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Abstract
Cholesterol (Ch) is an important lipidic building block and a target for oxidative degradation, which can be induced via free radi-

cals or singlet oxygen (1O2). Suprofen (SP) is a nonsteroidal anti-inflammatory drug that contains the 2-benzoylthiophene (BZT)

chromophore and has a π,π* lowest triplet excited state. In the present work, dyads (S)- and (R)-SP-α-Ch (1 and 2), as well as (S)-

SP-β-Ch (3) have been prepared from β- or α-Ch and SP to investigate the possible competition between photogeneration of biradi-

cals and 1O2, the key mechanistic steps in Ch photooxidation. Steady-state irradiation of 1 and 2 was performed in dichloro-

methane, under nitrogen, through Pyrex, using a 400 W medium pressure mercury lamp. The spectral analysis of the separated frac-

tions revealed formation of two photoproducts 4 and 5, respectively. By contrast, under the same conditions, 3 did not give rise to

any isolable Ch-derived product. These results point to an intramolecular hydrogen abstraction in 1 and 2 from the C7 position of

Ch and subsequent C–C coupling of the generated biradicals. Interestingly, 2 was significantly more photoreactive than 1 indicat-

ing a clear stereodifferentiation in the photochemical behavior. Transient absorption spectra obtained for 1–3 were very similar and

matched that described for the SP triplet excited state (typical bands with maxima at ca. 350 nm and 600 nm). Direct kinetic analy-

sis of the decay traces at 620 nm led to determination of triplet lifetimes that were ca. 4.1 μs for 1 and 2 and 5.8 μs for 3. From these

data, the intramolecular quenching rate constants in 1 and 2 were determined as 0.78 × 105 s−1. The capability of dyads 1–3 to

photosensitize the production of singlet oxygen was assessed by time-resolved near infrared emission studies in dichloromethane

using perinaphthenone as standard. The quantum yields (ΦΔ) were 0.52 for 1 and 2 and 0.56 for 3. In conclusion, SP-α-Ch dyads

are unique in the sense that they can be used to photogenerate both biradicals and singlet oxygen, thus being able to initiate Ch oxi-

dation from their triplet excited states following either of the two competing mechanistic pathways.
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Figure 3: Chemical structures of dyads 1–3.

Introduction
Among the constituents of cell membranes, cholesterol (Ch) is

the most important lipidic building block. It is required for

permeability, fluidity, and integrity of all animal cell mem-

branes. However, as an unsaturated lipid, Ch is susceptible to

oxidative degradation, which can result in potentially patho-

logic consequences encompassing from inflammation to cardio-

vascular and Alzheimer diseases [1,2]. This type of damage can

be induced via free radicals or singlet oxygen (1O2) [3,4]. The

former generally involves hydrogen abstraction (HA) of an

allylic hydrogen and can be achieved by photosensitizing agents

in combination with UVA light. The latter involves energy

transfer from the photosensitizer triplet excited state to ground

state molecular oxygen [5,6].

Ketoprofen (KP) is a nonsteroidal anti-inflammatory drug that

contains the benzophenone (BZP, Figure 1) chromophore and

displays a n,π triplet excited state [7-9], whereas tiaprofenic

acid (TPA) is a related drug that includes the 2-benzoylthio-

phene (BZT, Figure 1) chromophore and has a π,π* lowest

triplet excited state [9,10]. Generally, the photochemical reac-

tivity of the n,π* triplet state is higher than that of π,π* triplet

state. It is also accepted that ketones with lowest-lying π,π*

triplets react predominantly via thermal population of the higher

energy n,π* states.

Figure 1: Chemical structure of the photosensitizing chromophores
benzophenone (BZP) and 2-benzoylthiophene (BZT).

In this context, we have previously shown that the electronic

nature of the involved triplet excited state displays a marked in-

fluence on the photobehavior of ketone-Ch dyads. Hence,

KP-α-Ch dyads are suitable to generate biradicals by intramo-

lecular HA from the C7-allyl position of Ch [11,12], whereas

the TPA-α-Ch analogs are unreactive via HA but they generate

singlet oxygen efficiently [13].

