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Fusarium wilt (FW) is a primary replant disease that affects Pseudostellaria heterophylla
(Taizishen) and is caused by Fusarium oxysporum, which occurs widely in China
under the continuous monocropping regime. However, the ternary interactions
among the soil microbiota, P. heterophylla, and F. oxysporum remain unknown. We
investigated the potential interaction relationship by which the pathogen-mediated
P. heterophylla regulates the soil and the tuberous root microbiota via high-throughput
sequencing. Plant–pathogen interaction assays were conducted to measure the arrival
of F. oxysporum and Pseudomonas poae at the tuberous root via qPCR and subsequent
seedling disease incidence. A growth assay was used to determine the effect of the
tuberous root crude exudate inoculated with the pathogen on P. poae. We observed
that pathogen-mediated P. heterophylla altered the diversity and the composition of
the microbial communities in its rhizosphere soil and tuberous root. Beneficial microbe
P. poae and pathogen F. oxysporum were significantly enriched in rhizosphere soil
and within the tuberous root in the FW group with high severity. Correlation analysis
showed that, accompanied with FW incidence, P. poae co-occurred with F. oxysporum.
The aqueous extract of P. heterophylla tuberous root infected by F. oxysporum
substantially promoted the growth of P. poae isolates (H1-3-A7, H2-3-B7, H4-3-C1,
and N3-3-C4). These results indicated that the extracts from the tuberous root of
P. heterophylla inoculated with F. oxysporum might attract P. poae and promote its
growth. Furthermore, the colonization assay found that the gene copies of sucD in
the P. poae and F. oxysporum treatment (up to 6.57 × 1010) group was significantly
higher than those in the P. poae treatment group (3.29 × 1010), and a pathogen-
induced attraction assay found that the relative copies of sucD of P. poae in the
F. oxysporum treatment were significantly higher than in the H2O treatment. These
results showed that F. oxysporum promoted the colonization of P. poae on the
tuberous root via F. oxysporum mediation. In addition, the colonization assay found
that the disease severity index in the P. poae and F. oxysporum treatment group was
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significantly lower than that in the F. oxysporum treatment group, and a pathogen-
induced attraction assay found that the disease severity index in the F. oxysporum
treatment group was significantly higher than that in the H2O treatment group. Together,
these results suggest that pathogen-mediated P. heterophylla promoted and assembled
plant-beneficial microbes against plant disease. Therefore, deciphering the beneficial
associations between pathogen-mediated P. heterophylla and microbes can provide
novel insights into the implementation and design of disease management strategies.

Keywords: microbial community, Fusarium wilt, F. oxysporum, P. poae, P. heterophylla

INTRODUCTION

Pseudostellaria heterophylla (Crown Prince Ginseng/Taizishen)
belongs to the Caryophyllaceae family and has been one of
China’s most widely used traditional herbal medicines for
over 3,000 years. It is mainly produced and cultivated in
a geo-authentic production zone in China’s Guizhou, Anhui,
Shandong, and Fujian provinces (Zhao et al., 2016). The herb
is widely used for treating diseases that occur in the lung
and spleen (Pang et al., 2011). Continuous monoculture of
traditional herbal medicines often leads to soil-borne disease.
Like other traditional herbal medicines and crops, P. heterophylla
is replanted on the same field with asexual propagation for many
years, resulting in the high incidence of Fusarium wilt (FW),
a replant disease caused by infection with Fusarium oxysporum
(Wu et al., 2016b, 2020a, 2021; Chen et al., 2021). FW is
characterized by damping-off, wilting, and dry brown rot and
is a disastrous disease in many crops (i.e., wheat, cotton, and
chickpea) and fruits (i.e., banana, melon, and watermelon). The
annual incidence of FW is approximately 20%, leading to a
severe reduction in yield and no harvest in extreme cases. In
addition, the fumonisin and zearalenone mycotoxins produced
by F. oxysporum contaminated P. heterophylla tuberous root
(used for herbal medicine decoction pieces), severely affecting the
quality of P. heterophylla.

Many previous studies have shown that continuous
monocropping of P. heterophylla decreases the diversity
and alters the composition of the soil microbial community.
For example, consecutive cropping of P. heterophylla leads to a
high incidence of replant disease via an imbalanced microbial
structure with a higher ratio of pathogens/beneficial bacteria
in the rhizosphere soil (Wu et al., 2016a; Zhao et al., 2016).
Some studies have also reported that agricultural practices
and soil remediation are used to alleviate continuous cropping
obstacles. An analysis by Wu et al. (2016b) showed that the
application of novel bio-organic fertilizer effectively suppressed
FW by enriching the antagonistic bacteria and enhancing the
bacterial diversity. Wu et al. (2020a, b) found that P. heterophylla
resisted replanting disease, or the disease was alleviated by
enriching plant-beneficial microbes in the soil and reducing
the accumulation of soil-borne pathogens via agricultural
practices such as growing a natural forest cover or performing
intraspecific intercropping. All these studies only found that
continuous cropping increased soil-borne diseases by enriching
pathogens and reducing beneficial bacteria in the rhizosphere

soil of P. heterophylla. However, the regulation mechanism of
P. heterophylla on rhizosphere microorganisms when it suffered
from replant disease has not been reported yet.

Soil microorganisms are essential regulators of plant disease
resistance, growth, development, fitness, and immunity. In turn,
plants regulate their growth and motility under biotic stress
or abiotic stress (Chakraborty and Newton, 2011; Liu et al.,
2019b, 2020). Continuous monoculture leads to many soil-borne
pathogens in the soil and a high biotic stress environment
for plants, which leads to an increased incidence of disease
(Lapsansky et al., 2016; Zhang et al., 2016; Kong et al., 2019; Liu
et al., 2019a). In recent years, many researchers have found that
the enrichment of beneficial microbes in the soil mediated by
pathogen infection can alleviate soil-borne disease and expand
plant defensive capabilities (Elad et al., 2010). It is unknown
whether pathogens can intervene in P. heterophylla to enrich
beneficial microbes under the continuous monocropping regime.

