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Abstract: Binding affinity prediction of protein–ligand complexes has attracted widespread 

interest. In this study, a self-adaptive steered molecular dynamics (SMD) method is proposed 

to reveal the binding affinity of protein–ligand complexes. The SMD method is executed 

through adjusting pulling direction to find an optimum trajectory of ligand dissociation, which 

is realized by minimizing the stretching force automatically. The SMD method is then used to 

simulate the dissociations of 19 common protein–ligand complexes which are derived from 

two homology families, and the binding free energy values are gained through experimental 

techniques. Results show that the proposed SMD method follows a different dissociation 

pathway with lower a rupture force and energy barrier when compared with the conventional 

SMD method, and further analysis indicates the rupture forces of the complexes in the same 

protein family correlate well with their binding free energy, which reveals the possibility of 

using the proposed SMD method to identify the active ligand. 

Keywords: binding affinity; steered molecular dynamics; rupture force; protein–ligand 
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1. Introduction 

The calculation of binding free energies is still one of the greatest challenges of condensed-phase 

simulation. Of particular difficulty is the calculation of binding free energies that involves substantial 

reorganization of the environment, as in the case of the binding of different ligands to a protein. Predicting 

the binding free energy of ligands to macromolecules can be of great practical value in identifying novel 

molecules that can bind to target receptors and act as therapeutic drugs. During the past several decades, 

with the fast development of theoretical research of receptor–ligand interaction and drug molecular design 

methods, research into the protein–ligand binding free energy method has gained increasing attention, 

and many methods have been proposed. Typically, these methods can be used either to calculate the  

free energy of the bound and unbound states separately, in approaches such as the Molecular Mechanics 

Poisson-Boltzmann Surface Area (MM-PB/SA) method, the Molecular Mechanics Generalized-Born 

Surface Area (MM-GB/SA) and Linear Interaction Energy (LIE) method [1–7], or to evaluate the free 

energy difference between bound and unbound states, such as Free Energy Perturbation (FEP) and 

thermodynamic integration (TI) [8–12]. Recently, various types of biased sampling methods along certain 

reaction coordinates have also been found successful in free energy calculation of the biomolecules, 

including metadynamics, adaptive force bias, umbrella sampling, steered molecular dynamics (SMD), 

etc. [13–17]. 

As a complementary approach for experimental measurements, the SMD method was introduced 

around 1997 [18], and has been proved to be a valuable tool to reveal the details of underlying events  

and information about the energy landscape of receptor–ligand unbinding on the atomic level [19]. 

Specifically, Jarzynski equation and Crooks fluctuation theorem have indicated the potential of mean 

force can be obtained from non-equilibrium SMD simulations [20,21]. In SMD experiments, several pulls 

are simulated in one (forward) or two (forward and reverse) directions. One-directional SMD simulations 

combined with Jarzynski equation have been successfully used to compute binding free energy on several 

biomolecule systems [22–26], and some approaches aimed at finding important pathways to overcome 

the limitation of implementing the Jarzynski equation have also been proposed [27–31]. In addition, 

binding free energy calculations using bidirectional SMD simulations have appeared recently in the 

literature [32–37]. These researches reveal that the SMD method has the potential to reveal the binding 

energy of protein–ligand complexes and distinguish strong binders from weak ones. 

In several recent researches, the protein–ligand rupture force obtained from SMD simulations was used 

as a measurement of the binding energy: the larger the rupture force of the receptor–ligand system is, the 

higher its binding affinity will be, and this hypothesis has been used in lead compound screening [38–41]. 

However, the practicality and generality of the method in revealing the binding energy of the ligand is 

still in need of further research. Firstly, the choice of the initial pulling direction is often randomly done 

or the result of guessing according to the structural information, so an inappropriate pulling direction 

may be determined. Even when the pulling direction is correctly chosen, the direction is fixed during the 

unbinding processes, which may be inconsistent with the actual situation, and an improper unbinding 

pathway may be obtained, or the ligand may be fail to be disassociated from the receptor. Therefore, the 

force profile along the improper pathway may not be able to reveal the real binding energy of the ligand. 

Our group has proposed a new steered molecular dynamics strategy with pulling direction optimization. 

