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Abstract: Temporary scaffolds that mimic the extracellular matrix’s structure and provide a stable
substratum for the natural growth of cells are an innovative trend in the field of tissue engineering.
The aim of this study is to obtain and design porous 2D fibroin-based cell matrices by femtosec-
ond laser-induced microstructuring for future applications in muscle tissue engineering. Ultra-fast
laser treatment is a non-contact method, which generates controlled porosity—the creation of mi-
cro/nanostructures on the surface of the biopolymer that can strongly affect cell behavior, while
the control over its surface characteristics has the potential of directing the growth of future muscle
tissue in the desired direction. The laser structured 2D thin film matrices from silk were characterized
by means of SEM, EDX, AFM, FTIR, Micro-Raman, XRD, and 3D-roughness analyses. A WCA
evaluation and initial experiments with murine C2C12 myoblasts cells were also performed. The
results show that by varying the laser parameters, a different structuring degree can be achieved
through the initial lifting and ejection of the material around the area of laser interaction to generate
porous channels with varying widths and depths. The proper optimization of the applied laser
parameters can significantly improve the bioactive properties of the investigated 2D model of a
muscle cell matrix.

Keywords: silk fibroin; biopolymers; femtosecond laser processing; muscle tissue engineering;
muscle cell matrix 2D model

1. Introduction

Sports injuries, accidents, and other types of muscle trauma can lead to major muscle
tears. As a result, the body is not capable of natural endogenous muscle regeneration which
may subsequently cause the permanent loss of muscle function and the deterioration of
the quality of life of the injured person [1–3]. Severe burns, lacerations, or various muscle
injuries often require tissue transplantation from either the patient’s own body or from
a donor [4–6]. Unfortunately, traditional treatment options have many negative conse-
quences for the recipient, such as the creation of a new injury, whose normal healing may
be disrupted, leading to a risk of additional infections and a high immune response [7–9].
Skeletal muscle tissue engineering, on the other hand, relies on temporary cellular scaffolds
that mimic the extracellular matrix (ECM) and provide a stable structure for the natural
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growth of muscle cells—in certain types of muscle trauma in the body, the matrices can
be implanted directly at the site of injury or pre-seeded in vitro with cells and implanted
thereafter [10–12]. In their elaborate review, Carnes and Pins [13] explain in detail the
complex nature of the muscular structure, endogenous regeneration phases, and the advan-
tages and disadvantages of the different muscle tissue engineering approaches. The main
purpose of the matrix is to create a biomimetic environment that stimulates cell adhesion,
differentiation, and proliferation [14–17]. In this way, the cells can be reorganized into new
three-dimensional tissues. In the process of tissue regeneration, the matrix degrades gradu-
ally leaving behind only the newly formed tissue [13,17,18]. Silk fibroin (SF) is one of the
most preferred natural polymers for this purpose, as it satisfies all ECM requirements for the
creation of a successful temporary cellular scaffold. This is due to SF’s unique mechanical
properties, controlled rate of biodegradability, and high biocompatibility [18–28]. All these
qualities underlie its wide field of biomedical applications. The most used SF in medical
applications is a fibrous protein derived mainly from Bombyx mori cocoons [29–33]. It is a
fibrous protein showing a high content of the amino acid motif composed of the following
aligned amino acid monomers (Gly-Ser-Gly-Ala-Gly-Ala)n, which are the molecular basis
for its high toughness and strength [32,34–37]. Detailed information on the bio-applications
of SF is given in the comprehensive reviews of Thurber et al. [18] and Holland et al. [26].

In skeletal muscle tissue engineering, fibroin is used mainly in the form of hydrogels or
2D hydro-thin layers [25,32,34,35,38,39]. The creation of “smart” biomimetic muscle tissue
matrices based on extracted and purified silk fibroin requires improving their functionality
through non-destructive structuring. The functional and physical properties of muscle as
a tissue are orientation-dependent qualities [17]—in vivo, ECM structure, characterized
by micro grooves between neighboring muscle fibers, guides myoblast alignment during
the myotube formation process [13,40,41]. To mimic in vivo muscle organization, differ-
ent methods have been applied to create biomimetic muscle scaffolds with an aligned
structure, including electrospinning [42–47], wet and dry spinning [46,48–50], and 3D
bioprinting [46,51–53]. Ultra-short pulse laser treatment is a non-contact, non-invasive,
non-destructive, and fully biocompatible method, which generates controlled porosity
in biopolymer-based cell matrices [54]—this type of modification leads to the creation
of micro and nano structures on the surface of the material that can strongly affect cell
adhesion, orientation, and differentiation [48,55]. The method relies on control over the
surface characteristics of biomaterials, and accordingly, the growth of future muscle tissue
can be directed in the desired direction as microchannels/microgrooves with precisely
controlled dimensions, and periodicity can be generated on the scaffold surface in a highly
reproducible manner [56–60]. This is very important for muscle tissue engineering, as
aligned surface structures are the key to obtaining natural muscle cells’ morphology and
orientation [61,62]. The group of Jin et al. [62], for example, achieved uniform laser-ablated
microchannels on a substrate that orientated the C2C12 myoblast cells along them, thus
helping the natural regenerating process. Apart from that, femtosecond (fs) laser treatment
successfully overcomes the limitations associated with the application of other traditional
“structuring” methods such as sandblasting or chemical etching that might leave toxic
residuals (e.g., from solvents) for the cells in the matrix after treating [32,54]. The side
effects (such as microcracking and the absence of molten zones) caused by the interaction
of ultra-short laser pulses with biocompatible structures are also minimized [54].