Suprofen (SP) is another nonsteroidal anti-inflammatory drug,

which contains a BZT chromophore. The only structural differ-

ence between SP and TPA is the site of attachment of the

propionic acid side chain (Figure 2), which is the benzoyl or the

thenoyl group, respectively [14,15]. Interestingly, this appar-

ently minor modification leads to a smaller energy gap between

the T1 (ππ*) and the T2 (nπ*) states in SP than in TPA (ca. 3 vs

7 kcal/mol, respectively) [16]. Therefore, HA processes could

be enhanced in the SP derivatives.

Figure 2: Chemical structure of tiaprofenic acid (TPA) and suprofen
(SP).

With this background, dyads (S)- and (R)-SP-α-Ch (1 and 2), as

well as (S)-SP-β-Ch (3) have been prepared in the present work

from β- or α-Ch and SP (Figure 3) in order to investigate the

possible competition between photogeneration of biradicals and
1O2, the key mechanistic steps in Ch photooxidation.

Results and Discussion
Preparation of dyads
Compounds 1–3 were prepared by esterification of α- or β-Ch

with racemic SP following standard procedures [13]. They were
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Scheme 1: Formation of products 4 and 5 upon photolysis of dyads 1 and 2.

purified and resolved into the pure diastereoisomers by frac-

tional crystallization from hexane/ethyl acetate. Ester 1 was ob-

tained as a pure solid, while its diastereoisomer 2 remained as a

viscous oil after elimination of the solvent from the filtered

solution. In order to make an unambiguous stereochemical as-

signment, authentic samples of 1 and 2 were prepared by direct

esterification of (R)- and (S)-SP with α-Ch [17].

Steady-state photolysis
In order to investigate photoproducts formation, steady-state ir-

radiation of dichloromethane solutions (ca. 10−3 M) of 1–3 was

performed under nitrogen, using a Pyrex filter and a 400 W me-

dium pressure mercury lamp. The reaction progress was fol-

lowed by TLC and NMR. The resulting photomixtures were

submitted to silica gel column chromatography, using hexane/

ethyl acetate (95:5 v/v) as eluent. The spectral analysis of the

separated fractions revealed the formation of two new diastereo-

meric photoproducts 4 and 5 from dyads 1 and 2, respectively

(Scheme 1). By contrast, (S)-SP-β-Ch (3) did not give rise to

any isolable Ch-derived product; this is in agreement with con-

formational restrictions, which do not allow an effective ap-

proach between the two active moieties. The nature of the

photoproducts formed from 1 and 2 point to an intramolecular

HA from the C7 position of Ch and subsequent C–C coupling

of the generated biradicals.

The structures of compounds 4 and 5 were unambiguously

assigned on the basis of their NMR spectroscopic data (1H, 13C,

HSQC and NOEDIFF) and mass spectrometry analysis, includ-

ing high-resolution measurements. Because of the rigidity of the

steroidal skeleton, NOE experiments were necessary to assign

the stereochemistry of the new chiral centers generated upon

photocyclization. In both photoproducts, the most relevant

interaction was found between the allylic proton at C7 and the

protons of the thiophene ring (Figure 4). More details are provi-

ded in the Supporting Information File 1.

Figure 4: Diagnostic NOE interactions in compounds 4 and 5.

Having established the nature of the occurring photochemical

reactions, it appeared interesting to explore the possible stereo-

differentiation in the HA process. Thus, irradiation of 1–3 was

performed with monochromatic light at 266 nm in CH2Cl2

(ca. 10−5 M solutions), under nitrogen. The changes were moni-

tored by UV-spectrophotometry, following the decrease in the

maximum absorption at 290 nm (inset of Figure 5), which is

consistent with reduction of the BZT chromophore.
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Scheme 2: Photoreaction pathways generating biradical and singlet oxygen species of a sensitizer (S), like SP, KP or TPA, covalently linked to Ch.
The obtained percentages under anaerobic conditions are given in parenthesis.

Figure 5: Decrease of the absorbance at 290 nm upon irradiation in
CH2Cl2 under N2 for 1 (red circles), 2 (black squares) and 3 (blue trian-
gles) as a function of the irradiation time. Inset: changes in the absorp-
tion spectrum of a deaerated dichloromethane solution of 1 after in-
creasing irradiation times with monochromatic light at λ = 266 nm.