The strategy aims to more effectively determine the pathway of ligand dissociation, which has been 
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applied on some typical protein–ligand and protein–protein complexes, and the new pathway was found 

to have a smaller rupture force and lower energy barrier than that of the conventional SMD [42–44].  

In this paper, the proposed self-adaptive SMD method is attempted in order to rank the binding energy  

of protein–ligand complexes. During the unbinding process of the self-adaptive simulation, the pulling 

force along the direction is treated as the optimization objective, and the pulling direction is chosen with 

a specified genetic algorithm based on information entropy and multi-population techniques. Therefore, 

the SMD method can be used to find the most likely dissociation pathway of the receptor–ligand system, 

and to evaluate the binding energy of the protein–ligand complex. 

In the following sections, we firstly present the self-adaptive algorithm to overcome the limitations 

of the conventional SMD. Then, two families of protein–ligand complexes are used to investigate the 

relationship between the experimental binding free energy and their rupture force from the obtained  

self-adaptive SMD method. The results show that the presented scheme can reveal the binding affinity 

difference, thus hopefully making the proposed SMD method a suitable tool to identify the active ligand. 

2. Models and Methods 

2.1. The Self-Adaptive SMD Strategy 

The conventional SMD simulation is meant to reproduce principles of atomic force microscopy 

experiments in which one biomolecule is pulled by a cantilever. The center of mass of the pulled molecule 

will be harmonically constrained with force constant k to move with velocity v in the direction unit 

vector n. SMD thus has the following potential: 

( ) 21
( ) (0)

2
U k vt t= − − ⋅  R R n  (1)

In conventional SMD, the pulling direction n of the pulling force remains unchanged once it is assigned 

at the very start, and the choice of the initial pulling direction is randomly done or the result of guessing 

according to the structural information. However, the unchanged artificial pulling direction is likely to 

deviate from the natural unbinding pathway of the complex, which will lead to error estimation of the 

unbinding energy or even failed unbinding simulation in some cases. 

According to recent researches, the unbinding rupture force correlates well with the binding energy. 

Therefore, the proposed method treats the pulling force as an indication of the unbinding energy barrier, 

and it is used as the optimization objective of the pulling direction during the unbinding simulation. The 

self-adaptive SMD simulation can be described as the following optimization problem: 
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+
= − ∇  is the average pulling force applied to the pulled molecule during 

a period of time T (1 ps is adopted in this paper) from the time point t with a new pulling direction. 

The new pulling direction is determined by three factors: the initial direction n0, nutation angle θ and 

procession angle φ. The range of the nutation angle θ is between 0 and π/2 rad to ensure the pulling 
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direction n in the hemispherical space along the initial direction n0, and the procession angle φ varies 

from -π to π. The optimization time point t is chosen with a minimal time interval t0 and a minimal 

cut-off force f0. When the simulation time period counting from the last optimization time point exceeds 

t0 and, meanwhile, the average pulling force during the last 1 ps is larger than f0, then the pulling 

direction optimization is executed at the current time point t. 

The optimization problem is resolved with a multi-population genetic algorithm, which will be 

described in the next section. The optimization result, i.e., the new pulling direction, will be adopted 

for the following SMD simulation until the next direction optimization. Therefore, the pulling direction 

will adjust according to the pulling force until the ligand is pulled out of the binding pocket. 

2.2. The Multi-Population Genetic Algorithm 

We use in a multi-population genetic algorithm based on information entropy to solve Equation (2) [45]. 

The algorithm begins with generating arbitrary m populations with the same search space, i.e., the initial 

design space, and m adopts 16 in this paper. The search space of each population is narrowed according 

to the following formula: 
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where E(K) is the searching space at the Kth iteration, )(Kdi  and )(Kdi  are the updated lower and 

upper limits of the ith design variable respectively, and )(* Kdi  is the ith design variable value of the 

best member in the jth population. Assuming that Fj(x) (j = 1, …, m) stands for the best value of the 

fitness function in the jth population, the optimum problem is: 

j = 1, 2, …, m (4)

When applying information entropy to the optimization problem, the model can be given as follows: 
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where H represents the information entropy, pj stands for the probability of optimal solution of 

Equation (4). It can be proved that Problems (4) and (5) have the same optimal solution. Problem (5) is 

a multi-objective problem, and it can be transformed into a single objective one with the weighted 

coefficient method so that it can be solved with the genetic algorithm. 
  

