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Small RNAs as Fundamental Players
in the Transference of Information
During Bacterial Infectious Diseases
Juan José González Plaza*

Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia

Communication shapes life on Earth. Transference of information has played a
paramount role on the evolution of all living or extinct organisms since the appearance of
life. Success or failure in this process will determine the prevalence or disappearance of
a certain set of genes, the basis of Darwinian paradigm. Among different molecules used
for transmission or reception of information, RNA plays a key role. For instance, the early
precursors of life were information molecules based in primitive RNA forms. A growing
field of research has focused on the contribution of small non-coding RNA forms due
to its role on infectious diseases. These are short RNA species that carry out regulatory
tasks in cis or trans. Small RNAs have shown their relevance in fine tuning the expression
and activity of important regulators of essential genes for bacteria. Regulation of targets
occurs through a plethora of mechanisms, including mRNA stabilization/destabilization,
driving target mRNAs to degradation, or direct binding to regulatory proteins. Different
studies have been conducted during the interplay of pathogenic bacteria with several
hosts, including humans, animals, or plants. The sRNAs help the invader to quickly
adapt to the change in environmental conditions when it enters in the host, or passes
to a free state. The adaptation is achieved by direct targeting of the pathogen genes, or
subversion of the host immune system. Pathogens trigger also an immune response in
the host, which has been shown as well to be regulated by a wide range of sRNAs. This
review focuses on the most recent host-pathogen interaction studies during bacterial
infectious diseases, providing the perspective of the pathogen.

Keywords: small RNA, bacteria, infectious disease, information transfer, host-pathogen interaction

INTRODUCTION

“Dizese calétura epidemia porque es común a muchos: perniciosa, porque mata a muchos quanto es de
su parte, por tener mucha actividad de calor proveniente (como despues diremos) de vn podrecimiento
extremo.”

“It is called an epidemic fever because it is common to many: pernicious, because it kills many on its part,
due to a lot of heat activity originating (as we will say later) from extreme rotting. de Viana (1637); plague
that heavily struck the port city of Málaga.”

A continuous flow of myriads of energy and matter from atomic to beyond gravitational level
shapes life on Earth. Information, its structure and movement across hierarchies, has played a
paramount role on the evolution of all living or extinct organisms since the appearance of life.
For instance, the early precursors of life were information molecules based in primitive RNA forms
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(Higgs and Lehman, 2015; Taylor, 2016). The fact that all
biological species live in networks, force them to interact with
other living beings and the environment (Bermúdez-Barrientos
et al., 2020). Interactions, different forms of sociality, transference
or reception of information, determine how species perform
through evolutionary history. Communication in biology or
biocommunication reaches far beyond the human concept of
language (Witzany, 2010), and includes a wide variety of
forms: sexual deception (color display in orchids to attract
pollinators) (Streinzer et al., 2009), vibroacoustic or chemical
alarm signaling (alarm pheromones in termites) (Cristaldo
et al., 2016), or camouflage (How et al., 2017). Additionally,
it encompass hostile communication forms, such as signals
to attack among the microbiome (antibiotic production for
elimination of competitive bacteria) (Fischbach, 2009; Romero
et al., 2011), or counterfeit the defenses of others (fungal RNAs
suppressing plant defenses) (Weiberg et al., 2013). Success or
failure in the transmission of these signals dramatically affects the
prevalence or disappearance of a given set of genes, the basis of
Darwinian paradigm (Langdon, 2016).

Infectious diseases are biological examples of competition
between species for the same metabolic resources (Herrera
and Nunn, 2019), relationships that have been shaped through
evolution. In essence, those are evolutionary arms races between
hosts and their infectious agents (Ingle et al., 2006; Kuijl and
Neefjes, 2009). An infectious disease is a malady caused by
a pathogenic organism, including bacteria, fungi, parasites, or
viruses (Krämer et al., 2009). The process of infection comprises
the change from an outer environment, to another one inside of
the host, where the conditions are hostile due to the presence
of immune systems. In some animal hosts, the recognition
of the pathogen could unchain a series of events leading
to an inflammatory response, which represent a plethora of
environmental stresses for the bacteria.

Hosts have developed sophisticated mechanisms to sense
invaders, and to react against them. Diving at a very deep
molecular level one of the first barriers of defense to trigger innate
immune responses, is the recognition of pathogen-associated
molecular patterns (PAMPs) that will further activate toll-like
receptors (TLRs) pathways (Ausubel, 2005; Moresco et al., 2011).
Bacteria and archaea have developed during evolution primitive
adaptive mechanisms to identify “pathogens” by identification
and restriction of foreign genetic material through CRISPR-CAS
systems (Hille et al., 2018; Ratner et al., 2019).

The key for the infection success is a quick response and
efficient adaptation to a changing hostile environment within the
host (Sauder and Kendall, 2018), the translation of cues from
the extracellular domain into triggering a set of instructions
aimed for the survival of the pathogen. Different molecules
play a role in the transference of information, for example
during the formation of biofilms, sub-inhibitory concentrations
of antibiotics have been proposed to serve as carriers of
information between bacteria (Romero et al., 2011). Among
different molecules, RNA has achieved a very important role as
an information mediator, because it is the molecular link between
genome (DNA) and phenotype (proteins or metabolites). It can
be quickly recruited during biotic or abiotic stresses. The average

life of RNA molecules is short, because the response has been
tuned to serve for the synthesis of proteins and to be degraded
once they are not needed anymore (Gilbertson et al., 2018).

Small regulatory RNAs (sRNAs) are a subset of RNA molecules
that are involved in several mechanisms that aid the pathogen
in adaptation, counterfeiting, or suppressing the host immune
system (González Plaza, 2018), side to side to other molecules
participating in this complex process. The sRNAs are transcribed
from the genome, but do not follow the canonical path toward
protein translation (Waters and Storz, 2009).

One reason for the involvement sRNAs at infection processes,
is the flexibility to target a number of genes or transcription
factors, leading to continuous ranges of expression and responses
to fluctuating environmental stresses, instead of an abrupt
triggering or shutting down of the expression. In that regard,
Silva and collaborators have shown that SraL sRNA is responsible
for regulating the expression of the transcription termination
protein Rho (Silva et al., 2019). This protein is essential for
the transcription balance in Bacillus subtilis, and its impairment
affects negatively cell motility, biofilm formation, and sporulation
(Bidnenko et al., 2017). Thus, the case of SraL and Rho illustrates
a complex system of “regulation of regulators.” However, it could
be argued that many proteins can carry out similar regulatory
roles. Among other reasons, it is probably the faster response of
RNAs what has given them a key role during infection, because
they do not require translation and it represents a lower energy
consumption for the cell. Modulation of the transcriptomic
levels allows for a faster response to environmental changes
(Sheehan and Caswell, 2018), because it can help to correct or
modulate the mRNA levels of many genes before the protein is
translated, and ultimately modulate the phenotype according to
external fluctuations.

The current review article presents the advances in the field
regarding the involvement of sRNAs during bacterial infections,
highlighting the latest contributions in the 2 years since my
previous review (González Plaza, 2018). The field has expanded
broadly, and the number of contributions points toward a future
increase in the number of research efforts. The current review
aims as well to broaden the scope from diseases affecting humans
to other species. It will first cover the type of existing sRNAs
and their mode of action, the molecular behavior of sRNAs from
the pathogen perspective, and modulation of molecular processes
when facing host immune systems. Lastly, different type of sRNAs
during several infection processes in a number of species, ranging
from plants to animals.

TYPES OF sRNAs

The subset of small regulatory RNAs, termed in literature as
sRNAs, are a group of primarily non-coding RNA forms (Waters
and Storz, 2009) often ranging from 20 to 200 nucleotides (nt)
in length, even reaching up to 500 nt (Carrier et al., 2018a).
They carry key roles regulating expression levels in a wide range
of prokaryotic or eukaryotic genes (Waters and Storz, 2009;
Brant and Budak, 2018; Carrier et al., 2018b). Their targets
include important genes that are relevant either for the infection
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process or for the defense of the host organism (Guo et al.,
2019). A notable feature is their reported participation in trans-
kingdom communication (Benbow et al., 2018; Zeng et al., 2019;
Bermúdez-Barrientos et al., 2020). Attending to their origin, they
can be divided in prokaryotic and eukaryotic sRNAs.

Prokaryotic sRNAs
Prokaryotic regulatory RNAs can be classified in three main
groups: (i) elements present in the 5′ untranslated regions (UTR),
(ii) those acting in cis and termed anti-sense RNAs (Lejars et al.,
2019), and (iii) those acting in trans that are expressed from
other genomic regions than their targets (Chakravarty and Massé,
2019). The third type can be originated at intergenic regions,
but also at 5′ or 3′ UTR regions, and are usually termed as
sRNAs (Carrier et al., 2018a; Chakravarty and Massé, 2019). The
trans-acting sRNAs are the main focus of the current article.
The regulation occurs according to several mechanisms, which
have been thoroughly reviewed by Carrier, Lalaouna, and Massé
(Carrier et al., 2018a). Briefly:

(i) Binding to a regulatory protein. For example binding of
sRNAs to the regulatory CsrA protein, that cannot occlude
the Shine Dalgarno (SD) sequence of its target (Romeo and
Babitzke, 2018; Figure 1A).

