Europe and the transmission to humans has
intensified concerns over the emergence of a novel strain
of influenza with pandemic potential. While still being in
an inter-pandemic stage, nations plan for pandemic con-
tingency following recommendations of the WHO [1,2].
National influenza preparedness plans are constantly
being refined, aiming to mitigate the effects of pandemic
influenza on a national, regional and local level. Even in
the absence of a pandemic strain, seasonal influenza
causes substantial morbidity and mortality [3]. Seasonal
outbreaks put pressure on general practitioners and strain
hospital resources, leading to bottlenecks in outpatient
treatment and hospital admission capacities.

Various intervention strategies reduce the impact of influ-
enza on individuals and public health systems. In inter-
pandemic phases, vaccination is the most important tool
to reduce morbidity and mortality, but a potent vaccine
will probably not be generally available in the initial
phase of a pandemic [4]. Other control strategies like
pharmaceutical (antiviral) [5,6] and non-pharmaceutical
interventions (reduction of contact rates) [7,8] will have
to be implemented.

The use of antiviral drugs during a pandemic seems to be
the treatment of choice at present [9-12], but not all coun-
tries can afford stockpiling enough drugs. Furthermore,
concerns about the over-reliance of a "pharmaceutical
solution" have been expressed [13]. An epidemic can also
be mitigated by reducing contact rates in the general pop-
ulation and by decreasing the infectivity of cases [9]. Such
reductions can be achieved by measures like quarantine
and case isolation [14], closing day care centres and
schools, cancelling mass gathering events, voluntary self
isolation and general behavioural changes in public and
increasing social distance [8].

The effectiveness of such interventions depends on vari-
ous factors which must be prospectively explored by sen-
sitivity analyses, based on mathematical models. Here, we
use the freely available Java applet InfluSim [15] to inves-
tigate how effectively pharmaceutical and non-pharma-
ceutical interventions contribute to mitigate an influenza
pandemic while vaccines are not available. In particular,
we examine how intervention delays determine the course
of a pandemic and constrict the success of interventions.

Methods
InfluSim is a deterministic compartment model based on
a system of over thousand differential equations which
extend the classic SEIR model by clinical and demo-
graphic parameters relevant for pandemic preparedness
planning. Details of the simulation and a discussion of

the standard parameter values have been described previ-
ously [15]; a summarizing description of the model is pro-
vided in the Appendix. The program and its source code
are publicly available [16] to offer transparency and repro-
ducibility. The simulation produces time courses and
cumulative numbers of influenza cases, outpatient visits,
applied antiviral treatment doses (neuraminidase inhibi-
tors), hospitalizations, deaths and work days lost due to
sickness, all of which may be associated with financial
loss. The analyses presented here are based on InfluSim
2.0, using demographic and public health parameters
which represent the situation in Germany in 2006. Inter-
ventions include antiviral treatment, isolation of patients,
social distancing measures and the closing of day care cen-
tres and schools as well as cancelling mass gathering
events.

Using the standard set of InfluSim parameters (freely
accessible from [15]), about one third of all infected indi-
viduals is expected to become severely ill and to seek med-
ical help. Patients seeking medical help will be referred to
as "outpatients" throughout this paper. An exponential
distribution is used to model the delay between onset of
symptoms and seeking medical help; on average, patients
visit a doctor after 24 hours. If a patient seeks medical help
within 48 hours after onset of symptoms, he or she is
given antiviral treatment unless the stockpile of antivirals
is exhausted. Antiviral treatment reduces the duration and
degree of infectivity of the case and the number of hospi-
talizations (Table 1) [17]. For more detailed descriptions
see [15] or the Appendix.

Non-pharmaceutical interventions examined in this paper
are contact reduction measures and the isolation of cases.
The latter effectively leads to reduced contact rates
between individuals, too. In the scenarios presented
below, we assume that everybody in the population
avoids a given percentage of contacts (e.g. by improved
hygiene, wearing masks, or behavioural changes) and that
sick patients are isolated which reduces the contact rates
of moderately sick, severely sick (but non-hospitalized)
and hospitalized cases by 10%, 20% and 30%, respec-
tively. Further interventions which comprise the closing of
day care centres and schools, and the cancelling of mass
gathering events will be examined in detail in a separate
paper.