min ( )jF x
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2.3. Choice of Receptor–Ligand Complexes 

In order to evaluate the relationships between the rupture force obtained from the self-adaptive SMD 

procedure and the binding free energy of the complex, two protein families, HIV-1 protease (L63P) 

and tyrosine-protein phosphatase, are simulated to dissociate the ligands from their receptors. The 

structures and the binding free energy data are derived from the community structure-activity resource 

(CSAR, http://www.csardock.org), which provides experimental datasets of crystal structures and 

binding affinities for diverse protein–ligand complexes. The families are grouped by 100% sequence 

identity of the receptor protein, so we can examine relative binding trends or rankings of a series of 

compounds bound to the same protein. The HIV-1 protease family contains 11 complexes (2qnq, 1ebz, 

1g2k, 1xl5, 1ec2, 1ec1, 1ec0, 1d4i, 1d4j, 2cen, 2cem) and the tyrosine-protein phosphatase contains 

eight complexes (2b07, 2zmm, 2zn7, 2hb1, 2azr, 2qbq, 2qbs, 2qbr). Figure 1 gives the ligand structural 

formulas of all the complexes in both families, and the binding free energy is also given in the figure. 

All the ligands are distinct even in the same family, and therefore bind to different binding sites. 

 

Figure 1. Cont. 
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Figure 1. The ligand structural formulas of the complexes in the two families: (A) HIV-1 

protease and (B) Tyrosine-protein phosphatase. 

All the simulations are performed with molecular dynamics simulation program GROMACS 3.2.1 [46], 

and the GROMOS96 force field is used [47,48]. Before the SMD simulation, each complex is embedded 

in a square periodic box, in which the shortest distance between the protein surface and the box walls 

is larger than 1.0 nm. The box is filled with water molecules represented by the simple point charge 

model [49]. At the same time, in order to balance the net charge of the system, favorable counterions 

such as Na+ or Cl− are added into the box, and GROMOS96 force field is also used for the counterions. 

The system is energy-minimized without constraints with the steepest descent method, and then 100 ps 

position-restrained molecular dynamics at 300 K and 1.0 bar is performed to make sure the equilibration 

of the solvent molecules and ligands with the protein is maintained. In this run, the atom positions of the 

protein are restrained to restrict their movement in the simulation. Next, 100 ps MD simulation without 

position-restraint is performed to ensure the equilibration of the system. At last, the ligand is pulled with 

an external force in NPT ensemble at 1.0 bar and 300 K, whose direction will adjust automatically with 

the proposed method, and simulations are performed with 2 fs time steps. During the simulation, the 

translation of the center of the mass of the protein is removed at every step. The initial structures of the 

SMD simulations are derived from the equilibration stage. For both families, the initial pulling direction 

is along a line which is determined by the locations of two atoms from the secondary structures, which 

form the skeleton of the protein and are relatively stable to ensure the consistency of the pulling direction 

in the same family. The initial direction will make sure the ligand is pulled against the protein and toward 

the solvent, and following this direction will ensure as little contact as possible with atoms of the protein. 

The force constant of the spring is 200 kJ·mol−1·nm−2, and the rate at which the spring is pulled is 

0.002 nm·ps−1. When the minimum distance between the atoms of the receptor and the ligand reaches a 

cut-off value of 0.6 nm, the corresponding time is taken as the ending time of the dissociation simulation. 

3. Results and Discussion 

3.1. The Influence of the Cut-Off Force 

In the proposed self-adaptive SMD method (SA-SMD), two parameters, t0 and f0, are adopted to 

control the optimization process, because it is impossible to execute direction optimization on all the 
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time points, which is not necessary and impractical as the computation time is too long. Considering 

the efficacy of the proposed method, t0 is set as 5 ps in this paper. f0 is a minimal cut-off force for  

the direction optimization, which will have an notable influence on the rupture force. For studying the 

relationship between the cut-off force and the rupture force, one simulation experiments is firstly made on 

the 1d4i complex with conventional SMD method (C-SMD), i.e., no direction optimizations are executed 

in the simulation, and the rupture force is 531.3 pN. The rupture force corresponds to the maximum 

time-averaged force encountered while pulling the ligand out of the protein during simulation, where 

averages are taken over 1 ps time intervals. Then, five other simulations are made independently with the 