The aim of the presented work is to obtain and design porous 2D fibroin-based cell
matrices by femtosecond (fs) laser-induced microstructuring for future application in the
engineering of muscle tissue. The surface functionalized samples were characterized by
means of morphological (SEM and AFM) and qualitative (EDX, FTIR, micro-Raman, and
XRD) analyses, as well as the surface roughness (Sa and Ra) evaluation of the material before
and after laser treatment using an optical profilometer was performed. A WCA evaluation,
an in vitro degradation test, and initial cellular experiments were also performed.

The analysis of the experimental results clearly shows that femtosecond laser structur-
ing can be applied to assess the surface properties of SF-based cell matrices with a high
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level of accuracy. By varying the applied fs parameters, different degrees of structuring
can be achieved from the initial lifting and ejection of the material around the area of laser
interaction to porous channels with different controlled dimensions. Laser modification of
the 2D model of muscle cell matrix can significantly improve the bioactive properties of this
material, which after the laser parameters’ proper optimization can make its biomedical
applications even more successful.

2. Materials and Methods
2.1. Silk Fibroin Bombyx mori Cocoons Extraction and Samples Preparation

Silk fibroin (SF) was extracted and purified from Bombyx mori cocoons (Institute of
silkworm breeding, Vratsa, Bulgaria) according to the protocol described in detail in [63].
Briefly, the production of silk fibroin (approximately 7–9% in dH2O) consists of degumming
with sodium carbonate and lithium bromide (Sigma-Aldrich®, Munich, Germany). The
procedure includes three main steps: first—preparation of silk cocoons by removing the
moth from the cocoon and peeling off the inner layer; second—degumming by boiling the
cocoon material in 0.02M Na2CO3, washing, and drying the degummed silk obtained, a
crucial step for sericin (a protein that shields the fibroin in silk fibers) removal, as it is toxic
for the cells; and last—dissolving the sericin free silk in 9.3M LiBr solution for 3h at 60 ◦C.
Afterward, the dissolved silk is dialyzed against water for 48h and centrifuged for 10 min
at 4618× g. The obtained SF (7.26% w/v solution) was used for 2D thin layers’ preparation
(1 × 1 cm, 110 µm thickness) by spreading the solution on glass slides and removing the
prepared thin films samples after drying.

2.2. Ultra-Short Laser Texturing of the 2D Fibroin-Based Cell Matrices

The 2D thin layers’ surface microstructuring was performed in air by means of a fs
regeneratively amplified Ti:sapphire mode-locked Quantronix-Integra-C system (Hamden,
CT, USA), precisely controlled by LabView software. All experiments were performed
at λ = 800 nm, ν = 500 Hz, and τ = 150 fs continuous raster surface scanning in XY
direction, perpendicular to the SF sample surface, that is positioned on a high-precision
XYZ translation stage. The fluence (F) and the scanning velocity (V) were varied as follows
F = 0.4 ÷ 2.5 J/cm2 and V = 1.7 ÷ 32 mm/s to optimize the dimensions and morphology
of the microgrooves created by the laser beam—Table 1, in respect to myoblasts C2C12
cells dimensions, which will be seeded. To promote the natural regeneration process,
the distance between the microchannels was also precisely controlled to be optimized
with respect to cellular dimensions and orientation inside the channels. According to the
literature, widths of grooves and ridges promoting C2C12 alignment and differentiation
vary between 20 µm and 100 µm [13,61,64,65]. All analyses of the fs structured samples
that followed were averaged on ten separate measurements and performed in respect to the
control, a laser non-treated SF scaffold. An illustrative scheme of the experimental setup is
given elsewhere [60].
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Table 1. Continuous fs XY raster scan: � = 800 nm, ν = 500 Hz, τ = 150 fs, F = 0.4 ÷ 2.5 J/cm2 and
V = 1.7 ÷ 32 mm/s, given for each SF sample group (Group No.) treated in respect to control, fs
non-treated Group 17. The thickness and the Sa and Ra roughness parameters (in µm), measured for
each group of scaffolds are also given.

Group No. V mm/s F J/cm2 Sa (µm) Ra (µm) Thickness (µm)

1 32 0.4 28.11 5.68 115
2 16 0.4 12.2 6.56 121
3 3.8 0.4 113.8 3.74 140
4 1.7 0.4 23.35 12.87 146
5 32 0.8 17.68 0.95 126
6 16 0.8 2.23 1.38 145
7 3.8 0.8 3.18 1.56 149
8 1.7 0.8 12.92 5.79 161
9 32 1.7 12.82 1.53 123

10 16 1.7 7.23 0.64 130
11 3.8 1.7 4.98 0.62 143
12 1.7 1.7 8.02 1.12 156
13 32 2.5 4.89 0.76 134
14 16 2.5 1.52 0.74 137
15 3.8 2.5 2.49 0.62 142
16 1.7 2.5 7.59 1.32 146

