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Vasodilator Phosphostimulated Protein (VASP) Protects
Endothelial Barrier Function During Hypoxia
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David Kohler,! and Peter Rosenberger'**

Abstract—The endothelial barrier controls the passage of solutes from the vascular space. This is
achieved through active reorganization of the actin cytoskeleton. A central cytoskeletal protein
involved into this is vasodilator-stimulated phosphoprotein (VASP). However, the functional role of
endothelial VASP during hypoxia has not been thoroughly elucidated. We determined endothelial
VASP expression through real-time PCR (Rt-PCR), immunhistochemistry, and Western blot anal-
ysis during hypoxia. VASP promoter studies were performed using a PGL3 firefly luciferase cont-
aining plasmid. Following approval by the local authorities, V4SP~"~ mice and littermate controls
were subjected to normobaric hypoxia (8% O,, 92% N,) after intravenous injection of Evans blue
dye. In in vitro studies, we found significant VASP repression in human microvascular and human
umbilical vein endothelial cells through Rt-PCR, immunhistochemistry, and Western blot analysis.
The VASP promoter construct demonstrated significant repression in response to hypoxia, which
was abolished when the binding of hypoxia-inducible factor 1 alpha was excluded. Exposure of
wild-type (WT) and VASP™"~ animals to normobaric hypoxia for 4 h resulted in an increase in Evans
blue tissue extravasation that was significantly increased in VASP™~ animals compared to WT
controls. In summary, we demonstrate here that endothelial VASP holds significant importance for

endothelial barrier properties during hypoxia.
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INTRODUCTION

The passive and active movement of solutes from
the intravascular space to the extracellular compartment is
controlled by the endothelial barrier. Central to this
process is the cytoskeleton, wherein dynamic reorganiza-
tion of the actin filaments is crucial for the control of fluid
exchange [1]. Vasodilator-stimulated phosphoprotein
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(VASP) is a central cytoskeletal protein that holds
significant impact on the active reorganization of the
cytoskeleton. In endothelial cells, VASP functions in
membrane ruffling, aggregation, and tethering of actin
filaments during the formation of endothelial cell-
substrate and cell-cell contacts. Moreover, VASP expres-
sion is increased in endothelial cells during angiogenesis
and at most phases involving cell shape change [2]. At
resting conditions, siRNA-mediated downregulation of
VASP does not affect transendothelial resistance (TER)
but increases permeability to fluorescein isothiocyanate-
conjugated dextran (FITC-dextran) [3, 4]. Similarly,
murine microvascular myocardial endothelial (MyEnd)
cells derived from VASP™~ mice show no difference in
TER when compared to control MyEnd cells but exhibit
an increase in permeability to FITC-dextran under resting
conditions [5-7].

During periods of hypoxia or inflammation, the
endothelial barrier becomes dysfunctional and fluid
passes from the intravascular to the extravascular
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compartment [8]. This process is associated with the
formation of stress fibers within endothelial cells [9-11].
VASP prevents the formation of stress fibers and as such
is protective for the maintenance of the endothelial
barrier function. Furman et al. demonstrated that a
reduction of the Ena/VASP expression is detrimental
during embryologic development. In this study, the
authors demonstrated that in the absence of Ena/VASP,
the vasculature exhibits patterning defects and lacks
structural integrity, leading to edema, hemorrhaging,
and, as a result, late stage embryonic lethality [12]. We
have previously demonstrated that VASP is repressed
during hypoxia, and this repression results in a reduction
of intestinal barrier function during periods of tissue
hypoxia in vivo [4]. However, the role of endothelial
VASP for the maintenance of barrier function during
hypoxia in vivo has not been investigated yet.

In the present study, we pursued the role of VASP
for barrier function during hypoxia in vivo. We found a
significant repression of endothelial VASP through a
hypoxia-inducible factor-1 (HIF-1c)-dependent mecha-
nism which correlated with increased tissue permeabil-
ity. Studies employing VASP~ animals identified VASP
to be of great importance for vascular barrier function
during conditions associated with tissue hypoxia.

MATERIALS AND METHODS

HMEC-1 Cell Line and HUVEC. Human microvascu-
lar endothelial cells (HMEC-1) were grown as described
previously, and human umbilical cord endothelial cells
(HUVEC) were freshly separated according to standard
protocols [13].