Many studies have described the disease-induced plant
protection mechanism known as the “cry for help” that indirectly
contributes to the enrichment of beneficial microbes. When a
plant is subjected to nutritional deficiency, its roots secrete amino
acid (i.e., asparagine, ornithine, and tryptophan) (Carvalhais
et al., 2015; Lebeis et al., 2015) and aromatic organic acids (i.e.,
nicotine and cinnamic acid) (Zhalnina et al., 2018) to attract
specific taxa that can alleviate soil-borne disease. Recent studies
also found that the beneficial microbes dynamically respond to
the presence of a pathogen, which supports the hypothesis that
plants actively assemble specific microbial species or microbial
communities to fight soil-borne diseases upon pathogen infection
(Berendsen et al., 2018; Lee et al., 2020; Liu et al., 2020).

For example, Arabidopsis promoted the proliferation of
three specific bacteria (e.g., Xanthomonas sp., Stenotrophomonas
sp., and Microbacterium sp.) in the rhizosphere upon leaf
infection with the downy mildew pathogen Hyaloperonospora
arabidopsidis (Berendsen et al., 2018). Changes in the
composition and enrichment of potentially beneficial
microorganisms have also been observed in barley roots
infected with F. graminearum (Deshmukh and Kogel, 2007). The
phenomenon also exists in many traditional herbal medicines
such as P. heterophylla infected with Serratia marcescens (Zhang
et al., 2016) and Panax ginseng (Liu et al., 2019a) infected with
F. oxysporum. The capacity of plants to exploit protective benefits
from their root microbiome is plant species- and genotype-
dependent (Elad et al., 2010; Berendsen et al., 2018). Therefore,
it is unknown whether P. heterophylla as a medicinal plant can
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recruit specific microbiota to resist diseases. Hence, we think
that P. heterophylla may recruit specific beneficial microbiota to
alleviate diseases via a “cry for help” hypothesis. To achieve our
aims, (1) we conducted a field experiment whereby a continuous
monoculture of P. heterophylla was planted in a field for 3 years
with high F. oxysporum stress. After 4 months, we collected
rhizosphere soil (RS), root zone soil (RZ), bulk soil (BK), and
tuberous roots of P. heterophylla with naturally high (H), low (L),
and no (N) symptom of FW. (2) We aimed to investigate how
P. heterophylla regulates the microbiota in RS, RZ, and tuberous
roots infected with FW via high-throughput sequencing. (3)
Growth assays and plant-pathogen interaction assays further
indicated that P. heterophylla can attract and assemble specific
microorganisms under biotic stress.

MATERIALS AND METHODS

Field Experiments
Field experiments were conducted in 2018 on P. heterophylla
that was planted on December 13 in major cultivation areas
in Shibing County (27◦4’21"N, 108◦8’0"E, and 759 m a.s.l.) in
Guizhou Province, China. The monthly average precipitation is
14–278 mm, and the monthly means temperature is 4.7–27.3◦C
in Shibing County. For 3 years, monocultured P. heterophylla was
planted in the experimental field, and there was a widespread
occurrence of FW during the last planting. The field was
approximately 30 m long and 20 m wide and had 30 ridges 30–
40 cm high parallel to the wide side (Supplementary Figure 1A)
and two adjacent ridges spaced 20 cm apart. The P. heterophylla
was planted with a 5- to 10-cm spacing between plants. Shitai 1#,
the cultivar studied here, is susceptible to FW.

Sampling
The two soil-root system compartments of each plant, including
RS and RZ, were selected to fully explore the relationship
between the soil microbiome and FW incidence in the soil-root
system and bulk soil (as a control) (Supplementary Figure 1).
Samples were collected on April 13, 2019 (4 months after
planting). All plants were randomly chosen with the same disease
severity, and the population density, appearance, plant size,
growth rate, and growth period were consistent; plants with
pest infestations or mechanical damage and those impacted by
marginal effects were excluded.

Fusarium wilt severity was evaluated as described by Naruto
et al. (1991) using a rating scale ranging from 0 to 5: 0, no
symptom; 1, 0.1–20.0% withering; 2, 20.1–40.0% withering; 3,
40.1–60.0% withering; 4, 60.1–80.0% withering; and 5, 80.1–100%
withering; the coverage range was evaluated based on simple
measurements with a grid ruler. Disease severity index (DSI)
was calculated by the following formula: 6 (number of samples
per rating × rating value)/the sum of samples. Eighteen plants
were selected according to FW severity, six plants were grouped
and identified as H (FW severity rank ≥ 3), and six plants
were grouped and identified as L (FW severity rank = 1–2). Six
plants were grouped and identified as N (FW severity rank = 0)
(Supplementary Figure 1B).

To accurately evaluate the relationship between the soil
microbiome and FW severity, the RS was considered to be the
soil tightly attached to tuberous roots, which was collected using
a modification of the method previously described by Shi et al.
(2019) and Yuan et al. (2020b). In brief, the plant was carefully
harvested by uprooting with an aseptic stainless steel shovel and
then shaken to remove loosely attached soil. The tuberous roots
with tightly bound soil were added to a 500-ml centrifuge tube
with 100 ml of sterile water and vortex-mixed at 200 rpm for
20 min. The soils were collected by centrifugation at 11,000 rpm
for 10 min. The RZ was collected as the loosely attached soil
on the tuberous roots, and the unplanted field soil was collected
as the BK. The washed tuberous roots were used for culturable
microorganism analysis. A sample consisted of two plants, and
each category was composed of three replications. Twenty-one
samples (nine RS, nine RZ, and three BK samples) were stored
at low temperatures in ice bags and transported to the laboratory
within 8 h. After thoroughly mixed, all samples were stored at
-80◦C for subsequent DNA extraction.