17-control - - 1.55 0.26 110

2.3. Methods for Characterization of fs Laser-Modified SF Samples

The obtained morphology of the SF 2D thin films after laser processing was inves-
tigated by means of Scanning Electron Microscopy (SEM) equipped with an Energy-
Dispersive X-ray Spectroscopy module (EDX)—(SEM-TESCAN/LYRA/XMU, Fuveau,
France). The samples were gold-sputtered (∼20 nm Au layer) in vacuum and SEM images
were taken at two different magnifications (500× and 3000×/5000×); EDX was performed
on an area at higher magnification, the elemental composition was estimated in [wt.%] in
respect to control surface. Atomic Force Microscopy (AFM) was also performed. For this
purpose, an atomic force microscope MultiMode V (Veeco Instruments Inc., New York, NY,
USA) and Controller NanoScope V (Bruker Ltd., Berlin, Germany) in dynamic tapping
mode of operation were used. The 2D, 3D, and phase AFM images were taken over an
area of 15 × 15 µm2 and 5 × 5 µm2 via Tap300Al-G (BudgetSensors, Switzerland) silicon
AFM probe. Evaluation of samples’ surface roughness profile was additionally performed
by a 3D Optical profiler, Zeta-20 (Zeta Instruments, KLA, Milpitas, CA, USA) at 20×
magnification. ProfilmOnline software (https://www.profilmonline.com (accessed on
23 March 2022)) was used for better visualization of the 3D true color images obtained;
roughness parameters Ra (the mean value of the deviations of the surface height from the
median line, according to DIN4776 standards) and Sa (the extension of Ra to a surface
area) were also estimated. The samples thickness was measured by a VA 8042 coating
meter (Zhejiang, China). In addition to the EDX analysis conducted, the chemical composi-
tion of laser treated and untreated surfaces was examined by Fourier-Transform Infrared
(FTIR) and micro-Raman Spectroscopy. For this purpose, FTIR spectrophotometer (IR
Affinity-1, Shimadzu, Kyoto, Japan), with a working range of 500–4500 cm−1, was used
for obtaining the IR transmittance spectra [%], and a microRaman spectrometer (LabRAM
HR Visible, HORIBA Jobin Yvon, Kyoto, Japan), working with a He-Ne laser (633 nm)
and equipped with Olympus BX41 microscope, was used for obtaining the micro-Raman
profile of the samples investigated (time of exposition-10s at 100× magnification). For
the identification of the crystalline phase of silk fibroin scaffolds, X-ray crystallography
analysis was performed within the range of 5–70◦ θ2 (step size of 0.065◦ θ2, at continuous
scan mode and counting time of 195s) via Philips PW1050 X-ray diffractometer (XRD)
system (Philips, Amsterdam, The Netherlands), equipped with a secondary monochro-
mator of the diffraction beam and a copper anode. The phase identification was acquired

https://www.profilmonline.com
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via QualX2 software through the Crystallography Open Database. Contact Angle (CA)
wettability measurements and surface free energy evaluation were performed in air by
a video-based optical contact angle measurement device DSA100 Drop Shape Analyzer
(KRÜSS GmbH, Hamburg, Germany). For this purpose, two different solutions were used:
dH2O, and diiodo-methane (DM) in an average volume of 2 µL for a period of 3 min.
Contact angles and surface energy were calculated by ADVANCE software (KRÜSS GmbH,
Hamburg, Germany) fitting the drop profiles to the Young–Laplace equation and following
the Owens–Wendt-Rable–Kaeble (OWRK) equation, respectively. In vitro degradation test
performed in PBS buffer saline (pH 7.2, Sigma-Aldrich®, Munich, Germany) at 37 ◦C for a
period of two weeks was conducted to predict the stability and biodegradation rate of the fs
treated/control SF muscle matrices for when the in vitro cell culture was to be performed.
For this purpose, the relative percent weight loss of the scaffolds was calculated at the end
of every week and the PBS was replaced with a fresh buffer solution.

Comparison between laser microstructured and untreated SF samples was made in all
analyses performed.

2.4. Cellular Experiments for Biological Evaluation of Laser-Textured 2D Model of Muscle
Cell Matrix

Four groups of fs treated samples were chosen for preliminary cellular experiments:
groups G3, G4, G8, and G11 fs treated SF thin films with respect to control G17 (see
Table 1 for reference of the fs parameters used). Before seeding the myoblasts cell line
C2C12, the samples were sterilized in ethanol for 1 h. Cells were seeded at a density of
5 × 104 cells/cm2 in a growth medium (Dulbecco’s modified Eagle’s medium-high Glu-
cose (Life Technologies, Carlsbad, CA, USA), supplemented with 10% fetal calf serum (GE
Healthcare, Buckinghamshire, UK), 1% penicillin/streptomycin (Lonza, Basel, Switzerland),
and 1% L-glutamine (Lonza, Basel, Switzerland). After 24 h, the medium was replaced
by a differentiation medium (Dulbecco’s modified Eagle’s medium-high Glucose (Life
Technologies, Carlsbad, CA, USA), supplemented with 3% horse serum (GE Healthcare,
Buckinghamshire, United Kingdom), 1% penicillin/streptomycin (Lonza, Basel, Switzer-
land), and 1% L-glutamine (Lonza, Basel, Switzerland) that was exchanged every second
day. Cells were fixed with 4% paraformaldehyde (Roth, Karlsruhe, Germany) for 10 min at
room temperature on days 3, 7, and 11 after seeding for analysis of myogenic differentiation
by immunofluorescence staining. The staining was performed by washing with dH2O and
permeabilizing with Tris-Buffered Saline/0.1% (v/v) Triton X-100 (TBS/T) for 15 min at
room temperature, followed by blocking in PBS/T-1% (w/v) bovine serum albumin and
1% (v/v) goat serum at room temperature for one hour. The primary antibody targeting
all MHC isoforms (MF 20, Developmental Studies Hybridoma Bank, Iowa, USA) was
diluted at 1:300 in a blocking solution and incubated overnight at 4 ◦C. The secondary
antibody labeled with Alexa Fluor 488 (Life Technologies, Lofer, Austria) was diluted at
1:400 in a blocking solution and incubated at 37 ◦C for one hour. Nuclei were labeled by
staining with 4′,6-diamidino-2-phenylindole (DAPI) diluted 1:1000 in a blocking solution
for 10 min at room temperature. All stainings were analyzed with a Leica DMI 6000b
inverted microscope (Leica Microsystems GmbH, Wetzlar, Germany).