Results
Assuming a basic reproduction number of R0 = 2.5 and
using the standard parameter set of InfluSim [15], an epi-
demic in a population of 100,000 individuals reaches the
peak about 40 days after introduction of the infection and
is practically over three weeks thereafter if no interven-
tions are performed (Figure 1). During the whole epi-
demic, 87% of the population become infected, 29% seek
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medical help, 0.7% are hospitalized and 0.2% die. Figure
1 shows how pharmaceutical and non-pharmaceutical
interventions can mitigate this scenario. Contact reduc-
tion by isolation of cases alone (see Appendix), protracts
the peak of the epidemic by about one week. Distribution
of antivirals or additional contact reduction measures
delay the epidemic by approximately 10 days and are
hardly sufficient to provide a substantial delay. A combi-
nation of antiviral treatment, isolation of cases and social
distancing in the general population seems to be neces-
sary to delay the epidemic in the order of weeks. This
example furthermore shows that an efficient mitigation of
the epidemic is not necessarily associated with a signifi-
cant reduction in the number of infections. For informa-
tion on the proportions of infected people and
outpatients see the legends to the Figures.

Intervention with antivirals
The mitigating effect of antivirals strongly depends on the
onset of their distribution (Figure 2). Antivirals can delay
the epidemic if distributed very early while few cases exist
in the population. Late distribution of antivirals (e.g.
starting on day 30) leads to the paradoxical effect that the
stockpile is exhausted even quicker compared to early dis-
tribution (shaded areas und the curves in Figure 2). Addi-
tionally, the mitigating effect of the intervention
drastically diminishes and benefits are restricted to lower-
ing the peak of the epidemic. Unrestricted availability of
drugs (grey curves in Figure 2) still leads to an epidemic
because (i) asymptomatic and moderately sick cases are
not eligible for treatment, (ii) patients visit a doctor on
average 24 hours after onset of symptoms while already
being highly infectious and (iii) antivirals cannot fully
prevent infectivity.

Figure 3 extends these considerations by showing epi-
demic curves where all clinically ill patients are treated
with antiviral drugs until the stockpile is exhausted. The
mitigating effect of antiviral distribution is weakly influ-
enced by the amounts of available antivirals, but is
strongly determined by the onset of administration. The
model suggests that even a small stockpile of antivirals

can protract the peak of the epidemic if distributed very
early while few cases exist in the population (Figure 3A).
In contrast, the mitigating effect becomes negligible, if
antivirals are distributed with delay (Figure 3B). Inde-
pendent of the delay in the distribution of antivirals, their
quantitative availability affects only the height of the peak
of the epidemic, but hardly the mitigation of the epidemic
(Figure 3A, B). For considerations into the final size of the
epidemic see below. In summary, delaying the epidemic
depends on early action, whereby lowering the peak
depends on the quantitative availability of antivirals.

Intervention through contact reduction
Contact reduction measures, comprising social distancing
and the isolation of cases, can be an effective part of miti-
gation strategies; they have the advantage over antiviral
treatment to be not limited per se, i.e. they can be contin-
ued for a sufficiently long period of time. Figure 4 exam-
ines the effect of isolation of cases and social distancing
measures (see figure caption for details) in the absence of
antiviral treatment. The peak of the epidemic is protracted
by about 1 day for every percent of contact reduction if
this intervention starts immediately after the introduction
of the infection. Thus, a peak shift is not only possible by
early action, but also by the degree of contact reduction. If
contact reduction is initiated later, the peak shift dimin-
ishes, but the proportionality remains. For example, if the
intervention starts three weeks after the introduction of
infection, the peak of the epidemic is only mitigated by
about half a day per 1% contact reduction (Figure 4B).
Premature cessation of contact reduction measures
restores the infection rates to the pre-intervention values
which fuels the epidemic. It can lead to a delayed course
and a higher total number of infections, involving a pla-
teau or even a second peak of the epidemic (Figure 4C).