(ii) Direct sRNA-mRNA interaction (Figure 1B). Trans acting
sRNAs bind to their targets with partial complementarity
(Caldelari et al., 2013). There are different types of
interaction, for instance the destabilization of the mRNA
by pairing to upstream locations from RBS (Ross et al.,
2019) or by interference with the 5′ UTR (Rübsam et al.,
2018). Binding of the sRNA can also mask the ribosomal
binding site (RBS), consequently the ribosome cannot bind
and the translation of the gene is attenuated (Kiekens
et al., 2018). The complex mRNA-sRNA can be subject of
degradation by RNaseE (Lalaouna et al., 2013).

(iii) Protein mediation (Figure 1C). RNA-binding proteins
(RBP) can mediate the regulatory activities of sRNAs, such
as Hfq (Beisel and Storz, 2010) or ProQ (Smirnov et al.,
2016). The Hfq chaperone mediates interactions between
sRNAs and their targets helping to improve base-pair
recognition (Massé et al., 2003; Lenz et al., 2004; Holmqvist
and Vogel, 2018; Santiago-Frangos et al., 2019). This
protein binds to the regulatory RNAs, helps to stabilize
them, and leads the base pairing with the targets (Hu
et al., 2018; Han et al., 2019). Hoekzema et al. (2019)
have suggested an additional mechanism, where the action
of Hfq will unfold a hairpin in the targeted mRNA.
This activity would create a temporary local structure
that facilitates the access of the sRNA. There are other
microorganisms where Hfq protein is lacking and FinO,
ProQ or RocC carry out its broad regulatory roles: sRNA
protection from degradation, alteration of RNA structures
to facilitate annealing, stabilization of the sRNA-mRNA
complex, or modulation of ribosome binding after the
complex is formed, and regulation of RNA degradation
(Olejniczak and Storz, 2017).

Eukaryotic sRNAs
In eukaryotes the description of the first types of sRNAs dates
back to 1990 with studies reporting silencing of gene expression
in petunia plants (Napoli et al., 1990; van der Krol et al., 1990),
and later in 1993 in the nematode Caenorhabditis elegans (Lee
et al., 1993; Wightman et al., 1993).

The main types of described sRNAs range from 20 to 30 nt,
and carry out silencing functions by mediation of Argonaute
family proteins (Kim et al., 2009). These sRNAs were firstly
divided in three classes: microRNAs (miRNAs), small interfering
RNAs (siRNAs), and PIWI-interacting RNAs (piRNAs) (Grimson
et al., 2008; Okamura and Lai, 2008; Islam et al., 2018). Long-non-
coding RNAs (lncRNAs) are a new group of described regulatory
molecules over 200 nt (Agliano et al., 2019).

In the case of miRNAs it has been reported that they can
control up to 60% of the human transcriptome, therefore,
their involvement in the response to infectious diseases is not
surprising (Aguilar et al., 2019).

sRNAs REGULATE KEY PROCESSES
FOR THE ESTABLISHMENT OF
INFECTION

Establishment of infection requires a prompt adaptation effort
from a pathogenic perspective, in order to proliferate within
the host. There are different type of environmental challenges
faced by bacteria when entering the host, including different
immune barriers to infection (Chakravarty and Massé, 2019).
Regulation of transcription aids to adapt quickly to the newly
encountered hostile conditions: changes in nutrient availability,
pH, temperature, or presence of antimicrobials among other
variables. Together, those force bacteria to behave differently
during the infective process in comparison with the free form
state. It is during these conditions when the diverse toolkit of
RNA regulatory activities greatly help for survival. An overview
of the different stresses that bacteria must adapt to when entering
a host, and the role of sRNAs, have been summarized in Table 1.

The range of adaptations mediated by sRNAs have been
grouped in two main related categories: (i) regulation of key
bacterial processes for the success of infection, and (ii) regulation
of responses against host barriers to infection. Most of them have
been described in bacteria causing diseases concerning animals,
especially in mammals and mostly humans.

Regulation of Biological Processes
Key biological processes set the basis for the adaptation to the
host molecular environment, including important responses such
as: temperature sensing, stringent microbial response, biofilm
formation and Quorum Sensing (QS), or regulation of virulence.

Temperature Response
One of the first cues helping the pathogen to perceive when it
has entered the host is the change in temperature. Besides, it
cannot be overlooked that a characteristic of infectious diseases is
the hyperthermia response, which elevate the body temperature
during inflammation (Kluger et al., 1998; Casadevall, 2016).
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FIGURE 1 | Main modes of action of prokaryotic sRNAs. (A) sRNA binding to a CsrA regulatory protein frees the SD region. (B) Direct sRNA-mRNA binding. The
shown sRNA competes with the ribosome, which cannot bind to the SD site. The mRNA is further degraded. (C) Protein mediation. Hfq-sRNA bind to the mRNA
and stabilize it, and degradation is prevented. The complex protein-sRNA can unfold secondary structures in the 5′ UTR which will prevent ribosome binding. SD,
Shine-Dalgarno. Black thick arrows indicate flow of a biological process, e.g., protein translation. References: Massé et al., 2003; Waters and Storz, 2009; Faucher
and Shuman, 2011; Chakravarty and Massé, 2019.

While it is difficult to ascertain, it has been appointed that
fever has beneficial effects for the protection against pathogens
(Mackowiak, 1981; Casadevall, 2016), since such a high metabolic
cost in higher vertebrates would have been lost during evolution
if it did not present an advantage (Ostberg et al., 2000).

From a pathogen perspective, RNA presents advantages, as
it has been shown to be a relevant molecular thermometer
capable of controlling expression of heat shock and virulence
genes (Narberhaus, 2010; Loh et al., 2018), when increasing
temperatures melt secondary structures and allow access to the
ribosome binding site (RBS) (Narberhaus et al., 2006). Through
temperature monitorization pathogens can differentiate between
free state, insect vector (if present), or hosts with regulated body
temperature (González Plaza et al., 2016; Álvarez-Estrada et al.,
2018), which could lead as well to develop a specific program to
respond to fever (in hosts where this mechanism is present).

A recent study has evaluated the transcriptomic response
of the psychrotrophic bacterium Pseudoalteromonas fuliginea
BSW20308, which is adapted to Arctic environmental conditions
(Liao et al., 2019). The aim was to evaluate the impact of
global warming over the ecologically dominant genus, where
temperature increases may trigger regulation mediated by sRNA.
Authors described the whole sRNome (repertoire of sRNAs)
when this microorganism grew at different temperatures, from
very low ones resembling its natural environmental conditions,
to higher temperatures of a global warming scenario. Results,
according to authors, indicated an intense involvement of sRNAs
in temperature adaptation. A 316 nt novel sRNA, termed Pf1,

showed to be correlated with the expression to a wide group
of 644 genes mostly annotated in the categories of catabolism,
energy, translation, and intracellular transport. As previously
mentioned, sRNAs have an ample range of effects over the
transcriptome, helping bacteria to regulate their physiology
upon environmental perturbations. Besides, since sRNAs are
genetic carriers of information not translated into proteins,
they can perform their regulatory roles in a faster fashion than
other important regulators as heat-shock proteins. Although this
characterization relies on an RNA-seq approach and further
in silico data analyses, it is not surprising such a broad regulatory
network as suggested in the article. Either by conservation or
convergent evolution as appointed by Narberhaus (2010), this
regulatory response is present in many pathogens for adaptation
to the host conditions, and may be an important variable to
consider during pyrexia (Mackowiak, 1981; Kluger et al., 1998;
Ostberg et al., 2000; Casadevall, 2016; González Plaza et al., 2016).

In their analysis of the differential expression between
infective and environmental temperatures in Borrelia burgdorferi,
Popitsch et al. (2017) report a large set of sRNAs with differential
expression between both conditions, and also reveal a variety of
transcription origins. A brilliant conclusion of this study is that
in overall, the mode of action of sRNAs could deeply impact
the way we perform genetic studies. Deletion of a gene could
erase as well an important regulator for a number of downstream
targets. This can undoubtedly represent a confounding factor for
the interpretation of results on loss-of-function phenotypes due
to the interference of sRNA regulation.
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What becomes clear is that monitorization of temperature
changes is a central event in the life cycle of bacterial pathogens
(Papenfort and Vogel, 2010), and that regulation follows an
intricate pathway with several levels. In a fascinating example
of interaction between kingdoms and pathogen manipulation,
the spirochaetal outer surface (lipo)protein (Osp) C (OspC)
from Borrelia burgdorferi binds to the SALP15 salivary protein
belonging to the tick vector Ixodes scapularis. The pathogen
uses the insect protein to succeed in the transmission to the
mammalian host and its infection (Ramamoorthi et al., 2005).
The expression of ospC is influenced by RpoS (Hübner et al.,
2001), which back was suggested by Lybecker and Samuels (2007)
to be regulated by a sRNA in response to temperature (Figure 2).
RpoS is a key global regulator controlling virulence or response
to general stresses in several pathogens (Fang et al., 1992; Suh
et al., 1999; Dong and Schellhorn, 2010; Battesti et al., 2011).
The regulation of temperature responses mediated by RpoS, is
modulated by the sRNA DsrABb in B. burgdorferi, which is
expressed upon increase in temperature (Lybecker and Samuels,
2007). Few years later, it was experimentally confirmed to occur
through Hfq mediation (Lybecker et al., 2010; Figure 2).

