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Plasmonic photosynthesis of C1–C3 hydrocarbons
from carbon dioxide assisted by an ionic liquid
Sungju Yu 1 & Prashant K. Jain 1,2,3,4

Photochemical conversion of CO2 into fuels has promise as a strategy for storage of inter-

mittent solar energy in the form of chemical bonds. However, higher-energy-value hydro-

carbons are rarely produced by this strategy, because of kinetic challenges. Here we

demonstrate a strategy for green-light-driven synthesis of C1–C3 hydrocarbons from CO2 and

H2O. In this approach, plasmonic excitation of Au nanoparticles produces a charge-rich

environment at the nanoparticle/solution interface conducive for CO2 activation, while an

ionic liquid stabilizes charged intermediates formed at this interface, facilitating multi-

step reduction and C–C coupling. Methane, ethylene, acetylene, propane, and propene

are photosynthesized with a C2+ selectivity of ~50% under the most optimal conditions.

Hydrocarbon turnover exhibits a volcano relationship as a function of the ionic liquid

concentration, the kinetic analysis of which coupled with density functional theory simula-

tions provides mechanistic insights into the synergy between plasmonic excitation and the

ionic liquid.
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Carbon dioxide (CO2) fixation is recognized to be a much-
needed component of a carbon-neutral energy strategy1–4.
Although CO2 is relatively unreactive, various catalytic

processes triggered by heat (thermochemical)5–8, electricity
(electrochemical)9–17, and light (photochemical)18–28 are being
explored for activating CO2 and recycling it back to valuable
petrochemicals. Sunlight-driven conversion of CO2 to fuels is
particularly attractive as a means to store intermittent solar
energy in the form of C–C and C–H bonds. Semiconductor and
metal-catalyzed photoelectrolytic reduction of CO2 has shown
promise; however, these processes have often required ultraviolet
(UV) light and/or considerable electrical energy input, or they do
not favor energy-rich hydrocarbon products. Longer-chain
hydrocarbons possess higher energy densities. Moreover, hydro-
carbons in the liquid state are easier to transport29,30. However,
the formation of longer-chain hydrocarbons from CO2 requires
multiple electron (e–) and proton (H+) transfer steps, as well as
C–C bond formation9,31,32, which pose major kinetic bottlenecks.

Here we demonstrate a visible-light-driven route for the con-
version of CO2 and H2O into C1–C3 hydrocarbons. The scheme
does not involve the application of an electrochemical potential,
UV light, high temperatures, hydrogen gas, or a sacrificial agent.
It uses green light as the sole energy input and driving agent. The
strategy employs plasmonic Au nanoparticles (NPs) of a pseu-
dospherical shape and an average diameter of ~12 nm, as char-
acterized previously28. Au NPs are known from electrochemical
studies33 to activate CO2. The choice of Au NPs was further
driven by the relative chemical stability of Au against bulk oxi-
dation and photocorrosion; the other two common plasmonic
metals, Ag and Cu, while electrocatalytically active for CO2

reduction, are prone to oxidation in air, water, and/or light
excitation. The Au NPs possess a strong localized surface plas-
mon resonance (LSPR) band centered around 520 nm (Fig. 1a),
which enables strong, resonant absorption of green light. The
LSPR excitation of the NPs yields energetic electron–hole (e––h+)
carriers via Landau damping. These e––h+ carriers were shown
in recent studies to drive redox conversions28,34–36, especially
the conversion of CO2 to methane and ethane under blue–green
light28. However, in this past demonstration, isopropanol was
used as a sacrificial h+ scavenger to facilitate e––h+ pair
separation; otherwise, unproductive e––h+ recombination domi-
nated. Thus, isopropanol served as the H+ source in this CO2

reduction scheme, which posed a major limitation for net energy
storage.

The present strategy overcomes this drawback and uses water
as the H+ source and does not require a sacrificial h+ scavenger,
thus constituting a truly fuel-forming reaction. The enhanced
reactivity was enabled by the use of an ionic liquid (IL) medium,
specifically comprised 1-ethyl-3-methylimidazolium tetra-
fluoroborate (EMIM-BF4). Our choice was motivated by exam-
ples from electrocatalytic CO2 reduction reaction (CO2RR) where
the EMIM-BF4 electrolyte, owing to its highly ionic character,
stabilizes the high-energy CO2

•− radical anion intermediate
formed in the reaction and decreases the overpotential needed for
CO2RR37–42. In addition, EMIM-BF4 has a wide electrochemical
window and high thermal stability43,44. In our photocatalytic
scheme, the EMIM-BF4, as we find from kinetic analysis and
density functional theory (DFT) simulations, promotes e– transfer
at the interface of the photoexcited Au NP and adsorbed CO2

(Fig. 1b), obviating the need for a h+ scavenger or applied
potential for e––h+ separation.