Isolation and Identification of Culturable
Microorganisms
The culturable fungus was isolated from tuberous roots of
P. heterophylla with different FW severity using the tissue block
method on potato dextrose agar (PDA) medium plates (200-g
potato, 20-g D-glucose, 0.5-g MgSO47H2O, and 0.5-g KH2PO4
per liter). All collected tuberous root samples were washed three
times in phosphate-buffered saline (PBS) and then sterilized with
75% alcohol for 30 s and sodium hypochlorite for 8 min. We
cut the sterilized tuberous roots into 1 × 1 cm pieces, and five
pieces were inoculated onto PDA plates for culture at 28◦C for 3–
5 days. Every sample was repeated by growing on five individual
dishes. Single colonies were selected and sub-cultured three times
on PDA plates.

Isolation of culturable bacteria from tuberous roots of
P. heterophylla with different FW severity was conducted using
a dilution plate method on Luria-Bertani (LB) agar medium (5-
g NaCl, 10-g tryptone, and 5-g yeast extract per liter). Briefly, all
collected tuberous root samples were sonicated in 20 ml of PBS
solution for 30 min, and an aliquot (2 ml) of the suspension was
diluted ten times. An aliquot (100 µl) of the dilution suspension
was coated onto LB medium and cultured at 25◦C for 2 days,
and then, individual colonies were isolated and stored at -80◦C
in 20% glycerol.

The internal transcribed space (ITS) fragments of the rRNA
gene of isolated fungal strains were amplified with universal
primers ITS1F (CTTGGTCATTTAGAGGAAGTAA) and ITS2R
(GCTGCGTTCTTCATCGATGC), and the whole sequencing of
the 16S rRNA genes of isolated bacterial strains was amplified
with universal primers 27F (AGAGTTTGATCCTGGCTCAG)
and 1492R (TACGGYTACCTTGTTACGACTT). PCR amplicons
were verified on a 1% agarose gel. The reaction products were
purified using an AxyPrep DNA Gel Extraction Kit (Axygen
Biosciences, Union City, CA, United States) and then sequenced
on an ABI 3730XL DNA Analyzer (Applied Biosystems, CA,
United States) according to the standard protocols by Majorbio
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Bio-Pharm Technology Co., Ltd. (Shanghai, China). The ITS
and 16S sequences were aligned with the NCBI NR database by
Nucleotide BLAST1 to determine the approximate phylogenetic
affiliation of the strains. Taxonomy was confirmed by identity
value with a threshold 98% that was selected as the first-ranked
of all listed matches.

DNA Extraction and Internal Transcribed
Space and V3V4 Fragment Amplification
According to the manufacturer’s protocols, microbial DNA
was extracted from 21 samples using the E.Z.N.A.§ soil DNA
Kit (Omega Biotech, Norcross, GA, United States). The DNA
concentration and purification were determined using a
NanoDrop 2000 UV-Vis spectrophotometer (Thermo Scientific,
Wilmington, DE, United States). The DNA integrity was
confirmed by 1% agarose gel electrophoresis. We amplified
the V3V4 hypervariable regions of the bacterial 16S rRNA
gene with primers 338F (5′-ACTCCTACGGGAGGCAGCAG-
3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) and
ITS1 regions of the fungus rRNA gene with primers ITS1F
(5′-CTTGGTCATTTAGAGGAAGTAA-3′) and ITS2R (5′-
GCTGCGTTCTTCATCGATGC-3′). The PCR reactions were
conducted using the following conditions: pre-denaturation
for 3 min at 95◦C, 27 cycles of denaturation for 30 s at 95◦C,
annealing for 30 s at 55◦C, elongation for 45 s at 72◦C, and
a final extension at 72◦C for 10 min. The PCR reactions were
performed in triplicate in a 20 µl of reaction mixture containing
4 µl of 5 × FastPfu Buffer, 2 µl of 2.5 mM dNTPs, 0.8 µl of
each primer (5 µM), 0.4 µl of FastPfu Polymerase, and 10 ng
of template DNA.

Illumina MiSeq Sequencing and Analysis
According to the manufacturer’s protocol, the PCR products were
isolated and extracted from a 2% agarose gel, purified using the
AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union
City, CA, United States), and then quantified using QuantiFluor-
ST (Promega, Madison, WI, United States). Purified amplicons
were pooled in equimolar amounts and paired-end sequenced
(2 × 300) on an Illumina MiSeq platform (Illumina, San Diego,
CA, United States) according to the standard protocols by
Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China).

After Illumina sequencing, we obtained 0.81-gigabyte (GB)
fungi and 0.79-GB bacterial raw sequences deposited in the
Sequence Read Archive database at the NCBI (the BioProject
accession number: PRJNA803322). Trimmomatic was used to
quality-filter and trim the raw sequences, and FLASH was
used to merge the paired-end sequences to a tag from the
high-quality clean sequences following the criteria as previously
described (Yuan et al., 2018). Operational taxonomic units
(OTUs) were clustered with a 97% similarity cutoff using
UPARSE software (version 7.12). The taxonomy assignment
of bacteria was analyzed by the Ribosomal Database Project
Classifier algorithm (RDP, V.11.53) against the SILVA rRNA

1https://blast.ncbi.nlm.nih.gov/Blast.cgi
2http://drive5.com/uparse/
3http://rdp.cme.msu.edu/

database (SSU1234) (Yilmaz et al., 2013) with a 70% confidence
threshold. In addition, the taxonomy assignment of fungi was
analyzed by the RDP algorithm against the UNITE database
(version 65) (Nilsson et al., 2019).

Alpha-diversity indexes evaluated each sample’s richness and
species diversity. The observed species, Chao, ACE, Shannon,
and Simpson indexes were calculated by the QIIME software
(V1.806). Principal coordinate analysis (PCoA) based on the
Bray–Curtis distance matrix computed the beta diversity metrics
using the “phyloseq” and “vegan” packages of R software
(v3.6.27). The phylum composition in different soil groups was
calculated by the “statnet” package of R software and was
visualized by the “circlize” package of R software. The ternary
analysis calculated microbe enrichment by R software’s “vcd”
package. The “psych” package calculated the correlation analysis
in R software based on the Sparcc method (Yan et al., 2020). The
filter conditions were significance level with cutoff value p < 0.05
and correlation coefficient with threshold value r > 0.6. Finally,
the co-occurrence diagrams were visualized by the “igraph”
package in R software.