Combined intervention scheme
The preceding examples with interventions based on anti-
virals or contact reduction alone yielded peak delays only
in the order of weeks, whereas months may be required
for vaccine development and production, demanding for
a combined intervention scheme (Figure 5). We examine

Table 1: Antiviral treatment schedule and effects

Parameter Value Source

Average time for seeking medical help after symptom onset DD = 24 h assumed
therapeutic window (after onset of symptoms) DT = 48 h Fachinformation Roche
fraction eligible to receive treatment assumed

• severe cases who can stay at home fV = 100%
• extremely severe cases who need hospitalization fX = 100%

treatment reduces the duration of the infectious period fD = 25% Fachinformation Roche
treatment reduces infectiousness by fI = 80% Longini (2004)
treatment reduces hospitalizations by fH = 50% Kaiser (2003)
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an optimistic scenario where antivirals are distributed
immediately after the infection is introduced (dark bars in
Figure 5), while varying the onset of social distancing
measures. The antiviral stockpile lasts longer if social dis-
tancing measures are initiated earlier (pale bars in Figure
5). Immediate initiation of contact reduction can protract
the epidemic by months, whereas a delayed initiation
leads to a plateau in the epidemic curve at a time when
antivirals are used up.

Cumulative number of infections and outpatients
Without interventions, Ni = 87% of the population
become infected during the course of the epidemic and
the cumulative number of outpatients reaches No = 29%,
reflecting the assumption that approximately one third of
infected individuals becomes sufficiently sick to seek
medical help. These outcomes remain surprisingly stable
even for interventions assuming optimistic resources (cf.
footnotes to Figures 1, 2, 3, 4, 5). For instance, immediate
and unlimited availability of antivirals reduces these frac-
tions only to Ni = 72% and No = 24% (Figure 2). This
minor effect has three reasons: only about one third of
cases seeks medical help and will receive antiviral treat-
ment, many infections are passed on before cases seek
medical help and antiviral treatment does not fully pre-
vent further transmission. These disadvantages do not
apply to contact reduction measures. For instance, a
reduction of 20% of contacts reduces these fractions to Ni
= 68% and No = 22% (Figures 4A, B). A combination of
antiviral treatment and contact reduction can further
reduce these values to Ni = 53% and No = 18% (Figure 5).

Uncertainty in the parameter values
In the preceding analyses it was assumed that parameter
values are precisely known; in a real world scenario, how-
ever, uncertainty arises from biological variability, sto-
chastic influences, heterogeneities, etc. We illustrate with
a concluding example to which extent simulated epidem-
ics are affected by uncertainty in the parameter values. As
shown in Figure 6, epidemics can be highly variable,
although only four parameters have been varied within
moderate ranges. Varying more parameters would further
increase this variability.

For the interventions and parameter variations consid-
ered, the cumulative number of outpatients ranges from a
few thousand to over twenty thousand (see inset in Figure
6). Among the four parameters, R0 is the strongest predic-
tor of the number of outpatients (analysis not shown) as
it strongly determines how quickly antivirals become
exhausted. In two out of 1,000 simulations the randomly
chosen parameter combinations involved values for R0
around 1.8 which led to very minor outbreaks given the
intervention scheme. The cumulative number of outpa-
tients escalates when antiviral stockpiles become
exhausted while the proportion of susceptibles is still
large enough to allow for further propagation of infec-
tives. In this case, the epidemic curve proceeds with a sec-
ond wave or a plateau.

Discussion
With pandemic influenza, we have to "expect the unex-
pected" [18]. Historical reports frequently mention the
surprising speed at which a pandemic wave travels
through the population [19-21]. Predicting the course of

Comparison of different intervention schemesFigure 1
Comparison of different intervention schemes. 
Number of outpatients expected during a pandemic wave in 
a population of 100,000 citizens. Parameter values are based 
on the InfluSim standard configuration [15] with R0 = 2.5, 
except those listed at the end of this legend and indicated by 
superscripts1. The dashed line represents an epidemic with-
out intervention2. For the following four scenarios, interven-
tions are initiated when infection is introduced (day 0). 
Isolation: moderately sick, severely sick and hospitalized 
cases are isolated3. Treatment: antivirals are available for 10% 
of the population and all severe and extremely sick cases 
receive antiviral treatment4. Under this intervention scheme, 
antivirals are used up on day 50. Contact reduction: involves 
isolation3 of cases and social distancing5. All interventions: 
combination of all three interventions6; under this interven-
tion scheme, antivirals are used up on day 76, leading to a 
plateau in the epidemic curve. 1:Parameter modifications are 
given in the following and terms in italics refer to terms in 
the InfluSim user interface. InfluSim output: Ni = cumulative 
proportion of the population infected, and No = cumulative 
proportion of outpatients in the population. 2: yielding Ni = 
87%, No = 29% 3: Moderately sick cases: 10%, Severe cases 
(home): 20%, Severe cases (hospital): 30%, yielding Ni = 81%, No 
= 27%. 4: Antivirals availability: 10%, Treatment fraction: 100% 
for both, Treatment of severe cases and Treatment of extremely 
sick cases, yielding Ni = 82%, No = 27%. 5: General reduction of 
contacts: Contact reduction by 10%. Combined with isolation of 
cases, this intervention scheme yields Ni = 75%, No = 25%. 6: 
yielding Ni = 66%, No = 22%.
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a future pandemic which will be caused by a virus with
unknown characteristics is based on substantial uncer-
tainties and we must rely on sensitivity analyses, per-
formed with mathematical models like InfluSim.