Dyads 1 and 2 were efficiently photolyzed under anaerobic

conditions, whereas 3 was markedly unreactive. Interestingly, 2

was significantly more photoreactive than 1 indicating a clear

stereodifferentiation in the photochemical behavior.

Laser flash photolysis (LFP)
The studies were carried out in dichloromethane under anaer-

obic atmosphere at λexc = 355 nm. Transient absorption spectra

acquired for 1–3 (Figure 6) were all very similar to that previ-

ously reported for the triplet excited state of SP, with maxima at

ca. 350 nm (major) and 600 nm (minor) [18].

Figure 6: Transient absorption spectra for dyad 1 in CH2Cl2 1 μs after
laser pulse (λexc = 355 nm). Inset: Normalized decays of the triplets
generated from dyads 1–3 monitored at 620 nm.

An overall mechanistic picture is shown in Scheme 2 and a

summary of photophysical parameters is provided in Table 1,

together with reference values from the literature [19-21]. The

direct kinetic analysis of the decay traces at 620 nm (Figure 6

inset) led to determination of triplet lifetimes (τT) that were ca.
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Figure 7: Time-resolved experiments at 1270 nm upon excitation at 308 nm of aerated CH2Cl2 solutions of 1–3, using perinaphthenone as standard
for comparison. A) Luminiscence decays of 1O2. B) Formation of 1O2.

4.1 μs for 1 and 2 and 5.8 μs for 3. From these data, the intra-

molecular quenching rate constants were determined as

kiq = 1/τT(1 or 2) − 1/τT(3), and the value obtained for 1 and 2

was 0.78 × 105 s−1.

Table 1: Photophysical parameters of dyads in CH2Cl2.

Parameters (S)- or (R)-SP-α–Ch
(1, 2)

KP-α-Cha

Φisc 0.9b 1.0c

kd1 [s−1] 1.7 × 105d 5.9 × 105

kiq [s−1] 7.8 × 104e 1.0 × 108

kH [s−1] 6.2 × 104f 8.0 × 107

Kπ [s−1] 1.6 × 104f 2.0 × 107

kq1 [M-1 s−1] 0.4 × 109 0.6 × 109

ΦΔ 0.52 <0.01
kd2 [s−1] NDg 5.0 × 106

kq2 [M−1 s−1] NDg 3.6 × 109

kd3 [s−1] 1.4 × 10h 1.3 × 104

kq3 [M−1 s−1] 5.7 × 104i 5.7 × 104i

τT [μs] 4.10 <0.01
aValues taken from ref. [13]; bvalue taken from ref. [15]; cvalue taken
from ref. [19]; dkd1= 1/τT (3); ethe intramolecular quenching rate con-
stants were estimated as kiq = 1/τT(1 or 2) – 1/τT(3); fthe rate constants
for HA (kH) and physical quenching by the π system (kπ) were ob-
tained by assuming that their ratio is similar to that determined in KP-α-
Ch and that kiq = kH + kπ; gnot determined; hkd3 = 1/τΔ with perinaph-
thenone as photosensitizer (value taken from ref. [20]); ivalue taken
from ref. [21].

Unfortunately, in the nanosecond timescale it was not possible

to detect the biradical species. Indeed, the coupling rate con-

stant (kd2) should be similar to that of KP-α-Ch and therefore

much higher than the hydrogen abstraction rate constant (kH),

which is by definition lower than kiq. Consequently, biradicals

are not expected to accumulate since their consumption is much

faster than their formation.

It is interesting to note that the reverse is true that for the KP-α-

Ch analogs, where kd2 is lower than kH (Table 1). Therefore, bi-

radical accumulation is indeed observed in this case, because

the coupling products are generated much more slowly.

Singlet oxygen generation
To assess the capability of dyads 1–3 to photosensitize the pro-

duction of excited singlet molecular oxygen (1O2 or 1Δg), time-

resolved near infrared emission studies were carried out in

dichloromethane using perinaphthenone (PN) as standard. The

formation of this reactive oxygen species was detected by its lu-

minescence at 1270 nm, using a germanium diode as detector.

The singlet oxygen lifetime (Figure 7A) was found to be

ca. 70 μs in all cases (in agreement with the1O2 lifetime re-

ported in the literature [20] for the same solvent). The photosen-

sitized singlet oxygen production was established with a quan-

tum yield (ΦΔ) of 0.52 for 1 and 2 and 0.56 for 3 (Table 1 and

Figure 7B).