Stringent Response
Stringent response can be defined as the set of bacterial conserved
mechanisms activated during nutritional environmental stresses
(Poole, 2012; Drecktrah et al., 2018). It produces a general
decrease on the expression of genes related with growth,
involving synthesis of proteins or nucleic acids, and enhanced
transcriptional levels of genes for survival (Chatterji and Ojha,
2001; Poole, 2012; Irving and Corrigan, 2018). When the bacterial
stringent response is unleashed, mediation of enzymes such as
RelA or SpoT lead to global transcriptomic changes (Atkinson
et al., 2011; Shyp et al., 2012). A different version of RelA in
Borrellia burgdorferi, RelBbu, has regulatory capabilities on a third
of the sRNAs identified in this bacteria to date (Drecktrah et al.,
2018). This pathogen has a life cycle that includes a vertebrate and
an invertebrate host, thus, adaptation to different environments
in order to regulate the behavior in such disparate conditions
represent a challenge for survival. Not surprisingly Drecktrah
et al. (2018) found that most of the targets of the regulated
sRNAs are involved in two biological processes required during
conditions of infection, virulence and metabolism. Interestingly,
the sRNAs targets of RelBbu are not exclusively found within the
chromosome, but could be found as well in plasmids.

Biofilm Formation and Quorum Sensing
Biofilms are bacterial community structures that provide
additional protection against the host immune system, e.g., the
effect of cytokines (Leid et al., 2005). Biofilm formation requires
coordination of QS mechanisms of communication, which are
mediated mainly by N-acyl homoserine lactones (AHLs) among
other molecules and mainly controlled by the rhlR-rhlI and lasR-
lasI signaling systems (Davies et al., 1998; Lee and Zhang, 2015;
Figure 3). The AHL N-butanoyl-homoserine lactone (C4-HSL)
is an important molecule in the QS response of Pseudomonas
aeruginosa. This molecule binds to RhlR and the activated
complex regulates positively the expression of rhlI, and its

translation to RhlI that synthesizes C4-HSL. The synthesis of
RhlR has been positively related with a 74-nucleotide sRNA,
PhrD (Malgaonkar and Nair, 2019; Figure 3). The interaction
between the regulator molecule and the mRNA target was
predicted in silico and further demonstrated in experimental
conditions (which mimicked the host during pathogenesis).
While this system seems to act independently of any P. aeruginosa
proteins (authors expressed it heterologously in E. coli), the
system achieves better expression levels in the P. aeruginosa
background, probably assisted by native proteins.

The involvement of sRNAs in the QS response of P. aeruginosa
was investigated with mutants of AHL synthesis by Thomason
et al. (2019), (Figure 3). Authors found a group of sRNAs
responsive to AHLs treatment, where RhlS (previously SPA0104)
(Ferrara et al., 2012) showed the highest accumulation at
inductive conditions. This regulator acts positively over the
translation of rhlI, leading ultimately to the production of
C4-HSL. P27 is another sRNA that regulates negatively the
translation of rhlI bindings to the 5′ UTR aided by Hfq (Chen
et al., 2019; Figure 3).

The environmental bacteria Burkholderia cenocepacia
belongs to the Burkholderia cepacia complex (Bcc) and can
become an opportunistic pathogen in plants (Mahenthiralingam
et al., 2005), but also in patients affected by cystic fibrosis
(Drevinek and Mahenthiralingam, 2010). The sRNA ncS35
is involved in growth regulation by predicted binding to
mRNA targets, probably facilitating the degradation of the
transcript (Kiekens et al., 2018). Authors used a deletion
mutant (1ncS35) in comparison with the wild type (WT)
strain, and a complemented 1ncS35 overexpressing the
sRNA under inductive conditions. The mutant phenotype
displayed biofilms with larger aggregates, increased optical
density or metabolic activity in comparison with the WT
or the complemented mutant. Differential gene expression
between the mutant and the WT showed upregulation
of genes involved in metabolism both in exponential and
stationary growth phases. This indicates a negative regulatory
role of ncS35 over bacterial growth. Additionally, authors
observed higher expression values for ncS35 when bacteria
form biofilms than in free planktonic culture. Additional
increases in transcription occurred during nutrient limitation
after cultivation in M9 minimal media or in the presence
SDS, a known membrane stressor (Flahaut et al., 1996). In
overall, the effect of this sRNA is to slow-down growth. The
higher expression during presence of stressors, may indicate
its involvement in protection of the bacteria by restricting
division when environmental conditions are detrimental
for the pathogen.

Virulence
Bacterial virulence can be defined as the “relative capacity to
overcome available defenses” (Sparling, 1983), or “the relative
capacity of a microorganism to cause damage in a host”
(Casadevall and Pirofski, 2003). This capability is mediated by
virulence genes, which have to fulfill three requirements: (i)
active in the interaction between pathogen and host, (ii) direct
determinants of the pathogen damage, and (iii) the lack of
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TABLE 1 | Adaptation to environmental stresses mediated by sRNAs.

Category Biological
Process
or Host
Barrier

Type of
stimulation

Organism Infectious
disease

sRNA Mechanism of sRNA
action

Physiological effect Potential value if
present in a
pathogen

References

Regulation of
biological
processes

Temperature
response

Extreme heat
stress

Pseudo-
alteromonas
fuliginea
BSW20308

N/A 4 known
sRNAs 15
novel
sRNAs

Not described Regulation of genes for
adaptation to challenge,
e.g., scavenging ROS,
oxidation of toxic
aldehydes, or
antioxidant enzymes.

Adaptation to pyrexia
(organisms presenting
it), sensing of host
temperature

Liao et al.,
2019

Regulation of
biological
processes

Temperature
response

Temperature Borrellia
burgdorferi

Lyme disease >1,000 Not described Regulation of genes
involved in metabolism,
cell cycle, or infection
(among others)

Identification of the
molecular program to
trigger according to
environment

Popitsch et al.,
2017

Regulation of
biological
processes

Stringent
response

Stringent
response

Borrellia
burgdorferi

Lyme disease 1/3 of
sRNome
regulated

RelBbu combines
enzymatic functions of
RelA and SpoT.

Regulation of virulence
and metabolism upon
stringent response

Adaptation to
host/vector/free state

Drecktrah et al.,
2018

Regulation of
biological
processes

QS and
Biofilm

Quorum-
sensing
response

Pseudomonas
aeruginosa

Opportunistic
infection

RhlS (+) Binds to the 5′ UTR rhlI
mRNA and stabilizes it,
Hfq dependent

Leading to production of
C4-HSL

Activation of biofilm
genes according to the
state of infection

Thomason
et al., 2019

Regulation of
biological
processes

QS and
Biofilm

N/A Pseudomonas
aeruginosa

Opportunistic
infection

P27 (−) P27 binds to the 5′

UTR rhlI, inhibits
translation. Hfq
dependent

Leading to repression of
C4-HSL

Deactivation of biofilm
genes according to the
state of infection

Chen et al.,
2019

Regulation of
biological
processes

QS and
Biofilm

N/A Pseudomonas
aeruginosa

Opportunistic
infection

RsmV (−) Targets and binds
RsmA and RsmF, also
has redundancy of
targets with known
regulators

Repression of regulators
involved in
activating/deactivating
acute/chronic infection
related genes

Switching between
infective lifestyles

Janssen et al.,
2018b

Regulation of
biological
processes

QS and
Biofilm

High-cell
density (biofilm)
Presence of
membrane
stressors

Burkholderia
cenopacia

Opportunistic
infection

ncS35 (−) Potential binding to the
mRNA inhibiting
translation

Slows-down growth,
restricts division

Triggering of infection
related genes when
pathogen finds the right
environment

Kiekens et al.,
2018

Regulation of
biological
processes

QS and
Biofilm

N/A Pseudomonas
aeruginosa

Opportunistic
infection

PhrD (+) Positive regulator of
RhlR by messenger
stabilization (Hfq
mediated)

Stabilization of rhlR
messenger

Regulation of biofilm
formation by
modulation of a key
regulator

Malgaonkar
and Nair, 2019

Regulation of
biological
processes

Virulence Environmental
stress

Pseudomonas
aeruginosa

Opportunistic
infection

ReaL (−) RpoS controls virulence
factors, regulated (−)
by ReaL (Hfq
dependent base-pairing
mechanism)

Wide downstream
effects, since it regulates
rpoS mRNA

Fine tuning of virulence
factors

Thi Bach
Nguyen et al.,
2018
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TABLE 1 | Continued

Category Biological
Process
or Host
Barrier

Type of
stimulation

Organism Infectious
disease

sRNA Mechanism of sRNA
action

Physiological effect Potential value if
present in a
pathogen

References

Host barriers to
infectious
diseases

Acid pH pH,
antimicrobials

Escherichia coli Opportunistic /
Enterohemorrhagic
(if Escherichia
coli O157:H7)
infection

RydC (+)
ArrS (+)
CpxQ (−)

CpxQ-HfQ bind to
mRNA, facilitate access
to RNase cleavage site.
RydC-HfQ and ArrS
opposite effect

Modification of cell
membrane versus
several stresses. The
enzyme transcripts
(cyclopropane fatty acid
synthase) stabilized and
protected from RNAse E

Overcoming one of the
first barriers to
infection, in order to
access the lower
gastrointestinal tract

Bianco et al.,
2019

Host barriers to
infectious
diseases

Inflammation Oxidative burst Staphylococcus
aureus

Opportunistic
infection.
Severe
respiratory
disorders

RsaC (−) Binding to the RBS of
the gene sodA
(protection against ROS
species).