Results
IL-mediated plasmonic CO2 reduction. The photocatalyst had
the form of a substrate-supported film of Au NPs immersed in an

aqueous solution of EMIM-BF4 saturated with CO2 and con-
tained inside a glass reactor (Supplementary Methods). The light
excitation source comprised a continuous-wave (CW) laser of a
wavelength of 532 nm light and an intensity of 1W cm−2. Under
CW excitation, the steady-state temperature of the reaction
medium got moderately elevated to ~48 °C. Hydrocarbon pro-
ducts collected in the reactor headspace were measured (Sup-
plementary Figs. 1−11) using a gas chromatograph (GC)
equipped with a flame ionization detector. The EMIM-BF4 con-
centration was varied from 0 to 100 mol%, to find optimal con-
ditions for CO2RR. In 1–10 mol% EMIM-BF4, the products of
plasmon-excitation-driven CO2RR were found to be C1 (CH4), C2

(C2H4 and C2H2), and highly reduced C3 (C3H6 and C3H8)
hydrocarbons (Fig. 1c, d and Supplementary Note 1). This pro-
duct profile is quite striking when one considers that the major
product in electrochemical CO2RR is carbon monoxide (CO)
formed by 2e––2H+ reduction of CO2 (refs. 13–17). On the other
hand, propane (C3H8), formed in our scheme, requires an overall
20e––20 H+ reduction and coupling of three CO2 molecules.
Such generation of C3 hydrocarbons by artificial photosynthesis is
challenging and therefore rare.

The CO2RR activity depends on the IL concentration (Fig. 1c).
In pure water the activity was nil, whereas in 1 mol% EMIM-BF4
solution the generation of C1, C2, and C3 hydrocarbons was
observed. The CO2RR activity, as quantified by turnover
frequencies (TOFs) of the hydrocarbon products, increased
dramatically with an increase in the EMIM-BF4 concentration.
The highest activity was found at 5 mol% EMIM-BF4. Increasing
the EMIM-BF4 concentration further resulted in a sharp drop
in the CO2RR activity. In 100mol% EMIM-BF4 solution, the
activity was nil, similar to that in pure water. Thus, the CO2RR
activity exhibits a volcano relationship as a function of the
EMIM-BF4 concentration (Fig. 1c). At all EMIM-BF4 concentra-
tions, where C1, C2, and C3 hydrocarbons were produced, the
product selectivity was found to follow the order: C1 > C2 > C3.
The selectivity for C2+ production is ~50% in 1−10 mol% EMIM-
BF4 solution (Fig. 1d).

Non-hydrocarbon products were also characterized by a GC
equipped with a thermal conductivity detector (TCD) (Supple-
mentary Figs. 12–15). Considerable hydrogen (H2) production
was measured (Supplementary Fig. 12), the TOF of which was
138.2 NP−1 h−1 in 5 mol% EMIM-BF4 solution, the IL concen-
tration where CO2RR activity is the highest. The H2 likely
originates from the competing reduction of H+ in the reaction
medium (Supplementary Eq. (6)). In the GC-TCD measurements,
there were no detection of CO (Supplementary Fig. 15), otherwise
known to be a major product in electrocatalytic CO2RR on Au
(refs. 13–17). Of the possible oxidation products, there was no
measurable production of O2 (see Supplementary Information).
H2O2 was detected (Supplementary Figs. 16–18) by the
fluorogenic test employing a amplex red and horseradish
peroxidase reagent45. Thus, the oxidation of H2O to H2O2 and
H+ (2H2O → H2O2 + 2H+ + 2e−) is the likely oxidation half-
reaction that consumes the photogenerated h+.