Growth Assays of Bacterial Isolates
From Pseudostellaria heterophylla Roots
Mixed With Extracts of Pseudostellaria
heterophylla Tuberous Roots Infected by
Fusarium oxysporum
A 10-g tuberous root of P. heterophylla inoculated with
F. oxysporum was ground into a powder to prepare an extract.
Then, 50 ml of water was added, and the solution was
ultrasonicated for 20 min; this solution was used as the control.
The suspension was sterile-filtered with a 0.22-µm membrane
and then added to LB medium according to the volume ratio
of 1:100. Next, 1 µl of culture from 216 bacterial strains isolated
from diseased tuberous roots was inoculated in LB medium with
aqueous extract and was cultured in a 25◦C incubator under
the light. Three replicates were carried out for each treatment.
Two days after cultivation, we captured images using a Nikon
microscope and calculated the growth area of each strain under
different treatments using ImageJ software.

The Pathogen-Induced Attraction Assay
The pathogen-induced attraction assay in the agar medium
was carried out as follows. Sodium hypochlorite–sterilized
P. heterophylla seeds were germinated at 25◦C and 80%
humidity. Two-week-old plants with the same growth vigor
were selected and transferred to the center of the agar
medium. They were inoculated with 10 µl of F. oxysporum
spores (isolated from the tuberous root of P. heterophylla,
concentration = 5 × 105 CFU/ml); 10 µl of was used as the
control. Plants were grown in a light incubator and covered with
transparent lids to increase the relative humidity. After 7 days, a

4https://www.arb-silva.de/
5https://unite.ut.ee/
6http://qiime.org/
7https://www.r-project.org/
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sterilized toothpick was placed parallel with the tuberous root at
a 0.5-cm distance, and 100 µl of fresh cultures of Pseudomonas
poae and Pseudomonas tonnasii (isolated from the tuberous root
of P. heterophylla, OD600 = 1) was inoculated on the toothpick.
Plants were co-cultured at 25◦C and 80% humidity. Images were
captured using a Nikon microscope after 7 days of co-cultivation,
and the growth distances of P. poae and P. tonnasii were
calculated using ImageJ software. Each treatment was carried out
for three replicates.

The pathogen-induced attraction assay in soil was carried
out as follows. The preparation of plants and inoculation
pathogen were similar to that for the pathogen-induced attraction
assay in agar medium. Fresh P. poae (10 ml) (OD600 = 1)
was sprayed on the soil in pots, and F. oxysporum– and
ddH2O-inoculated plants were cultured in the pots in a
light incubator at 25◦C and 80% humidity. Seven days after
cultivation, images were captured using a Nikon microscope.
The numbers of P. poae in the tuberous roots were determined
by taxon-specific qPCR. In brief, the tuberous root from each
treatment was weighed and ultrasonicated for 20 min in PBS.
The supernatant was collected and centrifuged for 10 min
at 12,000 rpm, and the precipitate was then harvested and
used to extract total DNA using an E.Z.N.A.§ Soil DNA
Kit (Omega Bio-Tek Inc., Norcross, GA, United States). The
quality and quantity of each sample’s DNA were examined with
a NanoDrop spectrophotometer (Eppendorf, HH, Germany).
All qPCRs were carried out in 96-well plates using a Bio-
Rad, Hercules, CA, United States CFX Connect Real-Time
System (Bio-Rad, Hercules, CA, United States). Taxon-specific
primers were used to analyze the sucD genes in P. poae
(Supplementary Table 7). The relative abundance of P. poae
was calculated from the cycle threshold values and linear
regression coefficients derived from the standards of each
strain and adjusted to gene copies per gram of tuberous root
weight. There were three replicates for each treatment, including
six tuberous roots.

Colonization Assay
In the colonization assay, the preparation of plants was similar
to that followed for the disease-induced attraction assay in the
agar medium. The plants were co-inoculated with 20 ml of
F. oxysporum spores (concentration = 5 × 105 CFU/ml) and
treated (or not) with 20 ml of P. poae suspension (OD600 = 0.5);
inoculation with ddH2O was used as a control. Plants were
cultured under similar conditions as those described above.
Fourteen days after cultivation, images were captured using a
Nikon microscope, and the relative abundance of Fusarium and
Pseudomonas in tuberous roots was determined by taxon-specific
qPCR as described above. Taxon-specific primers for ITS genes in
F. oxysporum are shown in Supplementary Table 7.

Statistical Analysis
The two-tailed Wilcoxon rank sum test was calculated using
the Wilcox.test function in the “stats” package of R. Spearman’s
correlation coefficient and significant differences were computed
using the corr.test function in the “psych” package of R. Analysis
of similarities (ANOSIM) was performed with the anosim

function from the “vegan” package of R based on the Bray–Curtis
metric method. The Bray–Curtis metric was calculated using the
vegdist function from the R package “vegan.”

RESULTS

Diversity and Composition of the
Microbial Community Were Highly
Correlated With the Fusarium Wilt
Severity in the Rhizosphere and
Endosphere of Tuberous Roots
To investigate the microbial composition and diversity of
P. heterophylla in soils conferring different disease severity, we
collected soils with three severities of FW from their authentic
production areas in Shibing County (Guizhou Province)
(Supplementary Table 1). Accordingly, we collected RS, RZ, and
BK samples as described by Shi et al. (2019) and Yuan et al.
(2020b; Supplementary Figure 1). The V3V4 and ITS2 regions
of the bacterial 16S rDNA and fungal 18S rDNA were amplified
by PCR and sequenced on an Illumina MiSeq platform. In total,
1,316,364 high-quality clean V3V4 sequences were obtained with
a median sequence per sample value of 62,684 (range 53,296–
73,661) from 21 samples. In addition, 1,338,526 high-quality
clean ITS2 sequences were obtained with a median sequence per
sample value of 63,740 (range 39,024–74,174) from 21 samples
(Supplementary Table 1).