Targeted gene
repression allows
transcription of SodM
(protection vs. ROS,
uses iron as cofactor).

Maintenance of ROS
protection when a
cofactor is depleted by
using different metallic
ion.

Lalaouna et al.,
2019

Host barriers to
infectious
diseases

Nutritional
immunity

Iron starvation Pseudomonas
aeruginosa

Opportunistic
infection.

PrrF1 (−)
PrrF2 (−)

Inhibition of antR
translation via Hfq and
binding to the SD

Transcribed upon iron
starvation, modulate
synthesis of proteins
containing limiting
elements. Modulation of
biofilm and virulence via
targeting anthranilate
degradation pathway.

Avoids synthesis of
unnecessary
iron-containing proteins
when this compound is
limited.

Djapgne et al.,
2018

Host barriers to
infectious
diseases

Nutritional
immunity

Environmental
stresses related
with iron
withholding and
nutrient
starvation

Escherichia coli
W3100

Opportunistic /
Enterohemorrhagic
(if Escherichia
coli O157:H7)
infection

RyhB (−) Binds target mRNA via
Hfq, allows recognition
by degradasome.

Transcribed upon iron
starvation, modulate
synthesis of proteins
containing limiting
elements.

Described (previously)
to avoid synthesis of
iron containing proteins
under iron limitation;
redirection of metabolic
fluxes

Lyu Y et al.,
2019

Host barriers to
infectious
diseases

Nutritional
immunity

Nutrient
starvation

Salmonella
enterica serovar
Typhimurium

Diarrheal
disease /
Typhoid fever

STnc1740
(−) RssR
(+)

RssR was suggested to
bind to the 5′ UTR of
reiD

Utilization of
myo-inositol as carbon
source

Redirection of
metabolism, growth
regardless of host
nutritional starvation
response

Kröger et al.,
2018

Host barriers to
infectious
diseases

Nutritional
immunity

N/A Vibrio cholerae Cholera
disease

MtlS (−) Cis-antisense
complementation

Regulation not directly
caused by the
environmental cue, but
target mRNA levels

Regulation of metabolic
resources during host
nutritional starvation
response

Zhang and Liu,
2019

This table contains a list of different adaptations to environmental stresses, either described in environmental bacteria, in characterization studies of pathogen models in the laboratory, or in studies assessing the
host-pathogen interaction. Many of these stresses can be encountered by bacteria during infection. The type of small non-coding regulatory RNAs involved. +, positive regulation; −, negative regulation; C4-HSL,
N-butanoyl-homoserine lactone; QS, Quorum Sensing; ROS, reactive oxygen species; UTR, untranslated region.
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FIGURE 2 | Temperature response model of Borrelia burgdorferi. An environmental signal activates Hk2 membrane protein that phosphorylates and activates Rrp2.
Together with RNP and σ54, they facilitate transcription of rpoS. The mRNA is stabilized by the joint action of DsrABb (expressed upon temperature increase to host
conditions) and Hfq, and the messenger is translated into protein. RpoS regulates the transcription of ospC, which product is displayed on the OuM. CyM,
Cytoplasmic membrane; OuM, Outer membrane; PG, peptidoglycan; RNP, RNA Polymerase; SD, Shine-Dalgarno. Black thick arrows indicate flow of a biological
process, e.g., protein translation. Green thick arrows indicate activation. References: Burtnick et al., 2007; Lybecker and Samuels, 2007; Lybecker et al., 2010;
Radolf et al., 2012; Steere et al., 2016.

those virulence genes in non-pathogenic strains (Wassenaar and
Gaastra, 2001). Some authors also use the term “virulence factor”
instead of “virulence gene” (Diard and Hardt, 2017).

The role of sRNAs over virulence has been well-characterized
in Pseudomonas aeruginosa. In this organism, an important
system for regulation of virulence is the carbon store regulator
(Csr) or repressor of stationary-phase metabolites (Rsm), being
the main regulatory protein CsrA (or RsmA) (Figure 4).
This system can also control other important features of the
interaction with the host, such as biofilm formation, carbon
metabolism, or stress responses (Romeo and Babitzke, 2018).
Central to this system is the Gac/Rsm pathway, where the
GacS/GacA two component system has a fundamental role
(Coggan and Wolfgang, 2012; Figure 4). GacA induces the
expression of the sRNAs rsmY and rsmZ, which can bind to the
central regulatory protein RsmA (CsrA) to block its regulatory
functions (Kay et al., 2006; Figure 4). RsmW is another sRNA that
can bind to the regulatory protein (Miller et al., 2016; Valentini
et al., 2018). This sRNA mediation can allow cells to respond
precisely to environmental challenges, and aid transition from

different infective phenotypes in P. aeruginosa. Additionally,
RsmF/RsmN (a CsrA family protein), have overlapping functions
to RsmA (Marden et al., 2013; Romero et al., 2018). Janssen
et al. (2018a) have identified RsmV, a new 192-nt small non-
coding RNA that has binding activity to RsmA and RsmF. In vitro
electrophoretic assays confirmed that both proteins bind RsmV
probe with high affinity. This interaction was supported by
complementation studies using a two-plasmid reporter system in
a mutant with high levels of RsmA/RsmF (lacking rsmV, rsmY,
and rsmZ). Complementation with a plasmid expressing RsmV
antagonized the activity of RsmA/RsmF (Figure 4). The displayed
redundancy of targets with previously known sRNAs illustrates
the fine-tuned coordination of sRNA regulation.

The sigma factor RpoS controls as well a wide number
of virulence related genes in Pseudomonas aeruginosa under
environmental stresses. RpoS translation has been shown to be
negatively regulated by the sRNA ReaL, through a Hfq dependent
base pairing mechanism (Thi Bach Nguyen et al., 2018; Figure 3).
As authors point out, this was the first case of a negative sRNA
transcriptional regulator of rpoS.
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FIGURE 3 | Biofilm formation and Quorum Sensing in Pseudomonas aeruginosa. (A) LasR and RhlR are two key regulatory molecules that need OdDHL and
C4-HSL participation. LasR-OdDHL regulate the genes included in the upper box. RhlR-(C4-HSL) regulate genes or affect processes indicated in the lower box.
PqrS is another important regulator, it has been shaded as it does not participate in the shown processes. (B) LasR and RhlR expression is dependent on RpoS.
LasR-OdDHL regulates positively: the expression of lasI, and ultimately the synthesis of OdDHL; the expression of rhlR; and rhlI. RhlR-(C4-HSL) regulates positively
the expression of rhlI. (C) Mechanisms of action of several sRNAs involved in regulation of the synthesis of regulatory proteins within these signaling systems: ReaL
affects negatively the expression of rpoS; P27 is another negative regulator, in this case of rhlI; RhlS regulates positively rhlI; PhrD is a positive regulator of rhlR.
C4-HSL: N-butanoyl-homoserine lactone; OdDHL: N-(3-oxododecanoyl)-L-homoserine lactone; PQS: Pseudomonas quinolone signal; SD: Shine-Dalgarno. Black
thick arrows indicate flow of a biological process, e.g., protein translation. Green thick arrows indicate activation. Dashed-line text boxes: indicate downstream
effects of the two signaling systems, phenotypes are indicated in bold (e.g., swarming). ∗: indicates that this mechanism of sRNA regulation has been proposed.
References: Schuster et al., 2004; Nadal Jimenez et al., 2012; Brouwer et al., 2014; Pita et al., 2018; Thi Bach Nguyen et al., 2018; Chen et al., 2019; Malgaonkar
and Nair, 2019.

Host Barriers to Infectious Diseases:
sRNA-Mediated Bacterial Adaptation to
a Hostile Environment
The second category groups those responses from the pathogen
to known barriers of infection, such as acidic pH, inflammation,
or nutritional immunity.

