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Abstract: Partricin is a heptaene macrolide antibiotic complex that exhibits exceptional antifungal activity,
yet poor selective toxicity, in the pathogen/host system. It consists of two compounds, namely partricin A
and B, and both of these molecules incorporate two cis-type bonds within their heptaenic chromophores:
28Z and 30Z. In this contribution, we have proven that partricins are susceptible to a chromophore-
straightening photoisomerization process. The occurring 28Z→28E and 30Z→30E switches are irreversible
in given conditions, and they are the only structural changes observed during the experiment. The obtained
all-trans partricin’s derivatives, namely iso-partricins A and B, exhibit very promising features, potentially
resulting in the improvement of their selective toxicity.

Keywords: partricin; aureofacin; polyene macrolides; photoisomerization; selective toxicity; structural
studies; NMR

1. Introduction

Among several groups of clinically used antifungal antibiotics, polyene macrolides should
be regarded as the most versatile and promising family of fungicidal agents. They exhibit most
of the features of a mythical “ideal drug”, with two major disadvantages depriving them of
their rightful place on top of the antifungal pantheon: (1) poor bioavailability, resulting from
poor solubility in water; and (2) relatively poor pathogen/host selective toxicity [1]. Although
the former problem may be easily overcome by a proper formulation of a drug, the latter is
directly related to the molecular mode of action of clinically used polyene macrolides; thus, they
require rational modifications to their chemical structure.

The highest antifungal activity is attributed to the polyene macrolides belonging to
the heptaenic group. This family may be divided into two subgroups: (1) non-aromatic
all-trans heptaenes, with amphotericin B (AmB) being “the big star” and still considered to
be a golden standard in treatment of systemic fungal infections, and (2) aromatic heptaenes
(AHs), incorporating two cis-type double bonds in their heptaenic chromophores and an
extra structural feature: an alkyl-aromatic side chain, attached to the major macrolactone
ring [2,3]. Members of the latter subgroup exhibit up to two orders of magnitude higher
antifungal activity than AmB [4], yet none of them is currently recommended for clinical
use in treatment of internal mycoses, mainly due to their especially poor selective toxicity
and severe side effects.

AHs are often misrepresented in the literature, as the all-trans compounds, yet none of
the Ahs—found in nature to this date, that is—exhibits such a geometry of the chromophore.
The most widely known representative of AHs, the candicidin complex (syn. levorin,
ascosin, produced by Streptomyces griseus), consists of three major components and each
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of them incorporates two cis-type bonds, i.e., 26Z and 28Z [5]. The other member of the
AH family, partricin complex (syn. aureofacin, produced by Streptomyces aureofaciens)
involves two compounds, differentiated solely by one methyl group at the end of the side
chain [6,7]. Both of these molecules also incorporate two cis-type bonds, yet in different
positions, i.e., 28Z and 30Z (Figure 1) [8–10]. Members of the partricin complex, partricin A
(syn. gedamycin) and partricin B (syn. vacidin) contain more oxygen functions in C1-C15
fragment than the candicidins [5], which probably translates to slightly higher antifungal
activity due to enhanced rigidity of partricin’s macrolactone ring.
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Figure 1. Structure of partricins A and B, along with their methyl esters of N-acetyl derivatives.

Although partricin is not currently used as a weapon against systemic mycoses, methyl
ester of partricin, aka mepartricin (Ipertrofan and Tricandil), was proven to be useful in
treatment of benign prostatic hyperplasia and chronic nonbacterial prostatitis/pelvic pain
syndrome [11–14]. Similar to all members of the heptaenic family, mepartricin effectively
binds to steroids, and this feature is considered to be the foundation of the therapeutic
effect [15].

Previously, we have shown that the main candicidin, candicidin D [16], while exposed
to UV–VIS radiation, undergoes photochemical isomerization reaction, which results in
straightening of the heptaenic chromophore to the AmB-type (all-trans) geometry [17]. This
process is irreversible in the given conditions and it is the only structural change occurring
during the experiment, assuming that the radiation dose and the time of exposure are fairly
optimized. Since partricins exhibit different geometry of the heptaenic chromophore [8,10], in
this study, we have settled whether their exposure to UV–VIS radiation would produce similar
results to the ones observed for candicidin D. Straightening of the heptaenic chromophore
to the all-trans geometry should be regarded as the first step in a long journey, leading to
significant improvement of AHs’ selective toxicity and, thus, creation of a better drug than
the current standard, amphotericin B.