SA-SMD method. All five simulations adopt the same simulation parameters as described in Section 2 

except the cut-off force, which is set as 400, 350, 300, 250, 200 pN, respectively. Number of the 

direction optimizations and the rupture force of each simulation are extracted and plotted in Figure 2, and 

the Inf label of cut-off force in the figure indicates the simulation is executed with C-SMD. As shown in 

the figure, when the cut-off force decreases, the number of the direction optimizations improves, which 

means a lower cut-off force will improve the chances for direction optimization. Meanwhile, the rupture 

force will be reduced when lower cut-off force is adopted, but the rate of the reduction gradually slows 

down. As indicated in the figure, when the cut-off forces are 250 and 200, their optimization numbers are 

very different, but the rupture forces are almost equivalent. In addition, simulations to study the influence 

of the cut-off force to rupture force are made on the HIV-1 protease family. Each complex in the family 

is simulated independently using SA-SMD with two cut-off forces: 250 and 300 pN. The rupture force 

vs. its binding free energy derived from experiment is plotted in Figure 3. As shown in the figure, the 

averaged rupture force obtained with 300 pN cut-off force is slightly larger than with the 250 pN 

cut-off force, which is consistent with Figure 2. Correlation analysis is also performed on these two 

sets of dots in Figure 3, and the linear relationship is observed in both sets. The correlation coefficients 

for 250 and 300 pN cut-off forces are 88.4% and 81.1%, respectively. Therefore, considering both the 

simulation efficacy and the optimization effect, 250 pN is adopted as the cut-off force in all of the 

following simulations. 

 

Figure 2. The influence of the cut-off force on the rupture force of 1d4i. 
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Figure 3. The influence of the cut-off force on the rupture force of the complexes in the 

HIV-1 protease family. 

3.2. The Influence of the Pulling Rate 

For identifying the influence of the pulling rate on the rupture force, another simulation experiment is 

made on the tyrosine-protein phosphatase family. Each complex in the family is simulated independently 

using SA-SMD with two pulling rates: 0.002 and 0.005 nm/ps. The rupture force vs. its binding free 

energy which is obtained from experiment is plotted in Figure 4. As shown in the figure, the rupture 

forces of the complexes in the family with 0.005 nm/ps pulling rate are obviously larger than with 

the pulling rate of 0.002 nm/ps. In addition, with both pulling rates, the rupture force shows a linear 

relationship with the binding free energy, though the slopes of the fitted lines are different. 

 

Figure 4. The influence of the pulling rate on the rupture force of the complexes in the 

Tyrosine-protein phosphatase family.  
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3.3. The Optimized Unbinding Process 

In this section, the 1d4i complex from the HIV-1 protease family is taken as an example to expound 

the protein–ligand unbinding process during simulation with SA-SMD. The simulation results of 1d4i 

with C-SMD are also given for comparison. Figure 5 gives the initial structure of the SMD simulations, 

and the initial pulling direction is also given with a blue arrow. The end time of the C-SMD and SA-SMD 

simulations is 950 ps and 1960 ps, respectively, and Figure 6 gives the structures at the end time. The 

position of center of mass of the ligand is recorded during the simulation, and the ligand trajectories 

derived from SA-SMD and C-SMD methods are shown in Figure 7 (cannot find), which reveals two 

distinct dissociation pathways of the ligand. The trajectory direction of C-SMD is monotonic, which is 

consistent with the initial pulling direction. Referenced to the C-SMD, the trajectory of the SA-SMD is 

more complicated, and several significant turning points of ligand movement direction can be observed, 

which leads to a more tortuous dissociation pathway and a longer dissociation time. 

 

Figure 5. The initial structure of the steered molecular dynamics simulation of 1d4i, and the 

initial pulling direction is labeled with a blue arrow. 

 

Figure 6. Final structures of the steered molecular dynamics simulations of 1d4i with (A) 

C-SMD and (B) SA-SMD methods. 
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Figure 7. Ligand trajectories of 1d4i with C-SMD (shown in green line) and SA-SMD 

(shown in red line). 