Acidic pH: One of the First Barriers to Infection
The acidic pH of the stomach represents one of the first barriers
to infection set by the host. Microbial parasites can overcome
it through different mechanisms, including the degradation of
urea into CO2 and NH3 (Burne and Chen, 2000). This strategy
increases the survival chances of enteropathogenic organisms,
such as Yersinia pseudotuberculosis, a Gram-negative food-
borne bacterial pathogen (Hu et al., 2010). Another mechanism
involves modifying the composition of the cell membrane to
withstand sudden exposure to acid pH, by incorporation of
different membrane proteins, or the enzymatic modification of
the pre-existing fatty acids already in the membrane (Bianco
et al., 2019). Cell membrane composition changes have key roles
during infective processes, as it determines the fluidity of toxic

compounds or antimicrobials. The enzyme cyclopropane fatty
acid synthase mediates the incorporation of a methylene group
into unsaturated fatty acids. The enzyme transcripts were shown
to be stabilized and protected from the degradative activity of
RNAse E in Escherichia coli, by two sRNAs, RydC, and ArrS;
while a third one, CpxQ, had a repressive role (Bianco et al.,
2019). While RydC and ArrS mask the mRNA cleavage site that
is not available to RNase E, CpxQ increases the accessibility
to the same site.

Inflammation: Oxidative Stresses
When the host detect the presence of a pathogen, one of the
characteristic responses is inflammation and the subsequent
presence of oxidative stresses for the bacteria (Carlos et al.,
2018). These stresses are common for extremophiles, such as
the haloarchaeon Haloferax volcanii. A recent study reports the
presence of hundreds of sRNAs in response to oxidative stress
caused by hydrogen peroxide in this species (Gelsinger and
DiRuggiero, 2018). Despite the potential evolutionary lineage
distance between archaea and bacteria, this study shows as well
how small regulatory RNAs can play a key role for regulation
of biological processes in extreme conditions. In the case of
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FIGURE 4 | Virulence sRNA mediated regulation in Pseudomonas aeruginosa: Role of CsrA regulatory protein and sequestration by sRNAs. (A) CsrA has been
described to have also a positive effect on target mRNAs by protecting transcripts from degradation. (B) Regulatory effects of CsrA. In the case of positive CsrA
regulation of targets, when sRNAs bind and sequester this protein, they force the instability and degradation of the messenger (A). In the case of CsrA negative
regulation of targets (Figure 1A), sRNAs can prevent binding of the regulatory protein to the mRNA allowing translation (where sRNAs have a positive effect over
mRNA targets). (C) GacS/GacA two component system is either activated by LadS, or inhibited by RetS. These two transmembrane proteins mediate between
GacS and environmental stimulation. Upon activaction, Gac promotes the transcription of sRNAs, which can further bind CsrA/RsmA and modify expression of
downstream genes. CyM, Cytoplasmic membrane; PG, peptidoglycan; OuM, Outer membrane. Black thick arrows indicate flow of a biological process, e.g., protein
translation. Green thick arrows indicate activation. Red thick arrows with flat cap indicate inhibition. Text boxes: indicate downstream effects of RsmA. References:
Wei et al., 2001; Records and Gross, 2010; Sonnleitner et al., 2011; Coggan and Wolfgang, 2012; Nadal Jimenez et al., 2012; Marden et al., 2013; Yakhnin et al.,
2013; Chambonnier et al., 2016; Janssen et al., 2018a; Romeo and Babitzke, 2018; Valentini et al., 2018.

infectious diseases, the extreme transient conditions relate to the
stress caused by the host during oxidative burst, which induce
heavily the expression of RsaC sRNA in Staphylococcus aureus
(Lalaouna et al., 2019). The sRNA binds to the start codon
region of the sodA mRNA, involved in protection against reactive
oxygen species (ROS). The repression of the targeted gene allows
the transcription of a second enzyme, SodM, involved in ROS
protection but using iron as cofactor, instead of manganese
(limited due to the nutritional immunity).

Nutritional Immunity
Besides oxidative stress (although related), pathogen recognition
triggers other quick immune responses from the host, aimed
to clear the bacteria by restriction of the available metabolic
resources. The term “nutritional immunity” (Damo et al.,
2013) refers to the limitation by the host of essential elements
for the development of the pathogen. This strategy includes
targeting of iron, manganese, or glucose (Carlos et al., 2018).
Undoubtedly, the decrease in nutrients cellular levels has a
direct relationship with the triggering of stringent mechanisms
in bacteria. Regarding glucose metabolism, a characteristic
behavior of human patients during infective diseases are patterns

of transient anorexia that lead to a lower energetic intake,
thus, limiting the availability of nutrients. This is a probable
evolutionary response from the host, in order to create a
metabolically stressful environment for the pathogen. Given
that these host-pathogen relationships have developed through
evolution, additional layers of regulation must have appeared
in key microbial processes, in order to ensure survival of the
bacterial strains, where sRNAs play a fundamental role.

In the case of manganese, the host immune system can
limit its extracellular levels (Diaz-Ochoa et al., 2014), causing
an impairment in the oxidative stress protection machinery
from the pathogen, while increasing the oxidative burst. In that
regard, the previous example of RsaC, can help S. aureus to avoid
the synthesis of a non-functional enzyme (SodA) that requires
manganese, and synthesize the second enzyme (SodM) that uses
available iron as cofactor restoring the oxidative protection.

Besides targeting manganese, iron starvation is another innate
immunity strategy of vertebrates, when detrimental bacteria are
identified: the so-called “iron withholding strategy” (Ong et al.,
2006). From a broader perspective, mechanisms to deal with iron
deprivation have been described in environmental bacteria. For
instance, the sRNA iron-stress activated RNA 1 (IsaR1) mediates
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FIGURE 5 | Nutritional immunity response in Pseudomonas aeruginosa. (A) Excess of extracellular iron is bound to Fur protein that inhibits transcription of PrrF1 and
PrrF2. (B) PrrF1 and PrfF2 bind to the SD site by mediation of Hfq and block the translation of antR. (C) AntR has a positive effect over anthranilate degradation
genes. Another sRNA, PhrS, allows the transcription of pqsR. (D) PqsR is an important regulator, which together with RhlR and LasR have key regulatory effects over
genes belonging to the anthranilate degradation pathway (shown in panel C). CyM, Cytoplasmic membrane, OuM, Outer membrane; PG, peptidoglycan. Black thick
arrows indicate flow of a biological process, e.g., protein translation. Green thick arrows indicate activation (equal for green thick dashed lines). Red thick arrows with
flat cap indicate inhibition (equal for red thick dashed lines). References: Dubern and Diggle, 2008; Brouwer et al., 2014; Baker et al., 2017; Djapgne et al., 2018.

the acclimation to conditions of iron starvation and high salinity
in cyanobacteria (Rübsam et al., 2018). Even an additional
role has been reported in the regulation of osmotic response.
IsaR1 down-regulates the expression of the gene ggpS, encoding
for the enzyme GG-phosphate synthase which is involved in
the accumulation of heteroside glucosylglycerol (GG), and the
adaptation to high saline concentrations. IsaR1 interferes with
the 5′UTR of its target gene, ggpS. As it is becoming clear
in the sRNAs research field, the ggpS regulation strategy does
not follow an abrupt “all or nothing” scheme. It rather serves
to integrate a wide range of environmental fluctuations in a
continuous manner.

The previous model of cyanobacterial regulation in response
to low iron, is relevant as well during infection of P. aeruginosa.
This bacterium is able to detect environmental iron fluctuations,
which drive to the expression of virulence genes in response
to the host primary line of defense. Two of its sRNAs,
PrrF1, and PrrF2, react to iron (Fur mediated) and have been
shown to repress anthranilate metabolism (Djapgne et al., 2018;
Figure 5). These two sRNAs have been described as functional
homologs of the RyhB in E. coli (Wilderman et al., 2004).
The regulatory effect is indirect, as they inhibit the translation
of a transcriptional activator, antR, with downstream effects
over genes for degradation of anthranilate. The metabolic
pathway from anthranilate degradation ends with the synthesis

of Pseudomonas quinolone signal (PQS), relevant for Quorum
Sensing (QS) (Brouwer et al., 2014; Figure 5). RyhB, was
previously described as a negative regulator of genes involved in
the control of iron levels within the cell (Massé and Gottesman,
2002). Besides the regulatory activities toward genes related
with iron homeostasis, Massé and Gottesman reported the
RyhB mediated regulation of three enzymes of the tricarboxylic-
acid (TCA) cycle (succinate dehydrogenase, aconitase, and
fumarase) (Figure 6).

Recently, the contribution of RyhB over the carbon
metabolism was quantified (Lyu Y et al., 2019). A mutant
was generated by recombination-mediated deletion of RyhB,
in comparison with the WT and an inducible mutant. Authors
report a redirection of the metabolic flux toward the pentose
phosphate pathway. These results support the role of sRNAs in
modification of central catabolism in order to adapt to changing
environments and allow survival. According to authors, it may
be due to the fact that key cellular catabolism enzymes have iron
as component of their structure. Several of the enzymes involved
in the TCA cycle require iron on their structure (Cornelis et al.,
2011). The relationship between carbon and iron levels has
been previously addressed in environmental bacteria (Kirchman
et al., 2000), and similar mechanisms occur with pathogenic
regimes (Andrews et al., 2003). Central carbon metabolism sRNA
regulation has been also reported for Escherichia coli, according
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FIGURE 6 | Nutritional immunity response in E. coli. (A) Excess of extracellular
iron is bound to Fur protein that inhibits transcription of Ryh. (B) Ryh can
inhibit the synthesis of proteins containing iron when this element is limited
due to nutritional starvation exerted by the host. Ryh negative regulation is
mediated by Hfq, binding to the target mRNAs directing the activity of the
degradasome. CyM, Cytoplasmic membrane, OuM, Outer membrane; PG,
peptidoglycan. Black thick arrows indicate flow of a biological process, e.g.,
protein translation. Red thick arrows with flat cap indicate inhibition (equal for
red thick dashed lines).

to environmental conditions (Shimizu, 2013; Lyu Y et al., 2019).
That is of especial relevance during nutrient starvation, where
alternative metabolic resources must be sought.