Because of the short serial interval of influenza, timely
action is essential. Different control measures must be

regarded as complementary and not as competing. Nei-
ther antiviral treatment nor non-pharmaceutical measures
should be used exclusively to mitigate a pandemic influ-
enza wave.

Antivirals
Infectious disease models have suggested that an upcom-
ing influenza epidemic with a low basic reproduction
number might be contained at the source through tar-
geted use of antiviral drugs [9,12]. The published scenar-
ios concern WHO phases 4 and 5 (inter-pandemic alert
period) and assume that an outbreak starts in a rural area
with low population density. It can be expected that the
pandemic virus will be introduced into Europe and the US
after a local epidemic (i.e. in WHO phase 6). Community-
based prophylaxis, however, is of limited use for several
reasons. Under a high prevalence of infection in phase 6,
a wide distribution requires an enormous number of anti-
viral courses; with available stockpiles, it will be virtually
impossible to locally contain the pandemic with targeted
antiviral prophylaxis. Development of resistance, limited
production capacities and extremely high costs are further
limitations of this strategy, so that population-wide
prophylaxis has not been recommended by the WHO for
the final phase of the pandemic [1].

The discussion of pandemic influenza preparedness plan-
ning has frequently focussed on the amounts of drugs to
be stockpiled and to whom and when they should be sup-
plied [22]. Even if the currently stockpiled antiviral drugs
will be fully effective against the pandemic strain, their use
may not be able to sufficiently prevent the spread of influ-
enza because (i) transmission of the infection may occur
before the onset of clinical symptoms (as assumed in the
InfluSim model) [23], (ii) asymptomatic and moderately
sick cases [6] are usually not treated despite contributing
to transmission, and (iii) the occurrence of cases with
influenza-like illness caused by other pathogens may lead
to an accelerated depletion of the antiviral stockpile. Like-
wise, moderately sick cases or even healthy people may
seek medical help and succeed in receiving antiviral treat-
ment which would further deplete the stockpile. These
factors reduce the efficacy of pharmaceutical control
measures [24], indicating the demand of extending this
strategy by non-pharmaceutical intervention measures.

Especially if antivirals are limited, they should be supplied
as early as possible. If their distribution is delayed, cases
become so abundant that resources will quickly be
exhausted without having much impact on the spread of
the disease (Figures 2 and 3). This confirms that the
amount of antivirals needed strongly depends on the
number of infections that are present when the interven-
tion is initiated [25]. If antiviral drugs are extremely lim-
ited, they should be used to preferably treat severe cases