The time-averaged force profiles during the unbinding simulation of the 1d4i complex are shown in 

Figure 8. For the C-SMD (the black line), a steady increase of the applied force can be observed during 

the first 200 ps, and then it reaches the maximum force at 204 ps, which corresponds to the rupture 

force of the ligand unbinding along this dissociation pathway. After some fluctuation, the force value 

undergoes a fast decrease until the end time. For the SA-SMD simulation (the red line), a peak value can 

be found at 611 ps, and the force value tends to be stable after 1300 ps. It is obvious that the rupture force 

of the proposed SA-SMD method (442 pN) is lower than the C-SMD (531 pN). The smaller rupture 

force reflects the easier unbinding of the 1d4i complex with the SA-SMD method. 

 

Figure 8. The time-averaged force profiles during the unbinding simulation of the 1d4i 

complex with C-SMD (shown in black line) and SA-SMD (shown in red line). 
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Then, the dissociation pathways of similar ligands in the same family are also investigated. The 

configurations and binding free energy of complexes 1d4i and 1d4j of the HIV-1 protease family are 

similar, and the trajectories of the center of mass of their ligands are plotted in Figure 9. The initial 

position of the ligands are (2.67, 2.97, 3.97) and (2.84, 3.14, 4.10), respectively, and the slight difference 

is due to separate binding and relaxation of different ligands. At the initial phase of the dissociation, the 

ligands are dissociated along the approximate pathways as shown in Figure 9, but different pathways are 

adopted in the following simulations. The results show that the dissociations with a minimum stretching 

force will follow different pathways even with similar ligands, which reveal the limitation of C-SMD 

from the other side. 

 

Figure 9. Ligand trajectories of 1d4i (shown in red line) and 1d4j (shown in green line) 

simulated with SA-SMD. 

3.4. The Relationship of the Rupture Force and Binding Free Energy 

In this section, the relationship between the rupture force and the binding free energy is further 

investigated. Firstly, C-SMD simulation is carried out once for each complex in both families, and the 

rupture force of the simulation is taken and plotted in Figure 10A,B against its binding free energy. The 

distributions of the dots in both families are random, no inherent order is found between the rupture 

force got from C-SMD and binding free energy. Then, four independent simulations with SA-SMD are 

also carried out for each complex, and the mean value and standard error of the rupture forces of all the 

four simulations are calculated and plotted in Figure 10C,D. Comparison between Figure 10A–D shows 

that the rupture force of each complex is reduced with SA-SMD. More importantly, linear correlations 

are clearly observed between the rupture force and binding free energy in Figure 10C,D. The correlation 

factor of the HIV-1 protease family is 95.5%, and that of the Tyrosine-protein phosphatase family is 

94.8%. This results show that the rupture force gained with the SA-SMD method correlates well with 

the experimental binding free energy. 
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Figure 10. The relationship between the binding free energy and the rupture force obtained 

with C-SMD and SA-SMD of the complexes in the two protein families: (A) HIV-1 protease 

with C-SMD; (B) Tyrosine-protein phosphatase with C-SMD; (C) HIV-1 protease with 

SA-SMD and (D) Tyrosine-protein phosphatase with SA-SMD. 

It is noteworthy that the slopes of the fitted lines of the two protein families are inconsistent, which 

makes direct comparison of the binding affinity between different families unfeasible. The reason behind 

the phenomenon is interesting and needs to be further examined. As shown in Figure 4, the pulling rate 

partly determines the absolute value of the rupture force and the slope of the fitted line, and the same 

situation may also occur with other simulation parameters. Therefore, we thought one reason may be 

that the same set of simulation parameter is not adequate for different protein families, and finding  

the internal relationship will be the focus of our future work. In addition, another reason may be the 

incomplete direction optimization, because the optimization cannot be executed at all time points, 

which may lead to deviation from the real dissociation pathway. 

This work is inspired by some exploratory researches which are based on the hypothesis that the 

larger the rupture force of the receptor–ligand system is, the higher its binding affinity will be, and the 

results from the research give support to the hypothesis. Experimental research with atomic force 

microscopy also indicated a remarkable correlation of the unbinding forces to the off-rates koff, and koff 

usually correlates well with the equilibrium constant KD for related receptor–ligand systems, kon normally 

being confined to a rather narrow range of values. Even so, the logic and rationality of the hypothesis 

need to be further investigated, and there still lacks a sound theoretical background to explain the 

correlation between the rupture force and binding energy. Further understanding about the binding and 
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unbinding mechanism of the complexes in the future will help to interpret the correlation, and this  

is another direction of our future work which will also be helpful for improving SA-SMD. Another 

limitation of SA-SMD is that it is impossible to execute direction optimization on all the time points, 

which may lead to fluctuation in the pathway choice. In this work, a relatively small optimization time 

interval is adopted to ensure a limited influence on the determination of the optimal dissociation pathway. 