Another example of adaptation during nutrient limitation
can be found in the Gram-negative bacteria Vibrio cholerae,
responsible for cholera disease. A set of sRNAs (CsrB, CsrC, and
CsrD) (functional homologs of RsmA protein and RsmB/C/D
sRNAs in P. aeruginosa) bind to this protein through a region
that resembles the SD of the CsrA mRNA targets (Butz et al.,
2019; Figure 7). This bacterium adapts to the clear differences
and limitations in nutrient content between the human host and
the external environment. The mannitol operon is related to the
adaptation to aquatic environment and to biofilm formation, and
is regulated by the non-coding 120 nt RNA MtlS (Mustachio
et al., 2012; Zhang and Liu, 2019). Zhang and Liu (2019) have
shown what are the causes determining MtlS regulation. Very
interestingly, it is not directly the environmental cue that triggers

alterations in the expression level of the sRNA, but the mRNA
levels of the target gene, mtlA. Another sRNA recently described,
CoaR, binds to the mRNA of tcpI to block its translation (Xi
et al., 2020; Figure 7). TcpI is a negative regulator of tcpA,
a gene encoding the structural major pilin subunit of TCP
(Harkey et al., 1994).

INFECTIOUS DISEASES IN PLANTS

Most of the studies involving plants have been conducted
in relevant crop species. Understanding the role of sRNAs
has interest for breeders and companies, because advances
in regulation of the disease could allow to control bacterial
pathogens and prevent economic losses. In a world with
continuous population growth, the improvement in agriculture
efficiency among other measures could help to avoid shortages
in food supply and help to mitigate the carbon footprint of
agricultural practices (Beebe et al., 2013). Additionally, higher
efficiency means that less agricultural land is required, and bigger
efforts and extensions could be directed toward maintaining
biodiversity (Trewavas, 2001). One of the most interesting aspects
of the war between plants and bacteria, is the sessile nature
of plants while bacteria have the advantage of being mobile.
This fact has forced the evolutionary development in plants of
sophisticated mechanisms of defense (Dangl and Jones, 2001).
However, the immune response both from plants and animals,
can cause a fitness disadvantage if it is held through time and
not regulated. The eukaryotic sRNAs aid in the modulation
of that response. But in the case of prokaryotes, sRNAs are
relevant to fight back, involved in the regulation of different
important pathogenic features during infection, such as secretion
systems or mobility.

In this never-ending war biofilms help bacteria to endure
different stresses, but plant immune systems have “learned” to
target key molecules for its formation. Thus, mechanisms to
evade the host recognition are necessary for the survival of the
pathogen and establishment of a successful infection. In that
regard, Nakatsu et al. (2019) have shown that not all isolates
of Pseudomonas syringae produce AHLs. Many of the reported
isolates carry mutations in two key genes: the AHL synthase
psyI, or the AHL transcription factor psyR. Most probably the
production of AHLs could have represented a biological burden
for the infective processs. Strikingly, these strains still show
responses of two sRNAs that should be related with AHLs, RsmY,
and RsmX. Furthermore, their expression is enhanced at high
cell densities, suggesting the existence of alternative routes for QS
signaling. Although further research is needed, the loss of AHLs
and the increased levels of these two sRNAs during situations
with high number of cells, may reflect the involvement of these
regulatory RNAs in mediating the coordination of a QS response.

In another brilliant event of the antagonism, plants have
developed the capability to synthesize compounds that interfere
with QS signalization. Rosmarinic acid (RA) was reported to bind
with RhlR (instead of C4-HSL), inducing abnormal premature
behaviors related with biofilm formation and virulence. When
cultures of Pseudomonas aeruginosa PAO1 were challenged
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FIGURE 7 | Vibrio cholerae: mechanisms of virulence and regulation. (A) Environmental cues trigger the signalization in the two-component system VarS/VarA
(functional homologs to the GacS/GacA two-component system of P. aeruginosa). Phosporilation of VarA activates this protein. Transcription of varA is facilitaded by
CsrA. (B) VarAP (activated) acts as a transcriptional activator of toxT. ToxT activates as well ctxA/ctxB encoding the two subunits of the CT protein, which is extruded
to the IL through a T2SS (C). The tcpA gene, required for the assembly of the TCP, is located in the same operon as toxT. TcpI is a transcriptional inhibitor of tcpA.
TCP structure is necessary for the progression of the disease (bacterial aggregation and microcolony formation). (D) CoaR sRNA blocks binding of the ribosome to
the tcpI mRNA. (E) CsrA stabilizes toxR mRNA, which is necessary for positive regulation of virulence genes. (F) VarAP activates transcription of CsrB, CsrC, and
CsrC sRNAs, which sequester CsrA, yielding an unstable toxR transcript. CT, Cholera toxin; CyM, Cytoplasmic membrane; HM, Host cell membrane; IL,
Gastrointestinal lumen; OuM, Outer membrane; PG, peptidoglycan; T2SS, Type II secretion system; TCP, Toxin coregulated pilus. Black thick arrows indicate flow of
a biological process, e.g., protein translation. Green thick arrows indicate activation. Red thick arrows with flat cap indicate inhibition. References: Hammer and
Bassler, 2007; Jang et al., 2011; Cobaxin et al., 2014; Mey et al., 2015; Ng et al., 2016; Dorman and Dorman, 2018; Jemielita et al., 2018; Butz et al., 2019; Xi
et al., 2020.

with RA, a group of sRNAs showed differential expression in
response to the presence of RA, including the induction of RsmY
(Fernández et al., 2018). This study highlights the relevance
of sRNAs in the communication process between host and
pathogen. If the host detects the presence of the bacteria, it
can produce certain defensive compounds that will impair the
virulence response of the pathogen through modification of
important regulators and alteration of sRNA levels.

Plant-pathogen interaction it is not limited to detection and
secretion, but it can reach up to a complex alteration of behaviors
through genetic manipulation. Hijacking of the host metabolic
machinery is not exclusive of viruses, it is a fine strategy of the
gram-negative soil phytopathogen Agrobacterium tumefaciens
(Gelvin, 2003; Hwang et al., 2017). The evolutionary counter-
attack from plants has been the development of mechanisms
to disrupt communication among pathogen cells, through the
production of γ-aminobutyric acid (GABA) (Sheehan and
Caswell, 2018). Agrobacterium tumefaciens and other Rhizobiales
have an additional offensive strategy consisting in the production
of AbcR1, a sRNA that regulates the plant transporter responsible
for importing GABA molecules into the cell and its deleterious

effects (Wilms et al., 2011). AbcR1 binds to the SD sequence and
decreases the stability of the target mRNA.

A different sRNA, the highly conserved PmaR, can be found
in Agrobacterium species and a specific strain of Rhizobium
sp. It has been reported to be related to positive regulation of
genes involved with peptidoglycan biosynthesis, motility, and
virulence according to the study by Borgmann et al. (2018).
Additionally, PmaR has a very important role in mediating
ampicillin resistance, as observed after studying deletion mutants
with impaired survival capabilities in growing concentrations
of this antibiotic. The control of the antibiotic resistance gene
was proposed by the authors as a means to obtain a biological
advantage in the highly competitive rhizosphere environment.
PmaR is a positive regulator binding to the 5′UTR, leading to
the stabilization of the Shine-Dalgarno region, which would be
otherwise prone to form structures preventing ribosome binding
or even mRNAs destabilization.

Flowers are sensitive structures of plants, which can be used
as an entry point by pathogens. Such an example is Erwinia
amylovora, a Gram-negative bacteria responsible for fire blight
disease in apple or pear trees belonging to Rosaceae (Oh and
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Beer, 2005). Once the bacterium enters the host, it spreads using
flagella through the vascular system to continue infection. Three
sRNAs dependent on Hfq (ArcZ, OmrAB, and RmaA) have been
linked to the maintenance of the swimming and motility levels of
this bacterium (Zeng and Sundin, 2014). However, the specific
molecular regulation mechanisms were not understood. Given
that motility is related with flagella, a potential target of regulation
mediated by sRNAs is the dual system composed by the proteins
FlhD and FlhC regulating the expression of the rest of the genes
in the flagellar regulon (Liu and Matsumura, 1994; Frye et al.,
2006). Schachterle et al. (2019) researched the involvement of
ArcZ, OmrAB, and RmaA in flagellar regulation. First, they found
reduced expression levels for regulatory and flagellar structural
genes in lack-of-function mutants (1arcZ, 1hfq, 1omrAB, and
1rmaA) in comparison with the WT. Besides, they observed
similar flhD mRNA levels in double and triple deletion mutants
compared to the single deletion mutants. While ArcZ and RmaA
regulate the transcription of flhD, the same ArcZ and OmrAB
affect post-transcriptionally flhD master regulator mRNA.