The general features of the high-throughput sequencing
results of the V3V4 and ITS2 region and taxon numbers at all
levels are shown in Supplementary Tables 2, 3, respectively. In
total, Good’s coverage for the observed bacterial OTUs and fungal
OTUs were 98.8 ± 0.03% and 99.7 ± 0.01% (mean ± SEM),
respectively, which resulted in the identification of 4,716 bacterial
OTUs and 2,065 fungal OTUs. The number of OTUs in each soil
compartment is shown in Supplementary Figure 2. The number
of OTUs was no statistical significance for RS or RZ by Kruskal–
Wallis rank sum test among the three severities of FW (RS in
bacteria, P = 0.4911; RZ in bacteria, P = 0.2881; RS in fungi,
P = 0.8752; RZ in fungi, P = 0.9565). Alpha-diversity analysis
showed that Ace, Chao, and Sobs were significant differences
in the bacterial community between RZH and RZN but not in
the fungal community (Duncan’s multiple range test, P < 0.05)
(Supplementary Tables 4, 5).

Principal coordinate analysis (beta diversity) was performed
to visualize the similarity and dissimilarity in the bacterial
and fungal OTUs obtained from 16S rRNA and 18S rRNA
gene amplicon sequencing using the Bray–Curtis metric. The
results revealed that RS separated the bacterial community
according to the severity of FW (H, triangle; L, circular; and N,
square). ANOSIM analysis also showed that there were significant
differences in the beta diversity of the bacterial community in RS
(R = 0.4733, P = 0.0040) but not in RZ (R = 0.2593, P = 0.1020)
(Figure 1). However, there was no significant difference in the
beta diversity of the fungal community among the severities
of FW in RZ (ANOSIM, R = 0.0041, P = 0.4710) and RS
(ANOSIM, R = 0.0123, P = 0.5440). This finding indicated that
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FIGURE 1 | Fusarium wilt separated the bacterial community in (A) RS but not that in (C) RZ, and it did not divide the fungal community in (B) RS or (D) RZ. PCoA
was used to visualize the dissimilarity of bacterial and fungi compositions at the OTU level based on the Bray–Curtis metric. Red triangles, yellow circles, and green
squares denote samples in group H (RSH and RZH), L (RSL and RZL), and N (RSN and RZN), respectively.

the presence of the pathogen altered the composition of the
bacterial community in RS.

To confirm whether the diversity and composition of
the microbial community are related to disease severity, we
investigated culturable fungi and bacteria on the tuberous root
of P. heterophylla with different severity of FW. Ninety-four
strains of fungi and 216 strains of bacteria were isolated, and
then, the V3V4 and ITS2 genes were amplified and sequenced.
PCoA was performed based on the V3V4 and ITS2 rDNA
gene amplicon sequences of bacteria and fungi using the Bray–
Curtis metric to visualize the similarity and dissimilarity in
bacterial and fungal communities among soil sample metrics.
The results revealed that the severities of FW separated the
bacterial and fungal communities in the tuberous root (H,
red circular; L, green circular; and N, blue circular). ANOSIM
analysis also showed slight differences in the bacterial community
(R = 0.362, P = 0.086), and there were significant differences
in the H, L, and N tuberous root in the fungal community
(Figures 2B,E). This finding indicated that the composition of

the bacterial community was closely associated with FW within
the tuberous roots.

The Abundance of Fusarium Wilt
Pathogen Fusarium oxysporum and
Beneficial Bacterial Pseudomonas poae
Was Significantly Correlated With
Fusarium Wilt Severity
The ternary phase diagram was applied to identify the differential
taxa of the bacterial community among H, L, and N in
the RS compartment (Figure 3A). At the species level, 71
bacterial species were found to be significantly (P < 0.05)
different among RSH, RSL, and RSN, of which 50 species
were enriched in both RSH and RSL, and 2, 2, and 17 were
only enriched in RSH, RSL, and RSN, respectively. Among
them, Chryseobacterium soldanellicola, Cytophaga hutchinsoni,
Flavobacterium johnsoniae, Gemmatimonadetes bacterium
LX87, Mucilaginibacter gossypii, Novosphingobium panipatense,
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FIGURE 2 | (A) Culturable microorganisms isolated and identified from tuberous roots of P. heterophylla with different FW severity. The differences in (B) bacterial
and (E) fungal community compositions among high, low, and no FW severity levels. PCoA was used to visualize the dissimilarity of bacterial and fungal
compositions based on the Bray–Curtis metric at the genera level. Red, green, and blue circles denote samples in groups H, L, and N, respectively. The composition
of culturable (C) bacteria and (F) fungal communities among high, low, and no FW severity levels. The relative abundance of (D) P. poae and (G) F. oxysporum was
obviously and positively associated with FW severity. The two-tailed Wilcoxon test evaluated the significant differences.
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FIGURE 3 | The difference of (P < 0.05) (A) bacterial and (B) fungal species among RSH, RSL, and RSN evaluated using the two-tailed Wilcoxon test. For each
species, blue, red, yellow, and gray circles represent the differential genera enriched in RSH and RSL, RSH, RSL, and RSN, respectively.

Pedobacter agri, Planoglabratella opercularis, P. poae, Rhizobium
mesosinicum, Serratia plymuthica, Staurastrum punctulatum, and
Tetradesmus obliquus were significantly enriched in both RSH
and RSL (one-way ANOVA; P < 0.05). In addition, the analysis of

the composition of culturable bacteria indicated that the relative
abundance of P. poae was enriched in both RSH (P = 0.0091) and
RSL (P = 0.0376) (Figures 2C,D). Many previous studies showed
that P. poae (Cho et al., 2007; Zachow et al., 2015; Xia et al., 2019;
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Ren et al., 2021) and M. gossypii (Madhaiyan et al., 2010)
participate in plant growth-promoting activity and exhibit
biocontrol potential to suppress disease invasion. Our results
showed that the plant-beneficial microorganism consortium (i.e.,
P. poae and M. gossypii) was significantly enriched and correlated
with the severities of FW.