4. Conclusions 

To sum up, this study proposed a novel SA-SMD method which can adjust the pulling direction based 

on optimization of the pulling force, and this method is used to discriminate the binding affinity of 

complexes within two families. Results show that the rupture force obtained with SA-SMD correlates 

well with the binding free energy in the same protein family. 

This study highlights the possibility of using SMD simulation to reveal the binding affinity of a 

complex. With a further understanding of the binding mechanism of complexes in the same or different 

families, we may extend the proposed strategy for wider applications. 

Acknowledgments 

The authors gratefully acknowledge the financial support for this work from the National Natural 

Science Funds of China (No. 11202049 and 11432003), the National Basic Research Program of  

China (No. 2012CB025905), the 111 Project (B14013) and the Fundamental Research Funds for the 

Central Universities. 

Author Contributions 

Junfeng Gu performed the research and drafted the manuscript. Hongxia Li coded the program. 

Xicheng Wang designed the study. All authors read and approved the final manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Aqvist, J.; Medina, C.; Samuelsson, J.E. A new method for predicting binding affinity in computer-aided 

drug design. Protein Eng. 1994, 7, 385–391. 

2. Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; 

Wang, W.; et al. Calculating structures and free energies of complex molecules: Combining molecular 

mechanics and continuum models. Acc. Chem. Res. 2000, 33, 889–897. 

3. Kuhn, B.; Kollman, P.A. Binding of a diverse set of ligands to avidin and streptavidin: An accurate 

quantitative prediction of their relative affinities by a combination of molecular mechanics and 

continuum solvent models. J. Med. Chem. 2000, 43, 3786–3791. 

4. Schwarzl, S.M.; Tschopp, T.B.; Smith, J.C.; Fischer, S. Can the calculation of ligand binding free 

energies be improved with continuum solvent electrostatics and an ideal-gas entropy correction?  

J. Comput. Chem. 2002, 23, 1143–1149. 



Molecules 2015, 20 19249 
 

 

5. Homeyer, N.; Gohlke, H. Free energy calculations by the molecular mechanics poisson-boltzmann 

surface area method. Mol. Inf. 2012, 31, 114–122. 

6. Wright, D.W.; Hall, B.A.; Kenway, O.A.; Jha, S.; Coveney, P.V. Computing clinically relevant 

binding free energies of hiv-1 protease inhibitors. J. Chem. Theory Comput. 2014, 10, 1228–1241. 

7. Wan, S.; Knapp, B.; Wright, D.W.; Deane, C.M.; Coveney, P.V. Rapid, precise, and reproducible 

prediction of peptide-mhc binding affinities from molecular dynamics that correlate well with 

experiment. J. Chem. Theory Comput. 2015, 11, 3346–3356. 

8. Straatsma, T.P.; McCammon, J.A. Multiconfiguration thermodynamic integration. J. Chem. Phys. 

1991, 95, 1175–1188. 

9. Jiang, W.; Hodoscek, M.; Roux, B. Computation of absolute hydration and binding free energy with 

free energy perturbation distributed replica-exchange molecular dynamics. J. Chem. Theory Comput. 

2009, 5, 2583–2588. 

10. Khavrutskii, I.V.; Wallqvist, A. Improved binding free energy predictions from single-reference 

thermodynamic integration augmented with hamiltonian replica exchange. J. Chem. Theory Comput. 

2011, 7, 3001–3011. 

11. Wang, L.; Wu, Y.J.; Deng, Y.Q.; Kim, B.; Pierce, L.; Krilov, G.; Lupyan, D.; Robinson, S.;  

Dahlgren, M.K.; Greenwood, J.; et al. Accurate and reliable prediction of relative ligand binding 

potency in prospective drug discovery by way of a modern free-energy calculation protocol and 

force field. J. Am. Chem. Soc. 2015, 137, 2695–2703. 

12. Kaus, J.W. How to deal with multiple binding poses in alchemical relative protein–ligand binding 

free energy calculations. J. Chem. Theory Comput. 2015, 11, 2670–2679. 