2. Results
2.1. Shedding A New Light to Old Matters

As we stated before [5], there are many inconsistencies in the literature regarding
data on aromatic heptaene macrolide antibiotic complexes. Previously, we have solved
the candicidin case [17]. Going on with our mission to put these matters in order, we have
also confirmed that the names “partricin” and “aureofacin” should be used as synonyms,
since they refer to the same antibiotic complex [18]. As we postulated earlier, some of the
previous confusions might have risen from the photochemical isomerization phenomenon
of the partricin complex, which we decided to examine in this contribution.

Similarly to the procedure applied in case of the candicidin complex, a simple experiment
was conducted [17]. Two identical solutions of partricin complex were prepared: one stored
in darkness for 24 h (control) and the second one, simultaneously stored and unguarded from
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direct daylight. As can be seen in Figure 2, observed number of major components of the
partricin complex, illuminated with daylight (red line), has doubled in comparison to the
control sample (blue line). Partricins A and B were partially transformed into their isomers,
exhibiting the very same molecular masses, yet responding with significantly altered UV–VIS
spectra. Since the heptaenic chromophore of polyene macrolides is by far the major contributor
to their electronic spectra, it was obvious that structural changes—at least those registered by
photonic absorption—must have occurred in this region.
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Figure 2. Superimposed HPLC–DAD–ESIMS chromatograms of partricin complex. Red line: sample dissolved and stored at
room temperature for 24 h, with an unlimited access to daylight. Blue line: sample dissolved and stored at room temperature
in darkness for 24 h (control).

UV–VIS spectra of the native partricins incorporate three absorption maxima at
λ1 = 360 nm, λ2 = 378 nm and λ3 = 401 nm, with the one at the medium (λ2) being
of highest intensity (Figure 2). Such an image is generally attributed to a heptaenic system
that contains several Z double bonds within [19]. While the positions and number of the
Z bonds might not be directly extracted from the antibiotics’ electronic spectra, previous
studies on partricin A and partricin B have proven that those molecules contain two cis-type
double bonds at positions 28 and 30 (Figure 1) [8,10].

The absorption maxima observed for iso-partricins A and B were subjects to bathochromic
shifts, manifesting at λ1* = 364 nm, λ2* = 384 nm and λ3* = 407 nm. Moreover, the relative
intensities of λ2* and λ3* were inversed in relation to the native compounds (Figure 2). This
shape of an electronic spectrum has been previously demonstrated to indicate to the all-trans
type of heptaenic chromophore, identical to the one of amphotericin B [3]. However, this
testimony could not be accepted as a direct structural proof and, therefore, required further
verification. Additionally, the remaining structural regions of the iso-molecules must have also
been tested for other potential light-induced constitutional alterations. Thus, 1H NMR was
selected as a major tool for the following structural studies.

2.2. NMR Studies on Iso-Partricin A and B

The native partricin complex was derivatized into its N-acetyl methyl ester via series
of simple reactions. This procedure, developed at our department, is a well-established
approach for the elucidation of constitution and/or stereochemistry of polyene macrolides,
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using NMR techniques [5,16,20–22], and, as an option, could be followed in order to facili-
tate purification of studied antibiotic molecules and enhance their solubility in standard
NMR solvents. Later, the resulting methyl ester of N-acetylpartricin (referred to as par-
tricin*) was exposed to moderate UV–VIS radiation of λ = 365 nm. The chosen reaction
wavelength was identical to the one that produced the best results for candicidin D and was
not optimized in this study [17]. The progress of a photochemical reaction was traced by us-
ing continuous UV–VIS spectra. When further irradiation caused no visible changes in the
electronic spectra, methyl ester of N-acetyl-iso-partricin A (referred to as iso-partricin A*)
and methyl ester of N-acetyl-iso-partricin B (aka iso-partricin B*) were isolated and purified
by using HPLC.

Iso-partricin A* and iso-partricin B* molecules were subjects to a standard set of 2D
NMR experiments, consisting of DQF-COSY, TOCSY, HSQC, HMBC and ROESY spectra
(please consult Figures S1–S12) [5,16,20–26]. DQF-COSY, TOCSY and HSQC spectra were
used to trace proton–proton and proton–carbon connectivities within isolated protonic
spin systems, while HMBC and ROESY experiments enabled gluing all the pieces together,
due to long ranged heteronuclear couplings and structurally conclusive dipolar couplings
between protons. Finally, DQF-COSY and ROESY spectra allowed the definition of the
stereostructure of the studied compounds, including absolute configurations of almost
all stereogenic centers within the molecules and—most importantly—the geometries of
iso-partricin’s A* and iso-partricin’s B* chromophores.