Biradical vs singlet oxygen
Although it was not possible to detect the biradical species by

means of LFP in SP-α-Ch systems, its generation (5%) has been

chemically proven by obtaining the coupling products 4 and 5.

Moreover, the triplet excited states of 1 and 2 were quenched by

O2 to generate 1O2 efficiently (52%). Interestingly, the TPA

analogs (also with π,π* character) are unreactive via intramolec-

ular HA (<0.5%), while they produce 1O2 with a ΦΔ = 0.5. By
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contrast, for KP derivatives (3n,π*), efficient photogeneration of

7-allyl-Ch biradicals (80%) is observed, and 1O2 production is

negligible (<0.01 ).

In conclusion, SP-α-Ch dyads are unique in the sense that they

can be used to photogenerate both biradicals and singlet

oxygen, thus being able to initiate Ch oxidation from their

triplet excited states following either of the two competing

mechanistic pathways.

Experimental
General
Suprofen and β-cholesterol were commercially available. Sol-

vents and other reagents were used as received from the

supplier without additional purification. 1H NMR and 13C NMR

spectra were recorded in CDCl3 as solvent on a Bruker AC-300

at 300 and 75 MHz, respectively, and the NMR chemical shifts

are reported in ppm downfield from an internal solvent peak.

Ultraviolet absorption spectra were recorded on a Varian Cary

300 scan UV–vis spectrophotometer. All reactions were moni-

tored by analytical TLC with silica gel 60 F254 revealed with

ammonium molybdate reagent. The residues were purified

through silica gel 60 (0.063–0.2 mm). Exact mass was obtained

by Waters ACQUITY™ XevoQToF spectrometer.

Laser flash photolysis (LFP) measurements
As described in [17], a pulsed Nd:YAG laser was used for the

excitation at 355 nm. The single pulses were of ~10 ns duration,

and the energy was from 10 to 1 mJ/pulse. The LFP system

consisted of the pulsed laser, the Xe lamp, a monochromator

and a photomultiplier made up of a tube, housing and power

supply. The output signal from the oscilloscope was transferred

to a personal computer. All experiments were performed at

room temperature. The samples were dissolved in dichloro-

methane to have an absorbance of ca. 0.30 at 355 nm, and solu-

tions were deareated by bubbling nitrogen.

Steady-state photolysis of dyads 1 and 2
Solutions of 1, 2 or 3 (ca. 10−4 M concentration) were irradi-

ated, under anaerobic conditions, with monochromatic light at

266 nm using the Xe lamp of a Photon, Tecnology spectrofluo-

rometer equipped with monochromator. The changes were

monitored by UV–vis spectrophotometry following the de-

crease in the absorption at 290 nm.

To preparative scale, deaerated dichlorometane (20 mL) solu-

tions of (S)- or (R)-α-Ch dyads 1 and 2 (150 mg, 0.24 mmol)

were irradiated for 8 h through Pyrex with a 400 W medium

pressure mercury lamp. After this time the reaction mixtures

were concentrated under reduced pressure, and the photomix-

tures were submitted to silica gel column chromatography,

using hexane/ethyl acetate (eluent: 98:2), which afforded the

pure photoproducts 4 and 5.

Data for compounds 4 and 5
Photoproduct 4 (51%)
1H NMR (CDCl3, 300 MHz) δ 0.53 (s, 3H), 0.79 (d, J = 6.6 Hz,