The broad host range plant pathogen Pantoea ananatis is
responsible for yield losses in many important crops. The roles
and targets of Hfq were unknown, and a recent study measured
the molecular and phenotypical differences between a WT strain
versus the 1hfq deletion and the hfq complementing mutant
(Shin et al., 2019). The phenotype of 1hfq strains showed a
range of phenotypical impairments such as slower growth rate,
or loss of virulence when infecting onion. Within virulence traits,
the mutants were affected in swimming motility, had a reduced
AHL production, and a decreased ability to form biofilms. The
complementing mutant resembled the WT strain phenotype.
Authors identified the affected sRNAs by comparison of loss-
of-function mutant with WT, both in low-density and high-
density conditions. After data analysis, expression levels for 9
sRNAs were assayed through RT-qPCRs (arcZ, fnrS, glmZ, rprA,
ryeB, ryhB2, pPAR237, pPAR238, and pPAR395), with reduced
transcript levels for all them in the mutant. That was not the
case for glmZ and ryhB2, and authors conclude that it is due to
a negative regulation of those two targets by Hfq in WT strains of
P. ananatis.

The study of Yuan et al. (2019) used Dickeya dadantii as a
model bacterial pathogen, which depend on swimming motility
for migration to the entry structures of the plant. RsmA (CsrA)
and RsmB (CsrB) comprise a protein-sRNA system of regulators
of the Type III Secretion System (T3SS) and other virulence
phenotypes. While RsmA controls negatively hrpL, the master
regulator of the T3SS, RsmB can sequester the protein. Besides
RsmB, AcrZ (Hfq mediation) is as well involved in the regulation
of motility and virulence in D. dadantii.

INFECTIOUS DISEASES IN ANIMALS

As previously stated, infection represents a competition
relationship between pathogenic bacteria and a variety of
hosts (ranging from plants to animals) for the same metabolic
resources (Rohmer et al., 2011). The development of the field
is much broader in humans due to the relevance of infectious

diseases from an anthropogenic perspective. For other species,
the research interest has been driven by economic interest
in farming, because the studied species can potentially act as
reservoirs for zoonoses (Slingenbergh et al., 2004), or their
potential as model organisms.

Non-vertebrates
Several non-vertebrate metazoans have attracted attention of the
research community for different reasons, among them their
similarity at innate immune responses with mammals (Tanji and
Ip, 2005), because they constitute a vector for infectious diseases
(Slingenbergh et al., 2004), or their importance as crop pests
(Li et al., 2019).

The model organism Caenorhabditis elegans grazes on bacteria
in the soil environment. Both bacteria and host establish a
relationship which constitutes one of the most clear examples
of interkingdom communication (Legüe and Calixto, 2019). It
has been reported that E. coli sRNAs (OxyS and DsrA) can
impact the expression of genes in the host (Liu et al., 2012).
The uptake of non-self RNA molecules can happen via RNA
transporters that have as well homologs in humans (Legüe
and Calixto, 2019), or through membrane vesicle transport
(Dauros-Singorenko et al., 2018).

Mutualistic endosymbionts are subjected to genome erosion,
e.g., Buchnera in aphids (Wernegreen, 2002; Bennett and Moran,
2015). This reduction leads to losses in genes encoding for
transcription factors, and highlights the importance of sRNAs as
alternative regulatory elements. An early study by Hansen and
Degnan (2014) found an interesting lack of mRNA expression in
different life stages of Buchnera, while it was clear that proteins
were differentially expressed. They predicted the involvement of
a group of more than 600 sRNAs in protein regulation. Thairu
et al. (2018) studied if these sRNAs were to be involved in
post-transcriptional regulation events, by evaluation of two life
stages of the endosymbiont, the extracellular proliferating stage
in aphid embryos of Acyrthosiphon pisum, and the intracellular
non-proliferating state in bacteriocytes of the same host. After
RNA isolation (size ≤ 200 nt) and library preparation, authors
performed sequencing, where data analysis provided a first
indication of a group of 90 differentially expressed putative
sRNAs. Authors evaluated in vitro the regulatory properties
of one of these sRNAs, which putative target is carB, by
cloning the regulatory element and its predicted coding sequence
(CDS) target into two separate plasmids. The CDS was fused
with the green fluorescent protein CDS (GFP), and indication
in stabilization of mRNA would be suggested by enhanced
fluorescence in the dual-plasmid system, in comparison with the
control (where the vector that should contain the sRNA was
empty). Results indicated that carB sRNA stabilizes the messenger
of the target, and would compensate for the evolutionary
loss of regulatory genes. But also, the changes in the insect
diet can exert an effect over the endosymbiont. Thairu and
Hansen (2019) measured through transcriptomic approaches
if changes in the host diet would affect the sRNA regulatory
pathways. Authors found that most of the potential targets
among two conditions, when the aphid fed on two plants with
notable differences in secondary metabolites, were related with
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amino-acid biosynthesis. The results are probably explained
by the intimate relationship between the host insect and the
endosymbiont, where changing in the host will drive a different
transcriptional program to the cohabiting bacterium.

Wolbachia pipientis is an endosymbiont of insects that can
affect the host behavior for ensuring its own vertical transmission
(Werren et al., 2008). In experiments of infection of Drosophila
melanogaster specimens or Aedes albopictus C6/36 cell lines with
W. pipientis, Woolfit et al. (2015) examined the transcriptome
response of both host and microorganism. Their results yielded
a set of reads corresponding to intergenic regions of the bacteria
that together with in silico candidates, allowed authors to identify
two putative sRNAs. While further research is required for a
better characterization of Wolbachia small regulatory RNAs,
authors hypothesize that there could be an involvement in
host manipulation.

Vertebrates
High-throughput approaches evaluating the transcriptomic
profile of both host and pathogen have become very important for
the discovery of new sRNAs and their effect during the infection
process (Saliba et al., 2017). The molecular behavior of pathogens
is different when cultivated at in vitro conditions than when
they are interacting with the host (Westermann et al., 2012).
This method is known as “dual RNA-seq” (reviewed in Saliba
et al., 2017; Westermann et al., 2017) and was used in bacterial
infections models first by Westermann et al. (2016), studying the
interaction between Salmonella enterica serovar Typhimurium
and HeLa cells. Authors identified a highly expressed sRNA, PinT,
which interacts with mRNAs by Hfq mediation. Not only this
approach allows to characterize the bacterial sRNA profile, but
also the study revealed a correlation of this sRNA with effects over
the host immune pathways.

Non-human Models
A great fraction of the development on the field has been
driven by economic interest, in order to understand the life
cycle of causative agents for bacterial diseases in aquaculture
farming industry. These settings concentrate in a short spatial
range a significant number of specimens that could become
up to 1,000 times higher than natural populations (Sundberg
et al., 2016). Intensive fish farming has led to use of antibiotics,
which together with the abnormal number of individuals,
turn these exploitations into a hot-spot for the selection and
spread of antibiotic resistance in the environment (McPhearson
et al., 1991). Furthermore, the selection pressure within the
microbiome due to interference and competition, directs toward
quick changes in pathogen virulence that could be fixed in
the genome (Sundberg et al., 2016). A necessary first step for
an accurate understanding of the role of sRNAs at infection
processes, is to survey the core repertoire of non-coding RNAs, as
reported in a recent study (Segovia et al., 2018). Authors analyzed
eleven P. salmonis genomes, having described more than 2,000
sRNAs (referred as non-coding RNAs, ncRNAs), from which
more than 1,300 formed the ncRNA core group. Analyses of these
RNAs have shown that many of the targeted genes in the bacterial
genome show similarities to those described in section “sRNAs

Regulate Key Processes for the Establishment of Infection.” of
the current review. Among these similarities: manganese sensing
response, membrane transport, components of the Type I and
II Secretion Systems, expression of enzymes necessary for tissue
colonization and acid resistance, or regulation of carbon flux.

Besides aquaculture, research in other vertebrates has been
driven by biomedical interest in species that could serve as an
alternative experimental model for human infectious diseases. In
comparison with insect species, murine models show additional
advantages, such as the presence of adaptive immunity or a
wide range of available genetic resources. A murine macrophage
line has been used to evaluate the interaction with Brucella
abortus, a pathogen causing infectious diseases in cattle but also
in humans (Golding et al., 2001; Budnick et al., 2018). Several
sRNAs have been identified in Brucella spp., some of which have
been associated with the pathogen virulence (Dong et al., 2018).
When the sRNA BASI74 was overexpressed, the virulence of
Brucella was negatively affected, while deletion had no effect. This
is potentially explained by the presence of different copies of the
sRNA in the bacterial genome, due to an important regulatory
role. It means that while overexpression produces an excessive
regulatory response, loss of an sRNA is compensated by different
versions or alternative sRNAs. From an evolutionary perspective,
it will help the pathogen to maintain regulation of important
genes even when some sRNAs are lost from the genome.