13. Doudou, S.; Burton, N.A.; Henchman, R.H. Standard free energy of binding from a one-dimensional 

potential of mean force. J. Chem. Theory Comput. 2009, 5, 909–918. 

14. Buch, I.; Sadiq, S.K.; Fabritiis, G.D. Optimized potential of mean force calculations for standard 

binding free energies. J. Chem. Theory Comput. 2011, 7, 1765–1772. 

15. Miao, Y.; Feher, V.A.; McCammon, J.A. Gaussian accelerated molecular dynamics: Unconstrained 

enhanced sampling and free energy calculation. J. Chem. Theory Comput. 2015, 11, 3584–3595. 

16. Takahashi, R.; Gil, V.A.; Guallar, V. Monte carlo free ligand diffusion with markov state model 

analysis and absolute binding free energy calculations. J. Chem. Theory Comput. 2013, 10, 282–288. 

17. Chen, L.Y. Hybrid steered molecular dynamics approach to computing absolute binding free energy of 

ligand-protein complexes: A brute force approach that is fast and accurate. J. Chem. Theory Comput. 

2015, 11, 1928–1938. 

18. Isralewitz, B.; Izrailev, S.; Schulten, K. Binding pathway of retinal to bacterio-opsin: A prediction 

by molecular dynamics simulations. Biophys. J. 1997, 73, 2972–2979. 

19. Sotomayor, M.; Schulten, K. Single-molecule experiments in vitro and in silico. Science 2007, 

316, 1144–1148. 

20. Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 1997, 78, 

2690–2693. 

21. Crooks, G.E. Nonequilibrium measurements of free energy differences for microscopically 

reversible markovian systems. J. Stat. Phys. 1998, 90, 1481–1487. 

22. Vashisth, H.; Abrams, C.F. Ligand escape pathways and (un)binding free energy calculations for 

the hexameric insulin-phenol complex. Biophys. J. 2008, 95, 4193–4204. 



Molecules 2015, 20 19250 
 

 

23. Ytreberg, F.M. Absolute fkbp binding affinities obtained via nonequilibrium unbinding simulations. 

J. Chem. Phys. 2009, 130, 164906. 

24. Shen, J.; Li, W.; Liu, G.; Tang, Y.; Jiang, H. Computational insights into the mechanism of ligand 

unbinding and selectivity of estrogen receptors. J. Phys. Chem. B 2009, 113, 10436–10444. 

25. Zhang, D.; Gullingsrud, J.; McCammon, J.A. Potentials of mean force for acetylcholine unbinding 

from the alpha7 nicotinic acetylcholine receptor ligand binding domain. J. Am. Chem. Soc. 2006, 

128, 3019–3026. 

26. Nicolini, P.; Frezzato, D.; Gellini, C.; Bizzarri, M.; Chelli, R. Toward quantitative estimates of 

binding affinities for protein–lignad systems involving large inhibitor compounds: A steered 

molecular dynamics simulation route. J. Comput. Chem. 2013, 34, 1561–1576. 

27. Schmiedl, T.; Seifert, U. Optimal finite-time processes in stochastic thermodynamics. Phys. Rev. Lett. 

2007, 98, 108301. 

28. Vaikuntanathan, S.; Jarzynski, C. Escorted free energy simulations: Improving convergence by 

reducing dissipation. Phys. Rev. Lett. 2008, 100, 190601, doi:10.1103/PhysRevLett.100.190601. 

29. Ozer, G.; Keyes, T.; Quirk, S.; Hernandez, R. Multiple branched adaptive steered molecular 

dynamics. J. Chem. Phys. 2014, 141, 064101, doi:10.1063/1.4891807. 

30. Giovannelli, E.; Gellini, C.; Pietraperzia, G.; Cardini, G.; Chelli, R. Combining path-breaking 

with bidirectional nonequilibrium simulations to improve efficiency in free energy calculations.  

J. Chem. Phys. 2014, 140, 064104, doi:10.1063/1.4863999. 

31. Chelli, R.; Gellini, C.; Pietraperzia, G.; Giovannelli, E.; Cardini, G. Path-breaking schemes for 

nonequilibrium free energy calculations. J. Chem. Phys. 2013, 138, 214109, doi:10.1063/1.4808037. 