3H), 0.80 (d, J = 6.6 Hz, 3H), 0.82 (s, 3H), 0.87 (d, J = 6.6 Hz,

3H), 1.57 (d, J = 7.2 Hz, 3H), 0.90–1.98 (complex signal, 24H),

2.18 (m, 1H), 2.49 (m, 1H), 2.69 (s, 1H), 3.09 (m, 1H), 3.62 (q,

J = 7.2 Hz, 1H), 4.59 (m, 1H), 4.70 (m, 1H), 6.44 (dd, J = 8.1

Hz, 2.0 Hz, 1H), 6.83 (dd, J = 8.1 Hz, 2.0 Hz, 1H), 6.99 (dd, J =

5.1 Hz, 3.6 Hz, 1H), 7.11 (dd, J = 3.6 Hz, 1.2 Hz, 1H), 7.25 (dd,

J = 5.1 Hz, 1.2 Hz, 1H), 7.28 (m, 1H), 7.74 (dd, J = 8.1 Hz, 2.0

Hz, 1H); 13C NMR (CDCl3, 75 MHz) δ 10.2, 13.6, 18.8, 18.9,

20.5, 22.6, 22.9, 23.8, 25.5, 26.7, 28.1, 33.1, 35.8, 36.1, 36.2,

38.1, 39.2, 39.6, 40.2, 41.1, 42.9, 46.6, 46.7, 50.2, 56.1, 70.2,

83.9, 124.7, 124.9, 125.0, 125.9, 126.1, 126.7, 128.0, 135.7,

139.7, 146.8, 156.2, 173.4; HRMS–EI (m/z): [M – H]+ calcd for

C41H55O3S, 627.3866; found, 627.3865

Photoproduct 5 (53%)
1H NMR (CDCl3, 300 MHz) δ 0.53 (s, 3H), 0.79 (d, J = 6.6 Hz,

3H), 0.80 (d, J = 6.6 Hz, 3H), 0.82 (s, 3H), 0.87 (d, J = 6.6 Hz,

3H), 1.49 (d, J = 7.2 Hz, 3H), 0.90–1.97 (complex signal, 24H),

2.14 (m, 1H), 2.46 (m, 1H), 2.70 (s, 1H), 3.06 (m, 1H), 3.57 (q,

J = 7.2 Hz, 1H), 4.55 (dd, J = 5.4 Hz, 1.5 Hz, 1H), 4.68 (m,

1H), 6.48 (dd, J = 8.1 Hz, 2.0 Hz, 1H), 6.92 (dd, J = 8.1 Hz, 2.0

Hz, 1H), 6.98 (dd, J = 5.1 Hz, 3.6 Hz, 1H), 7.09 (dd, J = 3.6 Hz,

1.2 Hz, 1H), 7.19 (dd, J = 8.1 Hz, 2.0 Hz, 1H), 7.24 (dd, J = 5.1

Hz, 1.2 Hz, 1H), 7.66 (dd, J = 8.1 Hz, 2.0 Hz, 1H); 13C NMR

(CDCl3, 75 MHz) δ 10.2, 13.1, 18.8, 19.1, 20.5, 22.6, 22.9,

23.7, 25.9, 26.6, 28.1, 32.7, 35.3, 35.8, 36.2, 38.0, 39.2, 39.6,

40.1, 41.2, 42.9, 45.8, 46.4, 50.2, 56.1, 69.7, 84.0, 123.1, 124.7,

124.9, 125.7, 125.9, 126.7, 128.5, 130.8, 134.9, 140.1, 147.0,

156.0, 172.9; HRMS–EI (m/z): [M – H]+ calcd for C41H55O3S,

627.3866; found, 627.3846.

Singlet oxygen measurements
As described in [13], the luminescence (1270 nm) from singlet

oxygen was detected by means of an Oriel 71614 germanium

photodiode (5 mm2) coupled to the laser photolysis cell in right-

angle geometry. An excimer laser (LEXTRA50 Lambda

Physik) was used for the excitation at 308 nm (laser excitation

at 5 low-pulse energies for each molecule). A 5 mm thick (5 cm

in diameter) 1050 nm cut-off silicon filter and a 1270 nm inter-

ference filter were placed between the diode and the cell. The

photodiode output current was amplified and fed into a TDS-

640A Tektronix oscilloscope via a Co-linear 150 MHz, 20 dB

amplifier. The output signal from the oscilloscope was trans-

ferred to a personal computer for study. Thus, the singlet

oxygen quantum yield (ΦΔ) of the dyads was determined in



Beilstein J. Org. Chem. 2016, 12, 1196–1202.

1202

dichloromethane solutions using the same absorbance value

(0.30) at 308 nm for each compound. A singlet oxygen quan-

tum yield (ΦΔ) of 0.95 for perinaphthenone in dichloromethane

was used as standard [22].

Supporting Information
Supporting Information File 1
Copies of 1H, 13C, DEPT, HSQC and NOEDIFF spectra for

photoproducts 4 and 5.

[http://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-12-115-S1.pdf]
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