The main steps for the preparation and characterization of fs surface functionalized
fibroin-based cellular matrices for application in muscle tissue engineering performed in
this work are summarized schematically in Figure 1.
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Figure 1. Schematic representation of the main steps for the preparation and characterization of
surface-functionalized silk fibroin-based cellular matrices for application in muscle tissue engineering.

3. Results and Discussion
3.1. SEM, EDX, AFM, and 3D Optical Profiler Analysis of Fs Laser Created Structuredness of SF
Based Thin Layers

In Figure 2 contains SEM images of the SF layers, which were fs laser structured while
simultaneously varying both the fluence and the scanning velocity in the diapason as
follows: F = 0.4 ÷ 2.5 J/cm2 and V = 1.7 ÷ 32 mm/s. This process was followed to estimate
the optimal laser parameters in order to create structures with the specific dimensions,
which were appropriate for cultivating the muscle cells in an oriented manner.
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Figure 2. SEM images of G1 ÷ G16 silk fibroin-based cellular scaffolds taken at 500× and
3000×/5000× magnification. In red—SF samples chosen for cellular experiments, based on the
results of the analyses performed.

As can be seen from the thickness measurements of the SF thin film samples presented
in Table 1 and the selection of the representative morphological SEM images, presented in
Figure 2, in all the cases of laser processing an ejection of the material above the basic surface
line occurs, which leads to the formation of a thicker, inflated zone in the area of interaction
(samples thickness = 115 ÷ 161 µm) in respect to the control group (thickness = 110 µm).
At the “gentler” mode of structuring conditions, the laser created zones of interaction, in
the form of circular spots, (at V = 32 mm/s and 16 mm/s) which were emerging above
the surface baseline (group G1 and group G2), while at a higher applied energy, a material
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thrown outside of the edges of the created rims was detected, resulting in a hole-like
structure (G5, G6, G9, G10, G13, and G14). The basic demand of structuring by the fs
laser radiation for obtaining an orientated growth of muscle cells is associated with the
formation of groove-like patterns [40,41]. In our experiment, the created grooves limits
can be tuned to become narrower and deeper with the increase of F and the decrease of
the scanning speed (V), while the highly porous nature of the created microstructures
(G3, G4) becomes smoother and more homogenous, a rather granular as opposed to
porous morphology. However, material ejection, whether or not it is accompanied by the
introduction of additional porosity in the structure, does not lead to damage of the sample’s
integrity, nor do cracks or unwanted melting side effects at the groove/spot boundary occur
(Figure 2). This fact could be explained by the ultra-fast nature of the processes taking place
during fs laser–material interaction, which does not allow for the development of thermal
damage effects in the scaffold’s structure, since the interaction ends long before these
effects could appear [66–68]. In other words, one of the great achievements of ultra-short
pulse ablation is the ability to produce a minimal heat-affected zone around the laser spot
area. This is because significant accumulated energy is removed during the early stages of
material removal and less heat is dissipated beneath the surface. Moreover, in this case,
laser processing does not lead to a change in the elemental composition of the samples
treated, but only to a slight deviation in the weight concentration [wt.%] of the elements,
which can be clearly seen from the results of the EDX analysis performed simultaneously
with the SEM (Table 2).

Table 2. EDX elemental composition given in weight% [wt.%] of each fs treated SF sample group
(G1 ÷ G16) in respect to control, fs non-treated Group 17.

EDX Spectrum C [wt.%] N [wt.%] O [wt.%] Total [wt.%]

G1 V = 32 mm/s, F = 0.4 J/cm2 44.87 20.87 34.26 100
G2 V = 16 mm/s, F = 0.4 J/cm2 46.08 18.96 34.97 100
G3 V = 3.8 mm/s, F = 0.4 J/cm2 45.57 19.16 35.27 100
G4 V = 1.7 mm/s, F = 0.4 J/cm2 44.21 21.89 33.9 100
G5 V = 32 mm/s, F = 0.8 J/cm2 45.58 20.53 33.89 100
G6 V = 16 mm/s, F = 0.8 J/cm2 43.07 23.63 33.3 100
G7 V = 3.8 mm/s, F = 0.8 J/cm2 44.03 21.32 34.65 100
G8 V = 1.7 mm/s, F = 0.8 J/cm2 42.74 20.23 37.03 100
G9 V = 32 mm/s, F = 1.7 J/cm2 46.25 19.79 33.96 100
G10 V = 16 mm/s, F = 1.7 J/cm2 43.65 22.92 33.43 100
G11 V = 3.8 mm/s, F = 1.7 J/cm2 44.9 21.96 33.14 100
G12 V = 1.7 mm/s, F = 1.7 J/cm2 44.59 21.62 33.79 100
G13 V = 32 mm/s, F = 2.5 J/cm2 47.96 20.03 32.01 100
G14 V = 16 mm/s, F = 2.5 J/cm2 46.52 18.36 35.12 100
G15 V = 3.8 mm/s, F = 2.5 J/cm2 48.04 18.01 33.95 100
G16 V = 1.7 mm/s, F = 2.5 J/cm2 46.15 19.78 34.07 100
G17-control 48.27 17.95 33.78 100