Onset and sustainability of antiviral interventionFigure 2
Onset and sustainability of antiviral intervention. 
Number of outpatients expected during a pandemic wave, 
varied by day of onset when antivirals come into operation. 
Parameter values are based on the InfluSim standard configu-
ration [15] with R0 = 2.5, except those listed at the end of 
this legend and indicated by superscripts1. The dashed curve 
shows the epidemic without intervention2. Antivirals are 
available for 5% of the population3 (black lines), compared to 
scenarios of full coverage4 (grey lines). The shaded areas 
under the curves represent the amounts of antivirals distrib-
uted and are identical for both scenarios. They are shown 
between onset of intervention and exhaustion. If antivirals 
are available at the beginning of the epidemic ("Intervention 
from day 0") they last for 45 days5. Antivirals last only for a 
shorter period, if coming into operation in later phases of the 
epidemic ("Intervention from day 30")6. 1:Parameter modifi-
cations are given in the following and terms in italics refer to 
terms in the InfluSim user interface. InfluSim output: Ni = 
cumulative proportion of the population infected, and No = 
cumulative proportion of outpatients in the population. 2: 
Yielding Ni = 87%, No = 29%. 3: Antiviral availability: 5%, Treat-
ment fraction: 100% for both, Treatment of severe cases and 
Treatment of extremely sick cases, yielding Ni = 84%, No = 28% 
for scenarios, "day 0" and "day 30". 4: Antiviral availability: 
100%, Treatment fraction: 100% for both, Treatment of severe 
cases and Treatment of extremely sick cases, yielding Ni = 72%, 
No = 24% for "day 0" and Ni = 74%, No = 25% for "day 30". 5: 
Antiviral availability: 5%, Treatment fraction: 100%, Range of 
days: 0–80 for both, Treatment of severe cases and Treatment 
of extremely sick cases. 6: Antiviral availability: 5%, Treatment 
fraction: 100%, Range of days: 30–80 for both, Treatment of 
severe cases and Treatment of extremely sick cases.
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Intervention with limited amounts of antiviralsFigure 3
Intervention with limited amounts of antivirals. Number of outpatients expected during a pandemic wave, varied by the 
availability of antivirals. Parameter values are based on the InfluSim standard configuration [15] with R0 = 2.5, except those 
listed at the end of this legend and indicated by superscripts1. Antiviral availability ranges from 0% (no antivirals available, dashed 
curves2) to 10% (antivirals available for 10% of the population3) in steps of 1% (from left to right). The dashed curve shows the 
epidemic without intervention. Grey dotted lines represent the scenario where antivirals are available for the whole 
population4. Bars at the bottom of each graph indicate the period when antiviral treatment begins (model input) until stockpiles 
are used up (model output). A: Antivirals are available from day 0 5. B: Antivirals become available after three weeks6. The epi-
demic curves depart from the grey dotted line when antivirals are exhausted.1:Parameter modifications are given in the follow-
ing and terms in italics refer to terms in the InfluSim user interface. InfluSim output: Ni = cumulative proportion of the 
population infected, and No = cumulative proportion of outpatients in the population. 2: Antiviral availability: 0%, yielding Ni = 
87%, No = 29% for both, A and B. 3: Antiviral availability: 10%, yielding Ni = 82%, No = 27% for both, A and B. 4: Antiviral availability: 
100%, yielding Ni = 72%, No = 24% for both, A and B. 5: Range of days: 0–80. 6: Range of days: 21–80.
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Effects of contact reduction measuresFigure 4
Effects of contact reduction measures. Number of outpatients expected during a pandemic wave if contact reduction 
measures are implemented additionally to the isolation of cases. Parameter values are based on the InfluSim standard configura-
tion [15] with R0 = 2.5, except those listed at the end of this legend and indicated by superscripts1. The dashed curve shows the 
epidemic without intervention. Contact reduction involves social distancing2 and isolation of cases3. The curves show the 
effects caused by social distancing, where contacts are reduced by 0%4 (grey curve) up to 30%5 in steps of 2%6 (black curves, 
from left to right). Bars at the bottom of each graph illustrate the periods of contact reduction, which are in A: full, from day 0 
to end, in B: delayed, from day 20 to the end, and in C: temporarily, from day 20 to day 50.1:Parameter modifications are given 
in the following and terms in italics refer to terms in the InfluSim user interface. InfluSim output: Ni = cumulative proportion of 
the population infected, and No = cumulative proportion of outpatients in the population. 2: Contact reduction: ranging from 0–
30% in steps of 2%. Range of days: varied between A, B, and C, see legend or grey bar at the bottom of each graph. 3: Isolation: 
Moderately sick cases: 10%, Severe cases (home): 20%, Severe cases (hospital): 30%. Range of days: varied between A, B, and C, see 
legend or grey bar at the bottom of each graph. 4: Intervention effect is based on Isolation alone, yielding Ni = 81%, No = 27% in 
A, B and C. 5: Yielding in A: Ni = 56%, No = 19%, and B: Ni = 57%, No = 19%, and C: Ni = 82%, No = 27%. 6: E.g. for a Contact 
reduction of 20%, we obtain in A: Ni = 68%, No = 22%, in B: Ni = 67%, No = 22%, and in C: Ni = 79%, No = 26%.
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Combined intervention schemeFigure 5
Combined intervention scheme. Number of outpatients expected during an influenza pandemic if antiviral distribution and 
contact reduction measures are implemented additionally to the isolation of cases. Parameter values are based on the InfluSim 
standard configuration [15] with R0 = 2.5, except those listed at the end of this legend and indicated by superscripts1. The Fig-
ure shows the epidemic curves, varied by the "Day when contact reduction measures are initiated" (as indicated by the number 
next to the peak and at the right hand side of the bar chart). Antivirals are available for 10% of the population and are distrib-
uted from day zero2. Contact reduction measures involve isolation of cases3 and social distancing4. Bars at the bottom of the 
graph illustrate begin and end antiviral intervention (dark bars) and contact reduction measures (light bars), respectively. The 
"Day when contact reduction measures are initiated" is model input, whereas the "Day when antivirals are used up" is model 
output. The epidemic without intervention is shown as a dashed curve. The curves for "7", "21", "35" and "49"5 are plotted in 
bold for purposes of visualization.1:Parameter modifications are given in the following and terms in italics refer to terms in the 
InfluSim user interface. InfluSim output: Ni = cumulative proportion of the population infected, and No = cumulative proportion 
of outpatients in the population. 2: Antiviral availability: 10%. Treatment fraction: 100%, for both, Treatment of severe cases and 
Treatment of extremely sick cases. 3: Moderately sick cases: 10%, Severe cases (home): 20%, Severe cases (hospital): 30%. Range of 
days: see bar chart at the bottom of the graph. For "day 0", Ni = 53%, No = 18%. 4: Contact reduction by: 20%. Range of days: see 
bar chart at the bottom of the graph. 5: Yielding for scenarios up to "day 28": Ni = 53%, No = 18%, for "day 35": Ni = 55%, No = 
18%, for "day 42": Ni = 60%, No = 20%, for "day49": Ni = 69%, No = 23%.
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that need hospitalization. Although this has practically no
effect on the pandemic wave per se, it helps to reduce the
death toll in the population (results not shown).