32. Shirts, M.R.; Pande, V.S. Comparison of efficiency and bias of free energies computed by exponential 

averaging, the bennett acceptance ratio, and thermodynamic integration. J. Chem. Phys. 2005, 122, 

144107, doi:10.1063/1.1873592. 

33. Chelli, R.; Procacci, P. A potential of mean force estimator based on nonequilibrium work 

exponential averages. Phys. Chem. Chem. Phys. 2009, 11, 1152–1158. 

34. Nicolini, P.; Procacci, P.; Chelli, R. Hummer and szabo-like potential of mean force estimator  

for bidirectional nonequilibrium pulling experiments/simulations. J. Phys. Chem. B 2010, 114, 

9546–9554. 

35. Chelli, R.; Marsili, S.; Procacci, P. Calculation of the potential of mean force from  

nonequilibrium measurements via maximum likelihood estimators. Phys. Rev. E 2008, 77, 031104, 

doi:10.1103/PhysRevE.77.031104. 

36. Minh, D.D.L.; Adib, A.B. Optimized free energies from bidirectional single-molecule force 

spectroscopy. Phys. Rev. Lett. 2008, 100, 180602, doi:10.1103/PhysRevLett.100.180602. 

37. Shirts, M.R.; Bair, E.; Hooker, G.; Pande, V.S. Equilibrium free energies from nonequilibrium 

measurements using maximum-likelihood methods. Phys. Rev. Lett. 2003, 91, 140610, 

doi:10.1103/PhysRevLett.91.140601. 

38. Jorgensen, W.L. Drug discovery: Pulled from a protein’s embrace. Nature 2010, 466, 42–43. 

39. Colizzi, F.; Perozzo, R.; Scapozza, L.; Recanatini, M.; Cavalli, A. Single-molecule pulling simulations 

can discern active from inactive enzyme inhibitors. J. Am. Chem. Soc. 2010, 132, 7361–7371. 

40. Mai, B.K.; Viet, M.H.; Li, M.S. Top leads for swine influenza a/h1n1 virus revealed by steered 

molecular dynamics approach. J. Chem. Inf. Model. 2010, 50, 2236–2247. 



Molecules 2015, 20 19251 
 

 

41. Mai, B.K.; Li, M.S. Neuraminidase inhibitor r-125489—A promising drug for treating influenza virus: 

Steered molecular dynamics approach. Biochem. Biophys. Res. Commun. 2011, 410, 688–691. 

42. Liu, X.; Wang, X.; Jiang, H. A steered molecular dynamics method with direction optimization 

and its applications on ligand molecule dissociation. J. Biochem. Biophys. Methods 2008, 70, 

857–864. 

43. Yang, K.; Liu, X.; Wang, X.; Jiang, H. A steered molecular dynamics method with adaptive 

direction adjustments. Biochem. Biophys. Res. Commun. 2009, 379, 494–498. 

44. Gu, J.; Wang, X.; Yang, Y. A steered molecular dynamics method for receptor-ligand unbinding 

based on genetic algorithm. In Proceedings of the 2013 International Conference on Information 

Science and Cloud Computing Companion, Guangzhou, China, 7–8 December 2013; pp. 698–703. 

45. Kang, L.; Li, H.; Jiang, H.; Wang, X. An improved adaptive genetic algorithm for protein–ligand 

docking. J. Comput. Aided Mol. Des. 2009, 23, 1–12. 

46. Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. Gromacs: 

Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. 

47. Van Buuren, A.R.; Marrink, S.J.; Berendsen, H.J.C. A molecular dynamics study of the 

decane/water interface. J. Phys. Chem. 1993, 97, 9206–9212. 

48. Mark, A.E.; van Helden, S.P.; Smith, P.E.; Janssen, L.H.M.; van Gunsteren, W.F. Convergence 

properties of free energy calculations: .Alpha.-cyclodextrin complexes as a case study. J. Am. 

Chem. Soc. 1994, 116, 6293–6302. 

49. Berendsen, H.J.; Postma, J.P.M.; van Gunsteren, W.F.; Hermans, J. Interaction models for water in 

relation to protein hydration. In Intermolecular Forces; Pullman, B., Ed.; Springer Netherlands: 

Dordrecht, The Netherlands, 1981; Volume 14, pp. 331–342. 

Sample Availability: Not available. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