This slight increase in the elemental presence of oxygen [O] in respect to carbon [C] and
nitrogen [N] could be explained by the surface oxidation, taking place during the fs laser
structuring. Apart from that, the high intensity femtosecond laser–matter interaction, which
occurs at higher values of F and lower values of V, leads to the subsequent appearance
of O=C–NH bonds’ fragmentation (i.e., a very slight decrease in [C] and [N]), due to the
increased material ejection [66].

A representative selection of 3D real-color images, obtained under variation of F and V
in respect to a non-treated surface, is given in Figure 3; the corresponding Ra and Sa rough-
ness parameters of all the groups of samples, measured during the optical profilometer
analysis, are presented in Table 1. As already mentioned, the specific patterning conditions
were chosen in relation to the optimal dimensions and morphology of the patterns created
by the laser in respect to the myoblast cells’ suitable seeding conditions [65].
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fibroin-based cellular scaffolds in respect to G17-control sample (at 20×magnification); Sa-surface
roughness (upper line) and Ra-line roughness cross-section profile (lower line).

The obtained results are in accordance with the morphological findings acquired from
the SEM analysis. As can be seen from Figure 3, the depth and width of the microchannels
created by the ultrafast laser, as well as the roughness of the samples (Table 1.), can be
varied by tuning the applied laser parameters (F and V). The created grooves have clear cuts
with U or V-shaped edges. There is no evidence of mechanical distortion of the biopolymer
material. Based on a literature survey, the optimal dimensions for muscle cells vary between
20 µm and 100 µm, as during skeletal muscle formation or regeneration, myoblasts fuse
into multi-nucleated tubes to form myofibers, the muscle’s basic “building blocks”, whose
diameter ranges in this diapason, depending on the muscle location and function [13,64,65].
By tuning the applied laser parameters (F and V), the SF scaffolds morphology could
maximally mimic the ECM of the muscle tissue and be “personally” designed in respect to
the specific needs of the seeded cell line. For example, Jin et al. [61], who achieved uniform
laser-ablated microgrooves that orientated the C2C12 myoblast cells along them, has varied
the spacing between the groove patterns in the range of 0 ÷ 80 µm and have obtained up
to 100 µm depth of the channels depending on the energy and number of pulses applied in
their experimental work.

The results of the conducted AFM analysis complement those of the SEM and 3D
profilometer images and even reveal additional structures at the nano- and micro-levels—
nano-roughness, nano- and micro-pores, and sub-microgranulation were observed inside
the laser-generated microstructures, which can be clearly seen from the AFM 2D and 3D
images of the border zone between the laser-treated and surrounding surface (15 × 15 µm),
and the 5 × 5 µm area images inside the laser-generated structures of the SF samples. Some
representative AFM images are given in Figure 4.

The AFM images of the control fibroin sample, G17 (Figure 4a), reveal the typical
roughness of fibroin films at the nanometric scale. After a laser treatment, the SF films
reveal remarkable morphological changes not only at the micro (which is confirmed by
SEM and 3D roughness analyses) but also at the nano level: the presence of diverse micro
and nanostructures, grains, and pores is clearly observed (Figure 4a,c). Figure 4c visualizes
the ejection of the material at the border area of the fs craters created at the four fluences
used in this study, but at the highest scanning velocity applied (corresponding to N = 1 in
the selection of single-pulse laser mode of operation).
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Figure 4. Representative selection of 2D and 3D AFM images at 15 × 15 µm of the border area
and 5 × 5 µm inside the laser created structures: (a) G3, G4, G8, and G11 silk fibroin-based cellular
scaffolds in respect to (b) G17-control sample; (c) visualizes the ejection of the material at the border
area of the fs craters that were created. Local Ra of the areas examined is also given.

Comparing the data from the performed morphological analysis, no disturbance was
observed in the surface integrity at the applied specific conditions of fs laser processing.
Optimizing the laser induced micro-features (in respect to the roughness, porosity, and
dimensions of the created structures) could subsequently affect muscle cells’ behavior, such
as their adhesion, morphology, direction of migration, and differentiation, and hopefully
could favor the natural regeneration process of the muscle tissue in vitro, and potentially
in vivo [13,69–71]. In the last two decades, femtosecond laser processing of different
biopolymers for tissue engineering applications have been intensively studied by many
research groups; a detailed review of the subject has already been made by Terakawa [54].
Regarding the ultrafast laser structuring of silk fibroin, the information is scarce; there
are almost no data on the fs laser modification of the silk protein for bioapplications, nor
are there data specifically for muscle tissue engineering. The group of Santos et al. [72],
for example, used fs-laser pulses to produce optical waveguides in SF by the direct laser
writing of for a biosensor application. In another publication, the same group is further
developing their previous results by fs-based printing of well-defined 2D micropatterns of
pure and functionalized SF for optical and biomedical applications, such as lab-on-a-chip
devices and microsensors [73]. A novel and simple platelet repellent surface was reported
by Yang et al., who achieved fabrication of micropattern films based on TA (tannic acid)
that could be widely used in the clinical evaluation of antiplatelet therapies [74]. Kim et al.,
on the other hand, proposed a one-step functionalization of a zwitterionic polymer surface
by using a soft lithographic technique [75]. The applied TA-Fe-based coating converted the
non-biofouling properties of the polymer to be protein- and diatom-adhesion friendly by a
one-step procedure; the lithographic technique provided a regular micropattern for protein
and marine diatoms’ surface adhesion.