The ternary analysis was applied to identify the differential
taxa of the fungal community among H, L, and N in the RS
compartment (Figure 3B). At the species level, 23 fungal
species were significantly (P < 0.05) different among RSH,
RSL, and RSN, of which 12 species were enriched in both
RSH and RSL, and 1, 4, and 6 were only enriched in RSN,
RSL, and RSN, respectively. Cystofilobasidium capitatum,
Dinemasporium japonicum, Epicoccum draconis, E. nigrum,
F. oxysporum, Fusicolla aquaeductuum, Paraconiothyrium
estuarinum, Paraphoma chrysanthemicola, Stachybotrys
microspora, and Vishniacozyma heimaeyensis were significantly
enriched in both RSH and RSL (one-way ANOVA; P < 0.05).
Coniochaeta cateniformis and F. graminearium were also
considerably enriched in RSL (one-way ANOVA; P < 0.05).
The analysis of the composition of culturable fungi
indicated that the relative abundance of F. oxysporum was
enriched in both RSH (P = 0.0358) and RSL (P = 0.0477)
(Figures 2F,G). The results showed that the FW pathogen
F. graminearium was significantly enriched and correlated with
the severities of FW.

Correlation Analysis Showed That
Pseudomonas poae Might Be Regulated
by Fusarium oxysporum
The interaction between different microorganisms is one of
the most important driving factors of population structure
and dynamics because they can coexist, attract, or repel
each other (Faust et al., 2012; Falony et al., 2016). Hence,
the Spearman correlation analysis showed that F. oxysporum
was positively correlated with 135 species and negatively
associated with 39 species in the rhizosphere of tuberous
roots (Supplementary File 2). Intriguingly, we found that
F. oxysporum was significantly and positively correlated with
P. poae and M. gossyppii (Figure 4A). In addition, we
isolated the culturable microorganisms from tuberous roots
with different FW severity and found that F. oxysporum was
significantly and positively correlated with P. poae within
the tuberous roots (Figure 4B). Many reports have shown
that Pseudomonas could be attracted to roots depending
on plant disease outbreak (Cazorla et al., 2006; Kamilova
et al., 2008; Zhuang et al., 2020). These results showed
that P. poae might be regulated by F. oxysporum in the
P. heterophylla tuberous root.

The Extracts From the Tuberous Roots of
Pseudostellaria heterophylla Inoculated
With Fusarium oxysporum Promoted the
Growth of Pseudomonas poae
The growth assay evaluated the effect on isolates of the crude
extract from the tuberous root of P. heterophylla inoculated with

FIGURE 4 | The volcano plot for correlations between F. oxysporum and the
microbial community in the (A) rhizosphere and (B) endosphere of the
tuberous roots. The green points represent significantly correlated species
(Sparcc, r > 0.6, P < 0.05).

F. oxysporum. Fifteen and 11 bacterial isolates were significantly
promoted and inhibited by the aqueous extract, respectively.
Notably, the growth of P. poae (H1-3-A7, H2-3-B7, H4-3-C1, and
N3-3-C4) was particularly (two-tailed Wilcoxon test, P < 0.05)
promoted by the aqueous crude extract of tuberous roots
inoculated with F. oxysporum (Figure 5 and Supplementary
Table 6). These results indicated that the extract from the
tuberous root of P. heterophylla inoculated with F. oxysporum
might attract P. poae and promote their growth.
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FIGURE 5 | The extracts of the tuberous root of P. heterophylla inoculated with F. oxysporum affect the growth of isolates. (A) We ground the tuberous roots of
P. heterophylla infected with P. oxysporum into powder, added 50 ml of water, and ultrasonicated the solution for 20 min; inoculation with H2O served as a control.
The suspension was sterilized with a 0.22-µm membrane and then added to LB medium according to the volume ratio of 1:100. Next, 1 µl of cultures of 216
bacterial strains isolated from diseased tuberous roots were inoculated in LB medium with aqueous extract and cultured in an incubator at 25◦C with light. After
2 days of cultivation, compared with the control, the (B) growth phenotype diagram and (C) the Manhattan map show the effects on isolates in aqueous extracts.
The dashed line represents the logarithm of P = 0.05, and triangles and circles represent the effects of promotion and inhibition, respectively. Different colors and
sizes represent different taxa of isolates and the absolute value of log2FC.
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FIGURE 6 | Pseudostellaria heterophylla inoculated with F. oxysporum
attracted P. poae and P. tonnasii in agar medium. (A) Two-week-old plants
with the same growth vigor were selected and transferred to the center of the
agar medium. They were inoculated with 10 µl of F. oxysporum spores
(concentration = 5 × 105 CFU/ml) or 10 µl of ddH2O. After 7 days, a sterilized
toothpick was placed parallel to the tuberous root at a 1-cm distance, and
100 µl of new cultures of strains Pseudomonas poae or P. tonnasii
(OD600 = 1) were inoculated on the toothpick. The growth distance of
Pseudomonas was calculated by ImageJ software, as shown in (B,C). (D)
P. heterophylla inoculated with F. oxysporum attracted the P. poae in the soil.
(E) The FW severity in plants treated with or without F. oxysporum. (F) The
density of P. poae in tuberous roots inoculated with F. oxysporum or H2O. (G)
Changes in the F. oxysporum abundance in tuberous roots inoculated with
F. oxysporum or H2O. (H) Changes in the disease severity index (DSI) of
P. heterophylla with or without inoculated F. oxysporum. The two-tailed
Wilcoxon test evaluated the significant differences.