Control studies were performed, one without Au NPs, another
without light, and a third without CO2. The conditions were
otherwise maintained the same as those in the photoreaction
tests and a 5 mol% EMIM-BF4 solution, found to be most optimal
in the photoreaction tests, was employed. The control studies
showed that the absence of any one of the components Au NPs,
green light illumination, or CO2 resulted in nil hydrocarbon
production, despite the use of 5 mol% EMIM-BF4 solution
(Supplementary Fig. 19a–c). Thus, it is confirmed that the
hydrocarbon production originates from green-light-driven CO2

reduction on Au NPs. The control study without light excitation
was performed at an elevated temperature of 50 °C so as to mimic
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the steady-state bulk solution temperature of the reaction mixture
in the photoreaction tests. The lack of CO2RR activity in this dark
control study demonstrates that the CO2RR activity in the
photoreaction tests does not originate from simply a photo-
thermal effect of the light excitation. Rather a photoredox process
facilitated by the Au NPs and the IL is responsible for the
conversion of CO2 to hydrocarbons.

The plasmonic catalyst also exhibited stability and recyclability
under the photoreaction conditions and IL media subjected on
the catalyst. We tested the same substrate-supported Au NP film
immersed in 5 mol% EMIM-BF4 over multiple cycles, each
consisting of a 10 h photoreaction. The CO2RR activity and
product selectivity, as determined from the TOFs of the
hydrocarbon products, was maintained over the course of this
multi-cycle test (Supplementary Fig. 20). As the NP film or
EMIM-BF4 solution were not replenished between cycles, the
maintenance of CO2RR activity over multiple cycles suggests that
Au and EMIM-BF4 were not consumed, at any discernible levels,
in the photoredox reaction.

The origin of products. Given the hydrocarbon profile of the
product mixture, it was necessary to go beyond the control studies
described above and confirm more directly that CO2, rather than
carbon contamination or photolysis of the EMIM-BF4, was the
source of the hydrocarbon products. For this confirmation, 13C

isotope labeling was employed (Fig. 2 and Supplementary Figs. 21
and 22). In this labeling study, 13CO2 was employed as the reac-
tant instead of 12CO2, whereas all other conditions were kept the
same as those in other photoreaction tests. GC-mass spectrometry
(GC-MS) was used for identification of the hydrocarbon products
generated in the photoreaction (Fig. 2a). The GC-MS analysis
confirmed the presence of 13CH4 (Fig. 2b) and 13C2H2 (Fig. 2c),
manifested by their characteristic mass fragmentation patterns,
shifted to higher m/z compared with reference fragmentation
patterns of 12CH4 and 12C2H2, respectively. Thus, isotope labeling
confirms CO2 to be the origin of hydrocarbon products.

The role of the IL. We attempted to gain a mechanistic under-
standing of this catalytic scheme focusing on the question of how
the IL promotes CO2RR activity. It was observed that the pre-
sence of EMIM-BF4 in the aqueous medium results in a con-
siderably acidic pH (Supplementary Fig. 23): the 5 mol% EMIM-
BF4 solution has a pH of 2.95. To determine whether this acidity
is responsible for the enhanced CO2RR activity in a EMIM-BF4
solution, we performed a photoreaction in deionized water con-
taining no EMIM-BF4 but with a pH of 2.93 achieved using acid
(Supplementary Fig. 19d). All other conditions were kept the
same as in the photoreactions in EMIM-BF4 solutions. In this
EMIM-BF4-free photoreaction, no products were observed, which
demonstrated that the high acidity or H+ concentration, [H+], of
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Fig. 1 Ionic-liquid-promoted CO2 reduction to C1–C3 hydrocarbons using a plasmonic Au nanoparticle (NP) photocatalyst. a UV−vis extinction spectrum of
a colloid of the Au NPs used for preparation of the photocatalyst film. The spectrum exhibits a localized surface plasmon resonance (LSPR) band centered
around 520 nm, as indicated by the dotted line. b Scheme for CO2 conversion on plasmon-excited Au NPs promoted by an ionic liquid, EMIM-BF4. A
continuous-wave (CW) laser of a wavelength of 532 nm and intensity of 1W cm–2 was used as the light source for photoexcitation of Au NPs. EMIM-BF4
stabilizes CO2 and resulting adsorbates/intermediates on the photoexcited Au surface. c Turnover frequencies of hydrocarbon products formed in the
CO2RR plotted as a function of the EMIM-BF4 concentration (mol%). The CO2 conversion activity peaks at 5 mol% of EMIM-BF4. d Hydrocarbon product
selectivity as a function of EMIM-BF4 concentration (mol%). Each data point in c and d is the average of results from three identical trials and the error bar
represents the SD of these measurements
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the EMIM-BF4-containing medium is not the sole cause of the
enhanced CO2RR activity. EMIM-BF4 plays other role(s). It is
possible, in principle, for EMIM-BF4, instead of H2O, to serve as
the h+ acceptor; however, if this were the case, then the CO2RR
activity would have been enhanced at higher EMIM-BF4 con-
centrations, in line with a study of a different plasmon excitation-
catalyzed redox reaction36. Instead, we observed peak activity at a
EMIM-BF4 concentration of 5 mol%, above which the activity
drops steeply reaching nil in pure EMIM-BF4 wherein H2O is not
available.