Contact reduction
Rather than relying on a pharmaceutical solution, pan-
demic preparedness should also involve non-pharmaceu-

tical measures (see above). Early self-isolation and social
distancing measures can be highly effective, as shown for
the SARS epidemic [26]: after the WHO's global alert and
the implementation of massive infection control meas-
ures, the effective reproduction numbers in Hong Kong,
Vietnam, Singapore and Canada fell below unity. Rigor-
ous social distancing measures in the entire population,

Sensitivity analysis considering uncertainty of parameter valuesFigure 6
Sensitivity analysis considering uncertainty of parameter values. Variability in epidemic curves (large plot) and the dis-
tribution of the cumulative number of outpatients (inset), originating from the uncertainty in four parameters (right panel). 
Parameter values are based on the InfluSim standard configuration [15] with R0 = 2.5, except those listed at the end of this leg-
end and indicated by superscripts1. The sensitivity analysis extends the scenario shown in Figure 5, where antivirals are availa-
ble for 10% of the population and are distributed from day zero2, and where contact reduction measures3, including the 
isolation of cases4, are initiated three weeks after the introduction of infection (scenario "day 21"). Right panel: parameter 
values for each realization are sampled independently from normal distributions as shown (means given in bold, 99% of the val-
ues lie within the range specified by dotted lines, except bA which is truncated). R0: basic reproduction number, x50: cumulative 
infectivity during the first half of the symptomatic period, bA: relative infectivity of asymptomatic cases, fc: antiviral treatment 
reduces infectivity by a factor of 1-fc. For each parameter, an increase of the value aggravates the epidemic. Large plot: from 
a hundred random realizations, we selected the two most extreme epidemics, and eight epidemics homogeneously placed 
between them. The epidemic with N0 = 20800 is caused by parameter values drawn from the left tail of the corresponding dis-
tributions, and the epidemic with N0 = 5000 is caused by parameter values drawn from the right tail of the corresponding dis-
tributions (see right panel). The epidemic curves show a plateau or a second wave when antiviral stockpiles are exhausted 
while the proportion of susceptibles is still large enough to allow for further propagation of infectives (thin curves in black); for 
optimistic parameter combinations (e.g. small R0), the available stockpiles last over the whole period of the intervention and 
the epidemic curve proceeds without a plateau (bold curves in grey). Inset: distribution of cumulative number of outpatients 
obtained from 1,000 random realizations.1:Parameter modifications are given in the following and terms in italics refer to terms 
in the InfluSim user interface. 2: Antiviral availability: 10%. Treatment fraction: 100%, for both, Treatment of severe cases and Treat-
ment of extremely sick cases. 3: Contact reduction by: 20%. Range of days: day 21–360. 4: Moderately sick cases: 10%, Severe cases 
(home): 20%, Severe cases (hospital): 30%. Range of days: day 21–360.
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Model structure of InfluSim 2.0Figure 7
Model structure of InfluSim 2.0. Transitions from each compartment depend on age; transitions from the exposed (E) state 
into diseased states (A, M, V, X) additionally depend on the risk group which is assigned to susceptible (S) individuals at birth. 
Other states: W: cases who withdraw at home, H: hospitalized cases, I: recovered and immune individuals, R: individuals in the 
stage of convalescence, and D: death.
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however, will tax the social and economic structure and
the population may not be willing or able to reduce con-
tacts during the whole course of a pandemic wave.