Transcriptional Analysis. Semiquantitative analysis
was performed employing real-time PCR (Rt-PCR,
iCycler; Bio-Rad Laboratories, Inc.) to examine VASP
expression levels in HMEC-1 after confluent cells were
exposed to 4, 12, 24, and 48 h of normobaric hypoxia
(2% O,, 98% N,). Primer sets contained 10 pM each of
the sense primer 5'-GAA AAC CCC CAA GGA TGA
AT-3" and the antisense primer 5'-GGA AGT GGT CAC
CGA AGA AG-3". The primer set was amplified using
increasing numbers of cycles of 94°C for 1 min, 60°C
for 2 min, 72°C for 4 min, and a final extension of 72°C
for 7 min. Samples were controlled for (3-actin using
following primers: sense 5'-GGT GGC TTT TAG GAT
GGC AAG-3' and antisense 5-ACT GGA ACG GTG
AAG GTG ACA G-3' (162 bp). Analysis of expres-
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sional levels of vascular endothelial growth factor
(VEGF) was performed using sense primer 5'-TTG
CCT TGC TGC TCT ACC TC-3' and antisense 5'-
AGC TGC GCT GAT AGA CAT CC-3".

VASP Protein Analysis. Cell culture samples were
normalized for protein levels before applying them in
non-reducing conditions to SDS containing polyacryla-
mide gels. Antibodies used for Western blotting included
mouse polyclonal anti-VASP (BD Biosciences). Actin was
stained using rabbit anti-actin (Cell Signaling). Detection
of HIF-«x was performed as described previously (BD
Biosciences), and detection of VEGF was performed using
murine polyclonal anti-VEGF primary antibody (Santa
Cruz). Blots were washed, and species-matched perox-
idase-conjugated secondary antibody was added. Labeled
bands from washed blots were detected by enhanced
chemiluminescence (Amersham Pharmacia Biotech).

Immunofluorescent Staining. HMEC-1 were grown to
confluency on acid-washed 12-mm glass cover slips.
Cells were then exposed to normobaric hypoxia for 24 h.
Cover slips were then washed once in phosphate-
buffered saline and fixed for 10 min at room temperature
in 1% paraformaldehyde in cacodylate buffer (0.1 M
sodium cacodylate; pH 7.4, 0.72% sucrose). The mono-
layers were permeabilized for 10 min in PBS containing
0.2% Triton X-100 and 3% BSA and VASP protein
detected using monoclonal anti-VASP (BD Biosciences)
as described previously [4]. Nuclei were counter-stained
with 4',6-diamidino-2-phenylindole (DAPI, 10 pg/ml,
Molecular Probes, Eugene, OR). Actin fiber staining was
performed using rhodamine-phalloidine (Invitrogen).
Confocal laser scanning microscope LSM 510 Meta
(Carl Zeiss Jena) was used for imaging.

VASP pGL3 Reporter Assay. Available public data-
bases [14] and analysis of full-length cDNA [GenBank
NM _003370] identified the transcription start site of
VASP at position —260 relative to the first codon.
Analysis of our cloned region of VASP revealed the
existence of three potential binding sites for NF-xB and
one binding site for HIF-1x (Fig. 4). Truncations of the
putative VASP promoter was performed and ligated into
a pGL-3 firefly luciferase vector, HMEC-1 transfected,
and luciferase activity determined after 24 h exposure to
normobaric hypoxia. As a positive control for hypoxia,
cells were transfected with a vector-based hypoxia-
responsive element (HRE) plasmid containing four
tandem HIF-1 enhancer sequences from the 3'-region
of the erythropoietin gene.
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Fig. 1. Endothelial VASP is repressed during hypoxia. a VASP mRNA evaluated by Rt-PCR in endothelial HMEC-1 cells during normobaric hypoxia
(2% O3, 98% N,). b VEGF expression in HMEC-1 in response to normobaric hypoxia (Data are mean+SEM, n=5, *p<0.05, **p<0.01 as indicated).

Quantification of Microvascular Permeability In Vivo. All
animal protocols were in accordance with the German
guidelines for use of living animals and were approved by
the Institutional Animal Care and Use Committee of the
Tiibingen University Hospital and the Regierungspraesi-
dium Tuebingen. VASP~~ mice and gender-matched
C57B1/6 control mice were bred and genotyped as
described previously [15]. Animals were exposed for 4 h
to normobaric hypoxia (8%0,, 92%N,). We employed the
Evans blue (EB) dye extravasation technique for
determination of vascular integrity. EB (20 mg/kg;
Sigma-Aldrich) was injected intravenously prior to
hypoxia exposure. After animals were sacrificed, EB was

HMEC-

HUVEC

VASP —

VEGF ‘F‘h | yev—

HiF-1-a

B —Aktin

0 24 0 24
Time (h) in Hypoxia
Fig. 2. VASP protein expression during normobaric hypoxia. Westermn
blot analysis of VASP protein in HMEC-1 and HUVEC cells in response
to 24 h of normobaric hypoxia. Demonstrated are also the expression for
VEGF and HIF-1o as markers of hypoxia exposure.

extracted as described previously [16]. The absorption of
Evans blue was measured at 620 nm and corrected for
contamination by heme pigments at 740 nm.