Pseudostellaria heterophylla Indirectly
Assembled Pseudomonas poae in Its
Rhizosphere and Endosphere Upon
Fusarium oxysporum Infection
To further investigate if Pseudomonas can be attracted to colonize
within the tuberous root, greenhouse colonization assay and
qPCR were used to quantify its colonization difference in vivo.
We designed a high-stress colonization simulation experiment by
treating the soil with H2O (as a control), Pseudomonas, Fusarium,
or a mixture of Pseudomonas and Fusarium (Supplementary
Figure 3). At 14 days after injection, the abundance of P. poae in
the tuberous root was detected via the copies of sucD quantified
by qPCR using taxon-specific primers (Supplementary Table 7).
Our results showed that the gene copies of sucD in P. poae
treatment (up to 3.29 × 1010) were significantly (two-tailed
Wilcoxon test, P = 0.0043, n = 12) higher than those in the H2O
treatment (0.88× 1010).

Notably, the gene copies of sucD in the P. poae and
F. oxysporum treatment (up to 6.57× 1010) group was significant
(two-tailed Wilcoxon test, P = 0.0079, n = 12) higher than
those in the P. poae treatment group (3.29 × 1010). Moreover,
the root populations of F. oxysporum were analyzed via the
gene copies of ITS quantified by qPCR using taxon-specific
primers (Supplementary Table 7). The copies of ITS in the
F. oxysporum treatment group (up to 9.70 × 1010) were
significantly (two-tailed Wilcoxon test, P = 0.0286, n = 12)
higher than those in the H2O treatment group (2.27 × 1010).
Interestingly, the copies of sucD in the P. poae and F. oxysporum
treatment groups (up to 3.64 × 1010) were significant (two-
tailed Wilcoxon test, P = 0.0286, n = 12) lower than those in
the F. oxysporum treatment group (9.70 × 1010). The DSI in
the P. poae and F. oxysporum treatment group was significant
(two-tailed Wilcoxon test, P = 0.0080, n = 12) lower than
that in the F. oxysporum treatment group. Together, these
results further showed that F. oxysporum promoted P. poae
to colonize within the tuberous root. In contrast, P. poae
inhibited F. oxysporum from infecting its host (Figure 6H and
Supplementary Figure 3E).

The pathogen-induced attraction assay via physical isolation
was used to investigate whether F. oxysporum directly or
indirectly induces P. poae to colonize on the surface of the
tuberous root. The pathogen-induced attraction assay in the agar
medium, F. oxysporum or H2O, was inoculated on P. heterophylla
seedlings, and P. poae and P. tonnasii were parallel to the tuberous
root and inoculated on a medium at a distance of 0.5 cm
(Figure 6A). At 7 days after co-cultivation, the growth distance
of Pseudomonas was calculated by ImageJ software. There was
no significant difference in the growth distance of P. poae and
P. tonnasii between the H2O and blank (two-tailed Wilcoxon
test, P > 0.05, n = 24). Compared to the H2O treatment,
the growth distances of P. poae (two-tailed Wilcoxon test,
P = 2.96 × 10−09, n = 24) and P. tonnasii (two-tailed Wilcoxon
test, P = 2.99 × 10−09, n = 24) in the Fusarium treatment
group were significantly high (Figures 6B,C). In addition, in
the greenhouse assay (Figure 6D), we found that the relative
copies of sucD of P. poae in the F. oxysporum treatment were
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significant (two-tailed Wilcoxon test, P = 1.43 × 10−05, n = 12)
higher than in the H2O treatment (Figure 6F). Furthermore,
the number of F. oxysporum in the F. oxysporum treatment
group was significantly (two-tailed Wilcoxon test, P = 0.0036,
n = 12) higher than that in the H2O treatment group (Figure 6G).
The DSI in the F. oxysporum treatment group was significantly
(two-tailed Wilcoxon test, P = 0.0019, n = 6) higher than
in the H2O treatment group (Figures 6E,H). Together, these
results further showed that pathogen F. oxysporum could mediate
P. heterophylla to assemble P. poae.

DISCUSSION

The High Population of Host-Specific
Pathogens and High Colonization Ability
in the Rhizosphere and Endosphere
Determine the Fusarium Wilt Incidence
The microorganisms in soil and root are essential for plant
health. The high enrichment of pathogens in rhizosphere soil
is the main factor responsible for plant disease occurrence
(Berendsen et al., 2012; Zhao et al., 2016; Tan et al., 2017; Li
et al., 2019; Liu et al., 2019a; Luo et al., 2019; Wu et al., 2019).
Our results showed that the high abundance of F. oxysporum
in continuous monoculture soil is the main factor leading to
the high occurrence of FW in P. heterophylla (Figure 3B). This
result is consistent with previous studies that determined that
continuous monoculture enriches pathogens and disturbs the
structure of microbial communities, leading to a high incidence
of FW (Wu et al., 2016a; Zhao et al., 2016; Yuan et al., 2020a).
In addition, we found that the populations of F. oxysporum in
tuberous roots were positively correlated with the severity of FW,
which showed that the high ability of the pathogen to colonize
the plant is a direct factor in the severity of FW (Figure 2). Many
studies have demonstrated that an outbreak of the disease can
be initiated only when the pathogen reaches a certain threshold
and successfully colonizes itself in the plant (Bakker et al., 2013).
Our results showed that the high populations of F. oxysporum
in rhizosphere soil and their ability to colonize tuberous roots
determine the occurrence of FW.

Pseudomonas Is Widely Mediated by a
Variety of Plant Pathogens to Enrich and
Colonize in Rhizosphere Soil and Within
Roots to Resist Diseases
Plants widely regulate Pseudomonas in response to biotic
and abiotic stress. Our study found that pathogen-mediated
P. heterophylla enriched Pseudomonas in rhizospheric soil and
participated in decreasing the incidence of FW. This result
is consistent with studies conducted with maize (Zhu et al.,
2021), barley (Schreiner et al., 2010; Dudenhffer et al., 2016),
wheat (Landa et al., 2002), pea (Landa et al., 2002), carnations
(Lemanceau et al., 1992), and Panax notoginseng (Zhang
et al., 2020b). In addition, Pseudomonas was also mediated
by pathogens such as Setosphaeria turcica, Gaeumannomyces

gramini, and Fusarium spp. (Lemanceau et al., 1992; Landa
et al., 2002; Zhang et al., 2020b; Zhu et al., 2021). Furthermore,
Pseudomonas was induced by F. oxysporum to colonize on the
tuberous roots, which was similar to the results of a previous
study showing that leaf pathogens can mediate the colonization
of Pseudomonas on Arabidopsis roots (Léon-Kloosterziel et al.,
2005). Several members of Pseudomonas can produce jasmonic
acid, salicylic acid, and ethylene to promote plant growth (Léon-
Kloosterziel et al., 2005), induce systemic resistance (Verhagen
et al., 2010), and directly produce volatile substances, lipopeptide
(Zachow et al., 2015), and 2,4-diacetylphloroglucinol (Keel et al.,
1992; Schouten et al., 2004) to inhibit pathogens. These results
indicate that pathogens widely regulate Pseudomonas in the
rhizosphere and within roots, and plants recruit it to confront
pathogen invasion.