Based on all the data obtained (in respect to the dimensions and roughness of the
microstructures created by the laser processing) and the performed literature survey, the
following groups of patterned SF samples were chosen for cellular experiments (in respect



Polymers 2022, 14, 2584 10 of 19

to control group 17): F = 0.4 J/cm2 and V = 3.8 mm/s (group 3), F = 0.4 J/cm2 and
V = 1.7 mm/s (group 4), F = 0.8 J/cm2 and V = 1.7 mm/s (group 8), and F = 1.7 J/cm2

and V = 3.8 mm/s (group 11)—marked in red on the corresponding SEM images of
Figure 2 and presented in Figure 3. All fs modifications in the form of individual spots
or too “sharp”, narrow, or deep microgrooves created by the laser were excluded as not
optimal for directing guided muscle cell growth and the future establishment of functional
tissue [13,17,40,41].

The ablation thresholds of the applied fluences were also determined according to
the diameter regression technique described in detail in [76]. After the diameter of the
craters created on the surface of the SF samples for each scanning velocity used in our study
(or the corresponding N-number of pulses) was determined, the corresponding threshold
fluences (Fth) of the material were defined from the plot of squared crater diameters (d2)
versus the laser fluence for different N (in our case, V as continuous scanning is performed)
by extrapolating the curve to zero (Figure 5). According to the logarithmic relationship
between D2 and F, a linear dependence (well seen from the graph) is evident [76]. Based
on this method (by using the equations presented in [76]), for the applied in the current
study fluences (F = 0.4 J/cm2, F = 0.8 J/cm2, F = 1.7 J/cm2 and F = 2.5 J/cm2), Fth were
defined as follows: 0.22, 0.18, 0.14, and 0.08 J/cm2. As can be seen from the presented
graph, the ablation threshold decreases with the decrease of V in the case of continuous
scanning (or with increasing N in a single pulse laser mode of operation, respectively).
Some representative optical microscope images of laser spots on the SF thin film sample
irradiated at the lowest scanning velocity (V = 1.7 mm/s) at every F applied in the current
study are also presented in Figure 5; for better visualization of the spot size growth with
increasing F at a constant V, the diameter of the spots is also provided.
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Figure 5. Squared crater diameters (µm2) versus the laser fluence for different V (corresponding N)
applied on SF sample when irradiated in air (left); Optical microscope images of laser spots on SF
thin film sample irradiated with N = 10 (at the corresponding lowest scanning velocity V = 1.7 mm/s
used) at every F applied in the current study (right); scale bar = 50 µm.

3.2. FTIR, Micro-Raman, and XRD Analysis of SF Scaffolds

Figure 6 summarizes the FTIR transmittance spectra [%] of all the SF laser-treated
samples (group 1 ÷ 16) with respect to the control scaffold (group 17).
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Figure 6. FTIIR Transmittance [%] spectra of G1 ÷ G17 silk fibroin-based cellular scaffolds.

As can be seen from the presented spectra, there are no deviations in the number,
shape, or position of the peaks, while clearly a difference in their intensity is observed
with respect to the spectrum taken from the control SF sample. The transmittance spectra
exhibit all the characteristic peaks, arising from the peptide bond –CONH–, namely amide
I, amide II, and amide III [77–79]. All the bands in the FTIR spectra in Figure 6 correspond
to C=O stretching (at 1620 cm−1) for amide I, N–H bending, and the in-phase combination
of C=O bending and C–N stretching (at 1517 cm−1 and 1229 cm−1, respectively) for amide
II and amide III [79]. The decrease in the intensity of the bands representing the data
obtained from the laser processed samples can be attributed to the increase of the applied
laser energy that causes a disturbance in the vibrations of the amide groups, resulting in
a lower peak intensity. This result strongly correlates with the micro-Raman results. The
Micro-Raman spectra of the laser-treated matrices (G1 ÷ 16) with respect to the control one
(G17) are shown in Figure 7—all the bands characteristic of the amides are well defined, as
follows: amide I at 1671 cm−1, amide II at 1463 cm−1, and amide III at 1274 cm−1 [80,81].
The C–H bond at 2945 cm−1 and the polarization-dependent peak regarding the Tyr amino
acid side-chain at 855 cm−1 are also very well pronounced. The polarization-dependent
peaks typical for B. mori silk at 1401, 1369, 1083, 1001, and 881 cm−1 originate from β-
sheets formed in the SF structure [82]. The main trend is related to a decrease in the signal
intensity after laser treatment, but no change in the number or position of the peaks was
observed. Even though some O=C-NH bond fragmentation was detected by the EDX
analysis performed on fs processed SF scaffolds (Table 2.), the amide I, amide II, and amide
III bands detected in all FTIR transmittance (Figure 6) and micro-Raman spectra (Figure 7)
presented are in accordance with the native silk fibroin structure-β-turns (silk I) and β-sheet
crystalline silk-II structure, which is a more compact characteristic form of the protein after
spinning of the silk fiber by B. mori during cocoon formation [81,83].