Data Analysis. Data are presented as mean+=SEM.
We performed statistical analysis using the Student’s ¢
test or ANOVA to determine group differences. A value
of p<0.05 was considered statistically significant.

RESULTS

Endothelial VASP Is Repressed During Hypoxia. We
initially performed transcriptional analysis of VASP
expression in endothelial cells during normobaric hypoxia.
Following exposure of confluent endothelial HMEC-1 to
hypoxia for up to 48 h, we found endothelial VASP
expression to be significantly repressed in a time-depend-
ent fashion (Fig. 1a). To control for appropriate hypoxia
exposure, we evaluated the expression of vascular endo-
thelial growth factor and found a robust induction of VEGF
within these cells confirming adequate exposure to hypoxia
(Fig. 1b).

Next, we performed Western blot analysis of two
lines of endothelial cells, HMEC-1 and freshly isolated
HUVEC. We exposed these cells to 24 h of hypoxia and
found a significant repression of VASP levels within
both cell types. To confirm hypoxia exposure, we
performed analysis of VEGF expression and the expres-
sion of HIF-1o.. This clearly demonstrated that HIF-1«x
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was significantly induced within these cells (Fig. 2). To
gain further proof about the hypoxia-induced repression
of VASP, we performed immunohistochemical staining
of both endothelial cell lines and found a reduction of
VASP immunofluorescence in endothelial cells follow-
ing exposure to normobaric hypoxia for 24 h (Fig. 3).

VASP Promoter Is Repressed Through HIF-1o During
Hypoxia. We performed truncations of the VASP pro-
moter to subsequently exclude the binding sites for NF-
kB and HIF-1a. Using these promoter constructs, we
found a significant repression of VASP luciferase
activity in HMEC-1 in response to hypoxia (Fig. 4a).
When excluding the first of three binding sites for NF-
kB (construct 1, Fig. 4b) we still observed the
previously identified repression. Following exclusion of
the HIF-1« binding site through truncation (construct 2,
Fig. 4c), we found an attenuation of this repression,
demonstrating complete loss of the previously observed
repression. Further exclusion of the following two
binding sites for NF-kB (constructs 3 and 4, Fig. 4d, e)
did not attenuate VASP promoter luciferase activity.

VASP"~ Mice Demonstrate Reduced Barrier Properties
During Hypoxia. We next sought to investigate whether
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the in vitro findings of reduced VASP expression during
hypoxia would have a functional correlate in vivo. For this,
we employed a model of normobaric hypoxia exposing
wild-type (WT) mice and mice with gene-targeted
repression of VASP (VASP ") for 4 h to normoxia or
hypoxia following injection with EB dye. After harvesting
several organs we found that during normoxia, WT and
VASP~~ animals did not demonstrate significant differences
of EB tissue extravasation (Fig. 5a). Following hypoxia
exposure, VASP "~ mice demonstrated significantly
increased EB tissue extravasation compared to the WT
animals (Fig. 5b). Changes in overall vascular leakage
between WT and VASP™~ mice under hypoxic conditions
were also evident in open abdominal images taken at
necropsy (Fig. 5c). These findings identify VASP as a
critical control point for permeability changes associated
during hypoxia.

DISCUSSION

Given the importance of VASP for the endothelial
cytoskeleton, the repression of VASP might have func-

Hypoxia
A
VASP Actin Merge

Fig. 3. Immunofluorescent VASP localization in endothelial cells. VASP was localized by immunofluorescence (green) and actin staining performed
with rhodamine-phalloidine. Co-localization is shown as yellow. Nuclear counterstain performed with DAPI (blue) (pictures taken x630).
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Fig. 4. VASP promoter analysis during hypoxia in vitro. Schematic drawing of the putative VASP promoter. Displayed are the potential binding
sequences for HIF-1 and NF-kB (green). Serial truncations were then performed relative to transcription start site (7.SS) to identify the influence of
HIF-1x or NF-«kB on the putative VASP promoter HMEC-1 were transfected with the a VASP-PGL3 plasmid, b construct 1 excluding NF-«B binding
site 1, ¢ construct 2 excluding the HIF-1x binding site, d construct 3, e construct 4, and f HRE luciferase reporter driven by four tandem HREs

(positive control) (Data are mean£SEM, n=5, * p<0.05 as indicated).

tional impact on the endothelial barrier function in vivo.
In the presented study, we found a significant repression
VASP in endothelial cells during hypoxia which was
associated with altered barrier properties during hypoxia
in vitro and in vivo as demonstrated through the
exposure of VASP™"~ mice to hypoxia.