Pathogen-Mediated Pseudostellaria
heterophylla Assembled a Beneficial
Bacterial Consortium to Increase Its
Resistance to Fusarium Wilt
We found that P. heterophylla enhanced the regulation of
the bacterial community depending on the severity of FW
(Supplementary Tables 8, 9). The ternary phase showed that
P. heterophylla strongly regulated many beneficial microbes
such as Cytophaga hutchinsoni, Mucilaginibacter gossypii,
Novosphingobium panipatense, Rhizobium mesosinicum, and
P. poae to enrich them in rhizosphere soil and colonize them
within tuberous roots because these species possess multiple
helpful functions to maintain plant health. N. panipatense can
enhance tolerance in plants to multiple heavy metals (Chettri
and Singh, 2019). C. hutchinsoni is essential for ion assimilation
(Gao et al., 2020), and M. gossypii produces large amounts
of extracellular polysaccharides and possesses plant-growth-
promoting traits (Madhaiyan et al., 2010). R. mesosinicum can
fix nitrogen and increase the nitrogen source of plants (Lin
et al., 2009; Xu et al., 2015). The endophytic P. poae produces
the lipopeptide poaeamide, which is involved in pathogen
suppression and root colonization (Zachow et al., 2015; Xia et al.,
2019; Ren et al., 2021). Together, these results show that, when
P. heterophylla is infected by a pathogen, it can regulate and
attract multiple functional microbe consortia that can promote
nutrient acquisition, reduce heavy metal toxicity, and produce
antibiotics to alleviate diseases.

The Phenomenon of the Plant Recruiting
Beneficial Bacteria Upon Pathogen
Infection Can Be Used to Develop New
Biocontrol Technology
Biological control has become an important ecological and
sustainable agricultural method for plant disease control (Huang
et al., 2017; Zhang et al., 2020a). In our study, P. poae
directly inhibited the growth of F. oxysporum and reduced
its pathogenicity. Colonization assay also showed that P. poae
could decrease the ability of F. oxysporum to colonize tuberous
roots, thus decreasing the incidence of FW (Figure 5 and
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Supplementary Figures 3B,E). These results suggest that P. poae
may act as a potential biocontrol agent to ward off FW, which
is consistent with previous studies showing that P. poae exhibits
plant growth-promoting activity and biocontrol potential to
suppress disease invasion (Cho et al., 2007; Zachow et al., 2015;
Xia et al., 2019; Ren et al., 2021). It is public knowledge that
biocontrol agents with low effective colonization in plants due
to their difficult long-lasting survival are significantly limited
in their application. Therefore, we can take advantage of the
phenomenon that pathogens induce plants to enrich their
beneficial bacteria consortia to develop a biological control
technology in the future. We hypothesize that this technique
can be modified to use dead pathogens to stimulate long-
lasting defense actions and subsequently improve the biocontrol
agent’s colonization ability and survival ability to enhance
its control effect.

Previously, many studies showed that plants regulate the
soil microbes via root exudates. In our research, the extracts
of P. heterophylla tuberous roots infected by F. oxysporum
conferred significant changes that significantly promoted the
growth of P. poae (Figure 5). This result suggests that
F. oxysporum infection mediated the P. heterophylla tuberous
root to produce some metabolites promoting the growth of
P. poae. Previous studies with wheat plants support this
finding, because after pathogen infection, wheat can secrete the
metabolites pyoluteorin and 2,4-diacetylphloroglucinol to enrich
and colonize Pseudomonas in rhizosphere soil and tuberous roots
to inhibit the occurrence of diseases (Keel et al., 1992; Lemanceau
et al., 1992; Maurhofer et al., 1995; Landa et al., 2002; Weller et al.,
2002).

Similarly, Arabidopsis plants infected by bacterial pathogens
secreted elevated levels of malic acid. In a dose-dependent
manner, malic acid stimulated Bacillus subtilis FB17 binding
to and biofilm formation on the roots (Rudrappa et al., 2008,
2010). In addition, Zhang et al. showed that P. heterophylla
tuberous root extracts could promote the growth of Bacillus
thuringiensis and Serratia marcescens (Zhang et al., 2016).
These results demonstrated that P. heterophylla infected with
F. oxysporum can adjust its microbiome and may specifically
recruit P. poae to colonize on tuberous roots via secreting
uncertain metabolites. A greater understanding of the plant
metabiotic basis of disease-induced recruitment of beneficial
root-associated microbes could unlock new possibilities for plant
disease management technology that more effectively drives the
beneficial microbes against pathogens, with enhanced capacities
for controlling the disease.

CONCLUSION

We present the schematic of how FW-mediated P. heterophylla
regulates the microbes in the soil and tuberous roots under a
continuous monocropping regime (Supplementary Figure 5).
Our data suggest that pathogen-mediated P. heterophylla
promoted and assembled plant-beneficial microbes against
plant disease. Therefore, deciphering the beneficial associations
between pathogen-mediated P. heterophylla and microbes can

provide novel insights into the implementation and design of
disease management strategies. However, the hypothetical model
remains incomplete and exudates of P. heterophylla stimulated
by Fusarium that attracts Pseudomonas need to be discovered.
Furthermore, additional studies verifying its functions need to be
implemented in the future.
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