As a rule, the natural silk fibroin and the degummed SF materials include crystalline
and amorphous structures (less stable α-helices, turns, and random coils). The stability
of silk fibers is dependent on their β-sheet composition. Crystalline structures have two
forms: silk I, a dominant water-soluble helical structural conformation of β-turns, and a
water-insoluble silk II structure formed by folded β-sheets [81–85]. The results obtained
from the XRD analysis performed on the four groups of laser-processed SF scaffolds, chosen
for the preliminary cellular experiments (G3, G4, G8, and G11 laser structured SF thin films
in respect to control G17), are given in Figure 8.
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Figure 8. XRD spectra of G3, G4, G8, G11, and G17 SF-scaffolds.

As can be seen from the figure, only the XRD spectrum of the G3 SF sample indicated
an increased crystallization after laser-induced treatment with respect to the control group
(G17) and other fs patterned SF scaffolds—obvious diffraction peaks at 2θ, namely 12.1◦,
19.8◦, and 24.4◦ which correspond to the silk I crystalline structure are well pronounced.
A lack of well-defined diffraction peaks was observed for silk II in all G3, G4, G8, G11,
and G17 XRD spectra (the typical diffraction peaks between 20◦ and 21◦, indicating that
the corresponding silk II structures were not detected) [86]. From these findings, it could
be concluded that the ultra-short laser processing does not significantly affect the crystal
structure of the investigated SF thin films (G4, G8, and G11), as no substantial difference in
the XRD spectra is evident when compared with the control SF scaffold (G17). An increased
crystallization ability of silk fibroin was observed only after treatment with F = 0.4 J/cm2

and V = 1.7 mm/s (G3). Therefore, it is possible that fs laser treatment with the specific
parameters leads to the maintenance of silk I’s water-soluble crystalline structure, which
could have a positive impact on the protection of the integrity of the fibroin thin films.

3.3. Contact Angle Evaluation Analysis

A wettability and total surface energy evaluation (Table 3) of the control (G17) and the
laser structured SF thin films, which were chosen for cell studies (G3, G4, G8 and G11), were
performed via the sessile drop method using two liquids with different polarities: distilled
water (highly polar) and diiodomethane (very low polarity). The obtained results of the
Contact angle (CA) evaluation analysis are summarized in Figure 9, where CA change in
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time is graphically presented; images of water and diiodomethane droplets on 0.00 s and
3 min of application for the SF examined can be also seen in the figure.

Table 3. Total surface free energy (SFE) evaluation of G3, G4, G8, G11, and G17-c calculated on the
OWRK-SFE model based on water and diiodo-methane used as substances. The total SFE of G8 was
not obtained, as CA of DM was not possible to measure.

Silk Fibroin Group
Sample

Surface Free Energy
[mN/m]

Disperse Free Energy
[mN/m]

Polar Free Energy
[mN/m]

G3 47.89 35.91 11.98
G4 46.91 32.3 14.61
G8 - - -

G11 70.92 40.62 30.3
G17-c 37.71 31.85 5.86
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Figure 9. CA evaluation analysis of G3, G4, G8, and G11 silk fibroin-based cellular scaffolds in respect
to G17-control sample performed with dH2O (upper graph) and DM (lower graph); images of the
droplets taken at 0.00 s and 180 s of application and corresponding CA.

As a whole, the results of the both laser-processed and control SF thin films followed
a similar trend over the 180s period of wettability evolution: the contact angle decreased
in certain boundaries (much more narrow for DM than for dH2O), as a slight fluctuation
in the total linear behavior was observed at the first 60 s of the droplet contact (for both
liquids used) to the fs structured samples (which was not observed on the control SF
surface). This could be attributed to a varying amount of entrapped air between the droplet
and the surface formed by the laser microstructures, during the liquid’s first contact with
the rough surface underneath [87], and this could be explained by the irregular profile
of the structures at a submicrometric scale (micro- and nano-pores, grains, etc.) and by
a transition between the Cassie–Baxter and Wenzel wetting states [88]. The hydrophilic
nature of the scaffolds, attributed to the hydrophilic carboxylic and amino groups in the SF
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structure [89], was additionally enhanced by the laser processing, especially for the G11
group, where an almost superhydrophilic surface was achieved (WCA dropped from ∼25
to ∼20◦ after 3 min of dH2O application). In the case of DM CA evaluation, G3 and G4
were characterized with higher CA in respect to the control group G17. An exception in
the droplet behavior was observed in the case of G4, where the CA increased even more
after 60 sec. of application. The wettability and the total surface energy of G8 were not
measured as DM spread over the entire modified surface at the first second of application
and it was not possible for the system to measure the CA. As can be seen from the results
presented in Table 3, the surface free energy of the laser-treated surface was also enhanced
in respect to the control G17 group.