VASP mediates actin dynamics within endothelial
and epithelial cells and is involved in cell shape change
[2]. In addition, passive cell retraction as a result of
cytoskeletal rearrangement plays a key role in mediating
cellular contractile response and changes paracellular
permeability [17-21]. This rearrangement transposes its
force on cell—cell junctions through indirect attachment
of actin fibers with tight and adherens junctions.
Previous reports have shown that VASP may protect
the endothelial barrier during exposure to H,O, or
lipopolysaccharide (LPS) through a prevention of stress

fiber formation. In endothelial cells, this stress fiber
formation or destruction of cytoskeletal structures is
associated with an increase in permeability [22-24].
Downregulation of VASP using VASP siRNA techniques
in human pulmonary artery endothelium exacerbates the
H,0,-induced decrease in TER, whereas in human lung
microvascular ECs, it potentiated LPS-induced decrease
in TER [3, 25]. Thus, VASP appears to be a common
downstream target for oxidants and inflammatory medi-
ators increasing vascular permeability. A redistribution of
actin in cells exposed to chemical hypoxia persists longer
than 3 h and is also associated with increased paracellular
flux [8, 26]. In addition, ischemia, or as such hypoxia, is a
cause for cells to lose their polarity, to open tight
junctions, and, as a result, to increase paracellular
permeability [27]. We have demonstrated previously that
VASP is repressed in response to inflammatory cytokines
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Fig. 5. Increased vascular permeability in VASP™/~ animals during hypoxia. WT and VASP'~ animals were injected with Evan blue dye and exposed
to room air or normobaric hypoxia (8% O,, 92% N,) for 4 h. Animals were killed and the lung (Lu), liver (Li), spleen (Sp), kidney (Ki), and colon
(Co) were harvested. Organ specific Evans blue concentrations were quantified and corrected for contamination by heme pigments at 740 nm. a Evans
blue tissue extravasation in WT and VASP "~ animals following exposure for 4 h to normoxia. b Evans blue tissue extravasation in WT and VASP ™/~
animals following exposure for 4 h to hypoxia. ¢ Representative images of abdominal dissections of WT and VASP ™" animals following exposure to
normoxia or hypoxia for 4 h are demonstrated (All data are mean+SEM, n=8-9 per group, *»<0.05 as indicated).

in endothelial cells and epithelial cells [28]. The presented
study extends these findings and identifies HIF-1 to be
responsible for the observed repression. An involvement
of NF-«kB, which is also induced during periods of tissue
hypoxia, in the observed VASP repression during periods
of hypoxia seems rather unlikely given the results of this
study [29]. The possible interaction between hypoxia and
inflammation through the IkB kinase complex, a regu-
latory component of NF-kB, and in the regulation of
HIF-1 transcription by NF-kB before and during
inflammation, however, has to be kept in mind [8, 29, 30].
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Sites of acute inflammation are characterized by
shifts in the supply and demand of metabolites that result
in limited oxygen availability (inflammation-associated
hypoxia) [8, 31, 32]. But hypoxia itself represents an
inflammatory stimulus [8, 33-35]. Just as hypoxia can
induce inflammation, inflamed lesions often become
severely hypoxic [8]. Moreover, exposure of mice to
ambient hypoxia (e.g., 8% oxygen over 4-8 h) induces
increased leakage through epithelial or endothelial
barriers and induces inflammatory cell accumulation in
mucosal organs. This plays a critical role in several
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human clinical conditions including solid organ trans-
plantation (e.g., lung or liver) [36—41]. Although
protective pathways are triggered during periods of
tissue hypoxia, the effect of these potential pathways
on vascular leakage during conditions of VASP repres-
sion has to be seen critical [42]. This highlights the fact
that VASP is protective for barrier properties in vivo.
This was also demonstrated by Furman et al. evaluating
the edema formation of mice with gene-targeted deletion
of the Ena/VASP complex [12]. This study demonstrated
that during embryonic development, Ena/VASP repres-
sion resulted in reduced vascular barrier properties and
in tissue edema formation [12]. We have demonstrated
that VASP deficiency does not alter barrier properties at
baseline but results in a significant difference during an
acute inflammatory response within the lung [28, 42].
Profirovic et al. extended these findings demonstrating
increased vascular permeability in response to thrombin
in VASP ™/~ deficient lungs [43]. We now demonstrate
that VASP"~ animals do not demonstrate a difference in
vascular permeability at baseline but have increased
vascular permeability during a hypoxic challenge.
Therefore, our findings are in accordance with previous
in vivo reports and further the knowledge about the role
of VASP for barrier protection.

In summary, we demonstrate that endothelial
VASP has significant impact on vascular barrier
function during periods of hypoxia in vivo but does
not influence baseline fluid exchange. The results of
this and other studies related to the role of VASP in
endothelial barrier function during hypoxia may be
helpful for development of efficient pharmacological
treatment of conditions associated with hypoxia and
vascular leak.
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