Detailed NMR studies revealed that, in contrary to the NMR data on the partricin A and
partricin B methoxycarbonylmethylamide derivatives [8–10], all the 3JH,H coupling constants
within the double bonds were no lower than 15.1 Hz and no higher than 15.6 Hz, thus de-
termining the E geometry of the entire chromophore systems. The chemical shifts of all the
olefinic carbons (C22–C35) ranged between 130 and 137 ppm, which strongly suggested the
E geometries of all the double bonds within the chromophores, since no shielding γ-effects
were observed for the C27/C30 and C29/C32 pairs [9,16,22]. Moreover, rich sets of ROEs
between the protons of the C2–C13 and C22–C35 fragments were recorded (Figure 3), as well as
two uninterrupted ROE pathways, incorporating even- and odd-numbered olefinic protons
(see Appendix A section, Table A1). The stereostructural requirements for all those dipolar
couplings might be met only in case of straightening of the heptaenic chromophores to the
all-trans geometries. Additionally, some of the vicinal proton–proton coupling constants within
the C2–C9 fragments have changed in comparison to the cis–trans derivatives [9,10], which
should be attributed to the alteration of the flexibility of the macrolactone ring systems, resulting
from changes in the geometry of the chromophores.
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No other constitutional and/or stereochemical changes in iso-partricin A* and iso-
partricin B* were found in comparison to the native compounds. Thus, we have proven that
28Z→28E and 30Z→30E switches are the only chemical changes of partricins’ structures,
occurring as a result of moderate UV–VIS irradiation.

More detailed information on the 1 H and 13 C resonances of iso-partricin A* and
iso-partricin B* is given in Table A1.

3. Discussion

The work presented in this manuscript, along with the previously conducted studies
on candicidin D and its all-trans isomer [17], have proven that the native aromatic heptaene
macrolide antifungal antibiotics are in fact susceptible to a chromophore-straightening
photoisomerization process, regardless of the positions of the Z double bonds within
their original chromophores. The resulting transformations are irreversible in the given
experimental conditions, yet it must be noted that the yield of the whole process is below
100%, since the welcomed structural changes are in fact competed by the antibiotics’
degradation. The latter fact presumably creates a space for further optimization of the
production of the AHs’ isoforms.

The all-trans aromatic heptaenes (especially the iso-partricins, exhibiting high resem-
blance of their polyol chains to the one of AmB) might be, therefore, considered as aromatic
analogues of amphotericin B—the only polyene macrolide antibiotic used clinically in
treatment of systemic fungal infections. Our preliminary results on in vitro biological
activity of iso-candicidin D, iso-partricin A and iso-partricin B have strongly suggested that
fungicidal activity of the all-trans isoforms remains comparable to the native molecules,
thus still exceeding the one of AmB by almost two orders of magnitude. Meanwhile,
the hemolytic activity of iso-AHs has been substantially reduced in comparison to the
native cis–trans forms. The calculated selective toxicity indexes (STIs), which relate to the
EH50 to MIC ratio, were equal to > 20 and 19.28 for iso-partricin A and iso-partricin B,
respectively. Initial assessments have therefore demonstrated that both iso-partricins were
more selective than AmB (STI = 13.84), mainly due to the lowered hemolytic activity. For
more details on biological activity of iso-partricins, along with computational studies on
their interactions with membrane sterols, please consult [27].

In the end, the in vitro selective toxicity index of AHs seems to benefit a lot from the
straightening of their heptaenic chromophores, which encourages us to have high hopes,
regarding following studies on these compounds and their further development.

4. Materials and Methods
4.1. Partricin Complex

The crude partricin complex was obtained by extraction with n-butanol from fermen-
tative broth of Streptomyces aureofaciens NRRL 3878 in the Department of Pharmaceutical
Technology and Biochemistry, Gdańsk University of Technology (Gdańsk, Poland). The
volume of resulting solution was reduced by evaporation under reduced pressure and
centrifuged. The precipitate was washed several times with acetone and dry ethyl ether
and dried under reduced pressure. The crude antibiotic complexes were then purified by
using the procedure described in patent no. 83,710 [28].

4.2. Synthesis of Methyl Ester of 3′-N-Acetylpartricin Complex (Partricin*)

Derivatization of the purified partricin complex was performed with the general
procedure previously elaborated in our laboratory and described in References [5,21,22].