For Figure 5, we assumed that contact reduction measures
(e.g. improved hygiene, wearing masks, or behavioural
changes) could add up to reduce contacts by 20%. Studies
on the SARS outbreak suggest some preventative effect of
wearing masks [27-29], but compliance, availability of
masks and their effectiveness against influenza infection
remain unknown factors. Stockpiling surgical masks for
the population results in exorbitant high numbers and
may not be feasible [30] and individual stockpiling may
be impossible due to economic limitations, especially in
crisis situations. Since the specific effects of such behavio-

ral changes remain uncertain, we modeled their contribu-
tion as a general reduction in contact rates.

In contrast to SARS, we will not be able to rely on isolating
hospitalized cases when a new influenza pandemic
emerges. Using the standard parameter settings of
InfluSim, we expect only a total of 0.7% of the population
to be hospitalized. Even for the worst case scenario of the
US Pandemic Preparedness Plan, where this value may be
up to ten times larger [31], the wide majority of infected
individuals is never hospitalized. With influenza, we have
to rely on self-isolation of moderately sick cases and of
bed-ridden patients who stay at home. As these cases form
the majority of infections and exert the highest force of
infection, even a moderate reduction of contacts between
them and the general population can substantially change
the pandemic wave.

Conclusion
Time is of the essence when controlling infectious diseases
that spread at high speed and thus, interventions are most
effective in the beginning when only few people are
infected. Only a timely application of antiviral drugs
(even with limited supplies) and a quick implementation
of contact reduction measures will notably protract the
peak of the epidemic and substantially reduce its height in
a pandemic influenza wave. Whereby the protraction of
the pandemic wave is essential to win time while waiting
for vaccine development and production, it is the height
of the peak of a pandemic wave which can easily overtax
general practitioners as well as hospitals and whole public
health systems, and can lead to dangerous bottlenecks in
basic and emergency medical care. Vaccinating a small
fraction of the population with a pre-pandemic vaccine
would have a similar effect on the course of the epidemic
as reducing the basic reproduction number by the per-
centage of immunized individuals (e.g. by 10%).

The sensitivity analyses at the end of the Results section
shows that the planning of intervention strategies must
not only be based on single parameter values, but must
also address their variability. More detailed analyses into
this will be presented in a subsequent publication. Math-
ematical models like InfluSim should not only be used to
predict a specific outcome, but also to explore best and
worst case scenarios.
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Time-course of symptoms and infectivityFigure 8
Time-course of symptoms and infectivity. Symptoms 
and infectivity dependent on time, for cases with a severe 
(V), a moderate (M) or an asymptomatic (A) course of dis-
ease (treatment is indicated by subscripts). A: Fraction of 
symptomatic cases among all cases by time since infection. B: 
Relative infectivity by time since infection (given in arbitrary 
units, as the probability of transmitting the infection also 
depends on the age-dependent probability of meeting other 
people as given by the contact matrix).
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Appendix: brief description of the transmission 
dynamics of InfluSim
For a detailed description of InfluSim see Eichner M,
Schwehm M, Duerr HP, Brockmann SO. The influenza
pandemic preparedness planning tool InfluSim. BMC
Infect Dis. 2007 Mar 13;7:17.

General description

InfluSim is a deterministic compartment model based on
a system of over 1,000 differential equations which extend
the classic SEIR model by clinical and demographic
parameters relevant for pandemic preparedness planning.
It allows for producing time courses and cumulative num-
bers of influenza cases, outpatient visits, applied antiviral
treatment doses, hospitalizations, deaths and work days
lost due to sickness, all of which may be associated with
economic aspects. The software is programmed in Java
and open access [16], it operates platform independent
and can be executed on regular desktop computers.