We hypothesized that the strongly ionic character of EMIM-
BF4 plays a role in the activation of CO2, which is otherwise
fairly redox inactive. CO2, however, is highly polarizable, as
indicated by its quadrupole moment of −4.3 D Å (ref. 46). The
interaction of EMIM-BF4 and CO2 was simulated by DFT. A
past study suggests that CO2 can undergo complexation with
the N-heterocyclic carbene, EMIM*, formed from EMIM+ by H
+ loss42. We investigated using DFT the structure of such a
[EMIM*-CO2] complex (Fig. 3a). The complex exhibits binding
between the C atom of the CO2 and the C2 atom of the
imidazole ring with an energy of intermolecular interaction,
Em-m, of −0.36 eV. This interaction is stronger than, for
instance, the interaction of an H2O molecule and CO2 (Fig. 3b).
Unlike the latter case, complexation with EMIM* leads to
considerable restructuring of the CO2 moiety. The CO2 moiety
adopts a bent configuration with an O=C=O angle of 133.7°
and C=O bonds lengthened to 1.24 Å. In fact, the geometry
of the CO2 moiety in the complex closely mirrors that of the
CO2

•− anion radical, which has a bond angle of 137.8° and
bond length of 1.23 Å (Supplementary Fig. 24). Moreover, from
Mulliken charge partitioning analysis (Supplementary Fig. 25),
the CO2 moiety in the [EMIM*-CO2] complex is found to have
a net charge of −0.73, which indicates its partial anionic
character.

It is known that the energetic cost of the drastic structural
reorganization from linear CO2 to the bent CO2

•− anion radical
poses a major barrier for e− acceptance by CO2 (refs. 37–42).
However, our DFT calculations show that in its complex with
EMIM*, the CO2 moiety is structurally pre-configured for e−

acceptance. Consistent with this finding, 1e– addition to [EMIM*-
CO2] is much more favorable as compared with 1e− addition to
CO2 (Fig. 3c, d). Thus, it appears that EMIM-BF4 can promote
the transfer of photogenerated e– from the Au NP to adsorbed
CO2, which is otherwise a major kinetic bottleneck in the
photocatalytic reduction process. Furthermore, it is plausible that
the CO2

•− anion radical formed on the Au surface by photo-
initiated e– transfer process has an enhanced lifetime due to
solvation or complexation by EMIM+ (Fig. 3e). A longer lifetime
of this reactive intermediate would increase the probability of
C–C coupling between the intermediates.

Empirical kinetic model. Although the DFT computations pro-
vide insight into the central role of EMIM-BF4 in CO2 activation,
the volcano-type dependence of the CO2RR activity on the IL
concentration deserves an explanation. From the hydrolysis of
EMIM-BF4 known from past studies47–50:

EMIM� BF4 þ xH2O ! EMIMþ þ BF4�x OHð Þx
� ��þxHF

ð1Þ

where x= 1–4 and the complexation of CO2 with EMIM+ pre-
dicted in DFT simulations:

EMIMþ þ CO2 ! EMIM��CO2½ � þHþ ð2Þ

we postulate a rate determining step in the reaction of CO2
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Fig. 2 13CO2 isotopolog confirmation of CO2RR. a Total ion chromatogram (TIC) of the gaseous products from a 240 h long Au NP-photocatalyzed
13CO2RR in 5mol% EMIM-BF4 solution under CW irradiation of 532 nm light (1W cm–2). Peaks in the TIC appearing at retention times of 4.6 min and 8.2
min correspond to 13CH4 and 13C2H2. The basis for this assignment is provided in Supplementary Fig. 22. bMass fragmentation pattern (red bars) acquired
at a retention time of 4.6 min of the TIC shown in a. For comparison, a reference fragmentation pattern (gray bars) of 12CH4 from the National Institute of
Standards and Technology (NIST) Chemistry WebBook is shown. Fragments at m/z= 14 and 18 in the experimental pattern were suppressed to remove
the mass peaks contributed by N2 and moisture, respectively. c Mass fragmentation pattern (blue bars) acquired at a retention time of 8.2 min of the TIC
shown in a. For comparison, a reference fragmentation pattern (gray bars) of 12C2H2 from the NIST Chemistry WebBook is shown. The fragment at m/z=
28 in the experimental pattern has relatively high abundance as compared with that of the reference fragmentation pattern due to the contribution of N2

from the atmosphere. Relative abundances in b and c were obtained from the measured abundances shown in Supplementary Fig. 21a, b, respectively. It is
noteworthy that 13C2H4 was not resolved by GC-MS due to the likely overlap of the 13C2H4 peak with the broad, intense 13CO2 peak in the TIC
(Supplementary Fig. 22b)
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and H2O:

EMIM� BF4 þ CO2 þ xH2O ! EMIM��CO2½ �
þ BF4�x OHð Þx
� ��þ x þ 1ð ÞHþ þ xF�

ð3Þ

From this reaction equation, the concentration of the activated
CO2 complex, [EMIM*-CO2], is expected to be directly propor-
tional to [H+]x+1. Therefore, the [H+] determined from the
measured pH of the EMIM-BF4 solution (Supplementary Fig. 23)
serves as a proxy for the concentration of [EMIM*-CO2], based
on which the [EMIM*-CO2] concentration is expected to be the
highest in the EMIM-BF4 concentration range around 5 mol%.
The higher the concentration of the activated [EMIM*-CO2]
complex, the greater is the rate of CO2 conversion and also the
higher the likelihood of C–C coupling required for C2+ produc-
tion. Therefore, both the overall activity and the selectivity in
favor of C

2+
products are favorable in the 3–7 mol% EMIM-BF4

range, with the most optimal performance achieved at 5 mol%
EMIM-BF4. On the other hand, the activated complex has zero
concentration in pure water on one extreme and in pure EMIM-
BF4 on the other extreme, which explains the nil turnover at these
conditions. An additional reason for the drop in activity at higher
EMIM-BF4 concentrations may be that the adsorption of BF4– to
the Au NP surface (Supplementary Fig. 26) dominates at these
concentrations to such an extent that the adsorption of CO2 and/
or [EMIM*-CO2] to the Au surface is largely inhibited and so is
the e− transfer to CO2.

The CO2RR activity depends on the concentration of this
activated complex to a high reaction order. This is best
exemplified by the plots of TOF for each hydrocarbon as a
function of the [H+] (Fig. 4a–e), which as explained above, serves
as a proxy for the concentration of [EMIM*-CO2]. The pseudo-

reaction order, n, is found to be 1.9 for C2H4, 2.5 for C2H2, 3.7 for
C3H6, and 4.0 for C3H8. The fit for the CH4 TOF has a relatively
high χ2-value, so the n of 2.7 estimated for CH4 has a lower
confidence. In general, the pseudo-reaction order is higher for the
longer hydrocarbons, which perhaps captures the need for
multiple activated complexes to be available for undergoing
coupling to C2 and C3 fragments. The high pseudo-reaction order
for the C3 products goes hand-in-hand with an apparent
threshold in [H+] below which the TOF is zero or below the
detection limit (Fig. 4d, e). For each of the hydrocarbon products,
the [H+] raised to the power of the corresponding n follows a
volcano trend with respect to the EMIM-BF4 concentration,
mirroring closely the trend in the TOF for that hydrocarbon
(Fig. 4f–j).

Thus, we reported the green-light-driven synthesis of C1–C3

hydrocarbons from CO2 and water on plasmonic Au NPs in an IL
medium. The resonant green light absorption of the plasmonic
NPs and their ability to sustain electrostatically charged surfaces
under resonant CW excitation are at the heart of the observed
photoreactivity. The IL plays a synergistic role due to its
complexation with the CO2, which preconfigures the CO2 for
accepting e– from photoexcited Au NPs. The enhanced reactivity
of CO2 in the presence of the IL obviates the need for an applied
potential or a sacrificial scavenger. Although hydrocarbon
production yields in the reaction need further optimization, the
generation of propane by overall 20e−–20H+ reduction and
coupling of three CO2 molecules is both striking and mechan-
istically rich. The precise intermediates and reaction pathways,
including C–C coupling and dehydrogenation steps, which yield
each of the hydrocarbons, deserve further elucidation. Beyond
CO2 conversion studied here, ILs may have promise in other
photocatalytic schemes where activation of relatively inert
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substrates and stabilization of high-energy charged intermediates
is desirable.

Data availability
All raw images and source data are available from the authors upon reasonable request.
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