4.3. Photochemical Cis−Trans Isomerization of Partricin*

The partricin* complex was dissolved in a 95% methanol/5% water solvent system to
a concentration of 1 mg/mL. While gently stirring, one liter of this solution (~2 cm depth)
was then irradiated with two long-wavelength UV lamps (λ = 365 nm, 8 W) for ca. 1 h. The
reaction vessel was placed in the dark, at room temperature. The progress of the photochemical
isomerization reaction was monitored by using UV−VIS spectroscopy and RP-HPLC analysis.
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The RP-HPLC analysis conditions were as follows: column, Luna 100 C18 (2) (150× 4.6 mm,
5 µm); mobile phase composition, 38% acetonitrile/62% ammonium acetate buffer (5.5 mmol,
pH = 4.5), v/v; flow rate, 1 mL/min; detection at 378 nm; room temperature.

4.4. Isolation of the Methyl Esters of 3′-N-Acetyl-Iso-Partricin A and B (Iso-Partricin A* and
Iso-Partricin B*)

The isolation of the iso-partricin A* and iso-partricin B* from the partricin* complex
was performed by means of semi-preparative HPLC on a Merck–Hitachi apparatus L-6200A,
equipped with Merck–Hitachi L-4250 UV–VIS detector. The separation conditions were
as follows: column LiChrosorb Si60 (250 mm × 10 mm, 7 µm), mobile phase composition:
chloroform/methanol/water (5:0.4:0.035, v/v/v); flow rate 6.25 mL/min; detection at
407 nm, room temperature. A sample of 10 mg/mL (dissolved in the mobile phase) in a
volume of 0.625 mL was injected. The retention time was 18 min and 29 min for iso-partricin
A* and iso-partricin B*, respectively. The semi-preparative HPLC separation was performed
several times, yielding 7 mg of the iso-partricin A* and 8 mg of the iso-partricin B*.

4.5. NMR Experiments

The NMR spectra were recorded with a Bruker Avance III HD 700 MHz spectrometer
equipped with QCI CryoProbe in solvent system pyridine-d5-methanol-d4, 9:1 (v/v) at
25 ◦C with a sample concentration of 15 mg/mL. Chemical shifts were reported in δ (ppm)
units, using 1H residual resonance from pyridine-d5 (7.19 ppm) as internal standard. The
1D 1 H NMR spectra were collected with digital resolution of 0.5 Hz. The 1 H 90◦ pulse
length was 7.0 µs.

Two-dimensional 1H spectra were measured in the phase-sensitive mode with a
spectral width of 7704 Hz.

The DQF-COSY spectra were acquired in a 4096 × 512 matrix with 32 accumulations
per increment and were processed in a 4K × 2K matrix.

The TOCSY spectra were acquired with a mix time of 60 ms in a 2048 × 512 matrix
with 32 accumulations per increment in a 2K × 1K matrix.

The ROESY spectra were acquired with a mix time of 300 ms in a 2048 × 512 matrix
with 64 accumulations per increment in a 2K × 1K matrix.

HSQC and HMBC experiments were performed with pulse field gradients.
The edited HSQC spectra were acquired in the phase-sensitive mode with 1J(CH) set to

140 Hz. The spectral windows for 1H and 13 C axes were 7716 and 29,177 Hz, respectively.
The data were collected with 64 accumulations per increment in a 2048 × 256 matrix and
processed in a 2K × 1K matrix.

The HMBC spectra were acquired in absolute value mode with nJ(CH) set to 9 Hz. The
spectral windows for 1H and 13 C axes were 7716 and 40,515 Hz, respectively. The data
were collected with 192 accumulations per increment in a 2048 × 256 matrix and processed
in a 2K × 1K matrix.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antibiotics10091102/s1. Figure S1: The 1 H NMR spectrum of iso-partricin A. Figure S2:
The 1 H NMR spectrum of iso-partricin B. Figure S3: The DQF-COSY spectrum of iso-partricin
A. Figure S4: The DQF-COSY spectrum of iso-partricin B. Figure S5: The TOCSY spectrum of iso-
partricin A. Figure S6: The TOCSY spectrum of iso-partricin B. Figure S7: The ROESY spectrum of
iso-partricin A. Figure S8: The ROESY spectrum of iso-partricin B. Figure S9: Edited 1 H-13 C HSQC
spectrum of iso-partricin A. Figure S10: The 1 H-13 C HMBC spectrum of iso-partricin A. Figure
S11: Edited 1H-13C HSQC spectrum of iso-partricin B. Figure S12: The 1H-13C HMBC spectrum of
iso-partricin B, Figure S13: HPLC-DAD-ESIMS chromatogram of isolated iso-partricin A. Figure S14:
HPLC-DAD-ESIMS chromatogram of isolated iso-partricin B.
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Appendix A