3.4. In Vitro Degradation Test of the 2D Model of Muscle Cell Matrix

To evaluate the stability and biodegradability of the samples investigated, their percent
weight losses during the in vitro degradation test performed in PBS (2 weeks at 37 ◦C,
1 mL for each sample) was calculated according to: weight loss (%) = [(Wat the beginning–
Wat the end of the week)/Wat the beginning] * 100. The results obtained, which are important for
evaluating the stability of the scaffolds for diverse cell culture periods, are given in the table
below (Table 4) and visualized by SEM images of the SF scaffolds taken at the end of each
week (Figure 10). The measured weight loss of the SF matrices indicates a considerably slow
degradation for both the laser structured (G3, G4, G8, and G11) and the control samples
(G17), which could be attributed to the already mentioned β-sheet structure of the silk
fibroin [81–83]. This result is in accordance with the FTIR transmittance (Figure 6) and
micro-Raman spectra (Figure 7) obtained and with the works of Wang et al. [25], Farokhi
et al. [90], and Lee et al., who estimated a weight loss less than 5% for a period of 14 days
during an in vitro degradation of silk-fibroin nanofibrous composite samples [91]. The
mechanical properties of the cellular scaffold are a key parameter for in vitro and in vivo
tissue regeneration. In the case of skeletal muscle injury, the repair phase, as a part of
the regeneration process, takes between 1 and 4 weeks (most often around 2 weeks) for
functional regeneration of the myotubes to take place [13]. This process is closely related
to muscle satellite cells’ alignment as a basic step for their subsequent differentiation into
functional muscle tissue [92].

From the results of the in vitro degradation test and the SEM images, which visualized
no appreciable change of the fs groove morphology of the G3, G4, G8, and G11 tested
samples, it could be estimated that the fs structured and control SF scaffolds would be
significantly stable during the cellular experiments performed afterwards. The ability of
the microgrooved scaffold to sustain structural integrity is crucial not only for in vitro
experiments but even more for maintaining mechanical stability after body implantation.
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Table 4. In vitro degradation test in PBS of G3, G3, G4, and G11 and control SF scaffolds (G17) prior
to preliminary cellular experiments. Weight loss (%) results on day 7 and day 14 are presented.

Group No. Weight on
Day 1 (mg)

Weight on
Day 7 (mg)

Weight on
Day 14 (mg)

Weight Loss
(%) on Day 7

Weight Loss
(%) on Day 14

1 10.1 9.8 9.7 2.97 3.9
3 10.3 10.0 9.9 2.91 3.88
4 10.1 9.7 9.65 3.9 4.45
8 10.5 10.1 10.0 3.8 4.76

11 10.9 10.7 10.5 1.8 3.6
17 control 11.0 10.7 10.6 2.73 3.64

3.5. Differentiation of Myoblasts on Laser Patterned Silk Fibroin Based Scaffolds

Murine C2C12 myoblasts were seeded on the 2D fibroin matrices with fs laser pre-
treated surfaces and differentiated for 11 days. The staining of the nuclei confirmed the
presence of C2C12 cells on the samples on days 3, 7, and 11 of the culturing (in blue) with
no apparent differences between the fs laser-treated and control samples. The myogenic
differentiation was evaluated by immunofluorescence staining of the myogenic marker
myosin heavy chain (MHC) in respect to the control SF thin film (Figure 11). Starting from
day 3, signs of differentiation can be observed, as indicated by the positive staining for MHC
and the elongation of cells. Myogenic development progressed further over the culture
period, including the fusion of cells to myotubes at later time points. Fs laser treatment
influenced the C2C12 morphology and the organization in the differentiating cells (days
7 and 11). They have a more elongated shape when cultivated on samples G4 and G8,
while those seeded on G17-control group have a random organization. Furthermore, the
myoblasts seeded on sample G4 align along the grooves from the earliest observed time
point on.
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Figure 11. Fluorescence microscopy images (at 20×magnification) of viability (DAPI—nuclei in blue)
and muscle differentiation (myosin heavy chain—muscle-specific marker in green on day 3 and in
red on days 7 and 11) staining of C2C12 myoblasts cell line, cultured for 3, 7, and 11 days on G3, G4,
G8, and G11 fs treated SF thin films in respect to control G17.

4. Conclusions

The proposed femtosecond laser induced surface modification method via a selection
of different combinations of fluence and scanning velocities is an alternative, non-contact
approach for the microstructuring of the SF-based 2D muscle matrices model as it can be
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successfully applied to the enhancement of scaffolds’ surface properties with a high level
of accuracy in respect to the specific cell line needs. By precisely combining the applied
laser parameters, different degrees of structuring can be achieved, from the initial lifting
and ejection of the material around the area of the laser’s interaction to the generation of
porous and granular microgrooves with varying dimensions. At the same time, no side
effects such as damage of the sample’s integrity, cracks, melting, or unwanted chemical
alternations would could be observed due to the absence of thermal side effects. The
ultra-short laser texturing did not affect the elemental composition, morphological integrity,
or biodegradability of the SF thin layers; moreover, the hydrophilicity and the surface
energy of the scaffolds were enhanced. The performed biological evaluation of the muscle
cell compatibility of the laser processed SF matrices demonstrated without a doubt that
the cells’ orientation and differentiation were achievable. The analysis of the experimental
results clearly shows that laser modification of the 2D model of a muscle cell matrix can
significantly improve the surface properties of this material, which, after the optimization
of laser parameters, can enhance its biomedical applications. The proposed technique is
reliable for the establishment of a fs-microgrooved natural muscle environment model. Our
next step is the fs structuring of 3D hydrogel scaffolds that will then be implanted into an
animal model for an in vivo evaluation of the silk fibroin-based muscle matrix model.
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