Model description

The model structure of InfluSim is represented by Figure 7,
with descriptions given below.

Natural history of disease

Susceptible individuals (S) are infected at a rate which
depends on their age and on the interventions applied at
the current time. Infected individuals (E) incubate the
infection for a mean duration of 1.9 days. To obtain a real-
istic distribution of this duration, the incubation period is
modelled in 7 stages yielding a gamma distributed incu-
bation period with a coefficient of variation of 37.8%. The
last 2 incubation stages are regarded as early infectious
period during which patients may already spread the
infection. This accounts for an average time of about half
a day for the standard set of parameters.

After passing through the last incubation stage, infected
individuals become fully infective and a fraction of them
develops clinical symptoms (Figure 8A). The course of dis-
ease depends on their age and risk group: one third
remains asymptomatic (A), one third shows a moderate
course of disease (M, "moderately sick") and the remain-
ing third a severe course of disease (V, "very sick"); a small
fraction of the latter third shows an extremely severe
course of disease (X, "extremely sick") and needs hospital-
ization. The rationale for distinguishing extremely sick
cases is that only these can die from the disease and need
to be hospitalized; in all other aspects, both groups of

severe cases are identical. The period of infectivity is
gamma distributed and depends on the course of the dis-
ease and on the age of the case. To allow for an infectivity
which changes over the course of disease, we apply
weighting factors which depend on the stage of infectivity.
Our standard value results in an infectivity which is high-
est immediately after onset of symptoms and which
declines in a geometric progression over time (Figure 8B).

Severe cases seek medical help on average one day after
onset of symptoms, whereby the waiting time until visit-
ing a doctor is exponentially distributed. Very sick and
extremely sick patients who visit a doctor may be offered
antiviral treatment. Very sick patients are advised to with-
draw to their home (W) until the disease is over whereas
extremely sick cases are immediately hospitalized (H).
Death rates of extremely sick and hospitalized cases are
age-dependent. Whereas asymptomatic and moderately
sick patients who have passed their duration of infectivity
are considered healthy immunes, very sick and extremely
sick patients first become convalescent before they resume
their ordinary life (gamma distributed with a mean of 5
days and coefficient of variation of 33.3%). Fully recov-
ered patients who have passed their period of convales-
cence join the group of healthy immunes; working adults
will return to work, and children again visit day care cen-
tres or schools.

Interventions

Antiviral treatment: Severe and extremely severe cases
who visit the doctor within at most two days after onset of
symptoms are offered antiviral treatment, given that its
supply has not yet been exhausted. Antiviral treatment
reduces the patients' infectivity by 80 percent, the dura-
tion of being diseased by 25%, and the risk of hospitaliza-
tion by 50 percent. Extremely sick patients, whose
hospitalization is prevented by treatment, are sent home
and join the group of treated very sick patients.

Social distancing measures: Contact rates in the general
population can be reduced by increasing "social distance",
by closing schools and day care centres, by cancelling
mass gathering events, or by behavioural changes.

Isolation of cases: Isolation of cases reduces their contact
rates. Contacts are not necessarily reduced by 100%, but
between 0 and 100%, as specified by the user. Our stand-
ard scenario considers reductions of 10%, 20% and 30%
for moderately sick cases, very sick cases (at home) and
extremely sick cases (hospitalized), respectively.
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Mixing matrix, basic reproduction number and force of 
infection
For the mixing of the age classes, we employ a "who-
acquires-infection-from-whom matrix" (WAIFW matrix)
which gives the relative frequency of contacts of infective
individuals by age. InfluSim assumes bi-directional con-
tacts (e.g. children have the same total number of contacts
with adults as adults with children). In order to match the
user-specified basic reproduction number R0, the disease-
specific infectivity and the durations of infectivity in this
matrix must be incorporated, resulting in the next genera-
tion matrix. This matrix is multiplied with a scaling factor
chosen such its largest eigenvalue is equal to the chosen
value of R0. The force of infection is given as the product
of the number of infective individuals and the corre-
sponding age-dependent contact rates.

Initial values

At the start of the simulation, one infection is introduced
into the fully susceptible population. To avoid bias
between simulations, the initial infection is distributed
over all age and risk classes.
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