Table A1. 1H and 13C NMR spectroscopic data for iso-partricin A* and B* (700 MHz, C6D5N/CD3OD (9:1, v/v)). In every
column, the letter A stands for spectroscopic data for iso-partricin A*, and the letter B stands for the analogous value for
iso-partricin B*, whereas no letter given means that the presented data are identical for both antibiotics.

Iso-Partricin A* and B*

Position δC, Type δH JH,H (Hz) ROE Contacts

Aglycone
1 170.85, C – – –

2ab 1 43.48, CH2 2.796 ? (3) 1 3, 4a, 4b
3 64.18, CH 4.863 ? (2ab) 1, 8.8 (4a), 4.3 (4b) 2ab, 4a, 4b, 34, Me38

4a
51.05, CH2

2.849 8.8 (3), 16.8 (4b) 2ab, 3, 4b
4b 2.990 4.3 (3), 16.8 (4b) 2ab, 3, 4a
5 208.54, C – – –

6a
51.55, CH2

2.632 16.4 (6b), 1.9 (7) 4a, 6b, 7
6b 2.874 16.4 (6a), 10.2 (7) 4b, 6a, 7
7 67.79, CH 4.591 1.9 (6a), 10.2 (6b), 2.0 (8a), 9.7 (8b) 6a, 6b, 8a, 8b, 9, 28

8a
43.77, CH2

1.529 2.0 (7), 13.8 (8b), 1.9 (9) 6a, 7, 8b, 9, 10a
8b 1.732 9.7 (7), 13.8 (8b), 10.0 (9) 6b, 7, 8a, 10b
9 72.79, CH 4.269 1.9 (8a), 10.0 (8b), 2.2 (10a), 9.8 (10b) 7, 8a, 10a, 11, 28

10a
44.49, CH2

1.465 2.2 (9), 14.1 (10b), 1.9 (11) 8a, 9, 10b, 11, 12a
10b 1.670 9.8 (9), 14.1 (10a), 10.3 (11) 8b, 10a, 11
11 73.02, CH 4.283 1.9 (10a), 10.3 (10b), 2.2 (12a), 9.4 (12b) 9, 10a, 10b, 12a, 13, 24

12a
44.31, CH2

1.411 2.2 (11), 13.2 (12b), 1.8 (13) 10a, 11, 12b, 13, 14a
12b 1.685 9.4 (11), 13.2 (12a), 10.1 (13) 12a, 14b
13 69.11, CH 4.746 1.8 (12a), 10.1 (12b), 2.0 (14a), 9.4 (14b) 11, 12a, 14a, 22, 24

14a
46.71, CH2

1.755 2.0 (13), 14.6 (14b) 12a, 13, 14b
14b 1.953 9.4 (13), 14.6 (14a) 12b, 14a, 16b
15 98.11, C – – –

16a
45.28, CH2

1.743 12.4 (16b), 10.3 (17) 16b, 18
16b 2.543 12.4 (16a), 4.5 (17) 14b, 16a, 17
17 66.34, CH 5.006 10.3 (16a), 4.5 (16b), 10.2 (18) 16b, 18, 19
18 58.39, CH 2.853 10.2 (17), 10.1 (19) 16a, 17, 19, 20a, 21
19 66.21, CH 5.049 10.1 (18), 10.5 (20a) 17, 18, 20a, 20b, 22, 1′, 2′

20a
37.86, CH2

2.013 10.5 (19), 15.6 (20b) 18, 19, 20b, 21
20b 2.431 15.6 (20a), 9.6 (21) 19, 20a, 21, 1′

21 75.91, CH 4.924 9.6 (20b), 9.2 (22) 18, 20a, 20b, 22, 1′

22 136.89, CH 6.403 9.2 (21), 15.3 (23) 13, 19, 21, 24
23 132.93, CH 6.449 15.3 (22), 11.1 (24) 25
24 133.90, CH 6.674 11.1 (23), 15.4 (25) 11, 13, 22, 26
25 130.00, CH 6.380 15.4 (24), 10.9 (26) 23, 27
26 133.89, CH 6.476 10.9 (25), 15.1 (27) 24, 28
27 132.42, CH 6.299 15.1(26), 11.0 (28) 27, 29
28 133.90, CH 6.649 11.0 (27), 15.6 (29) 7, 9, 26, 30
29 133.88, CH 6.630 15.6 (28), 10.9 (30) 27, 31
30 133.25, CH 6.496 10.9 (29), 15.4 (31) 28, 32
31 133.91, CH 6.673 15.4 (30), 11.3 (32) 29, 33
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Table A1. Cont.

Iso-Partricin A* and B*

Position δC, Type δH JH,H (Hz) ROE Contacts

32 133.01, CH 6.405 11.3 (31), 15.1 (33) 30, 34
33 133.84, CH 6.624 15.1 (32), 11.0 (34) 31, 35
34 132.49, CH 6.301 11.0 (33), 15.5 (35) 2ab, 3, 32, 36
35 136.99, CH 5.598 15.5 (34), 9.3 (36) 33, 36, 37, Me36

36 40.14, CH 2.542 9.3 (35), 9.2 (37), 6.8 (Me36) 34, 35, 37, 39a, 39b, Me36,
Me38

37 78.63, CH 5.080 9.2 (36), 2.9 (38) 35, 36, 38, 39a, Me36, Me38

38 33.81, CH 1.927 2.9 (37), ? (39a, 39b) 2, 6.7 (Me38)
37, 39a, 39b, 40ab, 41, Me36,

Me38

39a
30.84, CH2

A: 1.719
B: 1.714 ? (38, 39b) 2, ? (40ab) 1 36, 37, 38, 39b, 40ab, 41, Me38

39b A: 1.761
B: 1.757 ? (38, 39a) 2, ? (40ab) 1 36, 37, 38, 39a, 40ab, 41, Me38

40ab 1 A: 35.64,
B: 35.66, CH2

A: 1.895
B: 1.877 ? (39a, 39b, 41) 1 38, 39a, 39b, 41, 42a, 42b, Me38

41 A: 68.35,
B: 68.28, CH A: 4.609

B: 4.592 ? (40ab)1, 3.5 (42a), 9.1 (42b) 38, 39a, 39b, 40ab, 42a, 42b,
45/45′

42a A: 46.11,
B: 46.04,

CH2

A: 3.233
B: 3.211 3.5 (41), 15.2 (42b) 40ab, 41, 42b, 45/45′

42b A: 3.435
B: 3.410 9.1 (41), 15.2 (42a) 40ab, 41, 42a, 45/45′

43 A: 197.76,
B: 197.67, C – – –

Me36 16.48, CH3 0.972 6.8 (36) 35, 36, 37, 38
Me38 12.91, CH3 1.040 6.7 (38) 36, 37, 38, 39a, 39b

COOMe 173.91, C – – –
COOMe 51.66, CH3 3.818 – 2′, 3′

NHMe A: 29.36,
B: –, CH3

A: 2.811
B: – – 46/46′

Aromatic moiety

45/45′ A: 131.05,
B: 131.23, CH 8.161 8.6 (46/46′) 41, 42a, 42b, 46/46′

46/46′ A: 110.94,
B: 110.24, CH 6.757 8.6 (45/45′) 45/45′, NHMe

C*CO A: 154.38,
B: 154.25, C – – –

C*NH A: 126.12,
B: 126.64, C – – –

Mycosamine moiety
1′ 98.16, CH 4.974 1.9 (2′) 2′, 3′, 5′, 19, 20b, 21
2′ 70.79, CH 4.444 1.9 (1′), 3.5 (3′) 1′, 3′, 19, COOMe
3′ 56.09, CH 4.677 3.5 (2′), 9.4 (4′), 4.5 (NHCOMe) 1′, 2′, 5′, COOMe, NHCOMe
4′ 74.62, CH 4.034 9.4 (3′), 9.5 (5′) 6′, NHCOMe
5′ 74.69, CH 3.790 9.5 (4)’, 6.3 (6′) 1′, 3′, 6′

6′ 18.41, CH3 1.591 6.3 (5′) 4′, 5′

NHCOMe 22.83, CH3 2.113 – 3′, NHCOMe
NHCOMe 170.90, C – – –
NHCOMe – – 8.850 4.5 (3′) 4′, NHCOMe

1 These protons were perfectly superimposed; hence, the values of the coupling constants involving protons 2a, 2b, 40a and 40b could not
be measured. 2 These coupling constants could not be measured due to severe signal overlaps and higher order effects.
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