Human as a Host
Recognition of bacterial infective agents relies on the innate
immunity and a series of germline-encoded pattern-recognition
receptors (PRRs) (Sellge and Kufer, 2015; González Plaza, 2018).
Among others, TLRs strongly trigger systemic inflammation
via macrophages and neutrophils (Moresco et al., 2011). These
receptors can sense as well RNA molecules (Kawai and Akira,
2009), especially through TLR3, TLR7, and TLR8 (Hornung et al.,
2008; Moresco et al., 2011). These receptors recognize molecules
that are essential for the proper biological function of the bacteria,
and thus, will be subjected to less evolutionary modifications than
others (Akira et al., 2006).

But not in all cases bacterial RNA unleash an inflammatory
response. Milillo et al. (2019) have reported down-modulation of
MHC-II surface proteins in human monocytes/macrophages in
the presence of Brucella abortus RNA. Because RNA is a molecule
with a short lifespan and is subject to rapid degradation, it is
present in alive bacteria rather than in dead cells. Authors argue
that their findings suggest how B. abortus may thrive undetected
within macrophages, due to the impairment of the MHC-
II antigen presentation by inhibition of the gene expression.
Nevertheless, the effect was also observed with partially degraded
RNA. This molecular evasion could happen as well for many
other pathogens, that could multiply and cause a serious disease
requiring clinical treatment with antimicrobials. However, due to
the current antibiotic crisis, the treatment of bacterial infections
is becoming increasingly difficult due to the appearance of
resistance (Bogaert et al., 2004). Given the role of sRNAs as
regulatory molecules, it is clear that understanding their role
during infection could lead to improved therapies to control the
expression of resistance genes (Dersch et al., 2017). Focusing
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on sRNAs as therapeutic targets could be done in two main
ways, targeting the mechanisms that regulate the virulence
and infection related biological processes in the pathogen, or
targeting the expression and regulation of antibiotic resistance
genes. The latter group of genes are commonly shared among
clinical pathogens in matter of years or months (O’Neill, 2014).
Understanding interaction of one gene with its sRNA or set
of sRNAs would likely be a universal therapy for different
bacteria harboring the same resistance factor and become a
promising research area for new treatments where bacteria will
not presumably develop resistance (Ghaly and Gillings, 2018).

Respiratory diseases
One of the biggest issues during the onset of viral respiratory tract
infections, is the frequent co-occurrence of bacterial infections
that can dramatically aggravate the symptoms and the number
of deaths (Mallia and Johnston, 2007). One of the explanations
is that viral infections weaken host defense mechanisms, such as
the clearance of bacteria by ciliated epithelial cells. Viral induced
impairment of these processes create a favorable environment
for the development of side bacterial infections by opportunistic
pathogens (Hendaus et al., 2015).

Among those, Staphylococcus aureus can colonize different
body surfaces and cause serious respiratory disorders (Lowy,
1998). The pool of more than 600 regulatory sRNAs present in
this bacterium remains largely uncharacterized (Tomasini et al.,
2014; Sassi et al., 2015; Carroll et al., 2016), but also provides an
idea of the potential for adaptation to changing environments
and success in the establishment of infection (Bayer et al., 1996).
The global regulator sarA locus encodes a protein that regulate
directly and indirectly genes involved in virulence (Dunman
et al., 2001). This locus has three promoters (P2, P3, and P1
according to their genomic order) in a region of 850 bp upstream
of the sarA coding sequence, and a 196 nucleotide sRNA
(teg49) located within two of the promoters (Kim et al., 2014).
Three overlapping transcripts including sarA ORF are produced.
Mutagenesis assays in several regulatory sRNAs and the three
promoters, indicated that teg49 is probably generated at the
promoter P3 mRNA, likely through cleavage (Manna et al., 2018).
Deletion of the P3 promoter resulted in the disappearance of
both sarA P3 mRNA and teg49, besides lower SarA protein levels.
Additional transcriptomics assays in the teg49 mutant, disclosed
a group of genes which were up- and down-regulated in the
absence of this sRNA. Those genes were involved in regulation,
metabolism, and virulence. Teg41 is another sRNA involved in
virulence regulation in S. aureus. It has been further characterized
by Zapf et al. (2019; Table 2). This sRNA of approximately 200
nucleotides is located downstream of the transcript region of the
potent phenol soluble modulin (PSMs) toxin type α. Authors
propose that this sRNA positively regulates the toxin production
by mRNA stabilization. Among different assays, they showed
how the deletion of the 3′ sRNA region induced decreased
levels of the αPSM transcripts, while higher levels of the toxin
transcript were reported when Teg41 was overexpressed. The
metabolic adaptation to nutritional starvation is also present in
this pathogen, with the participation of sRNAs for the regulation
of metabolism, as shown for RsaE (Bohn et al., 2010). A recent

study on this regulator compared the transcriptomic response of
two RsaE mutants, one by deletion, and the other by addition
of an inducible promoter, with a wild type strain (Rochat et al.,
2018). This sRNA has an effect over genes encoding enzymes of
the TCA cycle, but also in the regulation of arginine catabolism,
which was newly reported in this study.

Streptococcus pneumoniae is a Gram-positive bacterium
that causes a wide range of complications, including sepsis,
meningitis, or pneumonia. It has been suggested that it was
a magnifying cause of the high death rates during the 1918
influenza pandemic (Mallia and Johnston, 2007). Sinha et al.
(2018) studied through a massive RNA sequencing S. pneumoniae
strain D39W grown in laboratory conditions (Table 2). The first
list yielded a total of 57 sRNAs, and authors raised the question if
those were primarily expressed, or further cleaved by RNase to get
to its final form. In that regard, differential RNAseq was carried
out, and authors report a group of 44 novel sRNA candidates.
These regulatory RNAs fall in three categories: antisense RNAs,
short-antisense RNAs, or long-antisense RNAs. Some of these
regulatory molecules have been proposed to regulate metabolic
responses of the pathogen.

Tuberculosis is one of the most studied infectious diseases
due to its incidence. It is estimated to affect 23% of the
world population in its latent stage (Lyu L et al., 2019).
Although previously the disease was projected to be eradicated
by 2010, it has been continuously re-emerging due to a complex
combination of factors (Cohen, 2000). The role of sRNAs
has been long established, and there is a growing body of
knowledge on the topic. However, as reported by Mai et al.
(2019), there are considerable gaps of knowledge regarding
small regulatory RNAs. The field has discovered until now a
wide set of these molecules, but bigger efforts to elucidate
their molecular mechanisms of action are needed. The sRNA
6C (six cytosine residues) was hypothesized, by the authors
of this study, to play an important role in regulation of cell
division of Mycobacterium tuberculosis (M. tb) (Mai et al.,
2019). In their experiments, the authors used a vector to
overexpress 6C sRNA of M. tb, and transformed Mycobacterium
smegmatis. Analyses of expression through RNAseq indicate that
the potential targets of 6C could be under negative regulation,
through base pairing to the mRNA targets at the C-rich
loops. While in Gram-negative bacteria the interaction must be
mediated by Hfq, in high GC Gram-positive bacteria has been
hypothesized the presence of putative chaperones, or as in this
study by direct binding mechanisms independent of chaperones
(Mai et al., 2019; Table 2).

Additional regulation of Mycobacterium tuberculosis by
sRNAs was provided in the study of Gerrick et al. (2018),
who tested the landscape of small regulatory RNAs in the
presence of five stresses relevant for the pathogen, having
found 189 sRNAs (Table 2). The direct interaction of one
of those sRNAs, MrsI, with the target mRNA is potentially
mediated by non-canonical chaperones, given that there
are no described HfQ or ProQ homologs in mycobacteria.
MrsI is expressed in conditions of iron starvation and
membrane stress, when the host immune system triggers
an inflammatory response including an iron withholding
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TABLE 2 | Relevant sRNAs of several infectious diseases having humans as a host.

Pathogen Infection sRNA Mechanism of action Effect on bacterial physiology References

Escherichia coli
O157:H7

Enterohemorrhagic DicF Hfq mediated. Liberates a
secondary structure blocking the
SD site of pchA mRNA.

Promotion of virulence: indirect enhancement of
the expression of the LEE pathogenicity island
during low oxygen conditions.

Melson and
Kendall, 2019

Escherichia coli
O157:H7

Enterohemorrhagic Esr41 Hfq mediated. Forms a ternary
complex with ler mRNA to repress
ler expression.

Regulation of ler decreases adhesion ability of
the pathogen, activation of fliA transcription has
a positive regulatory effect over flagellum genes,
and ultimately mobility.

Sudo et al.,
2018

Listeria
monocytogenes

Listeriosis LhrC Binding upstream from RBS,
decrease mRNA stability.

Regulation of heme use and detoxification. Ross et al.,
2019

Listeria
monocytogenes

Listeriosis Ril47 Binding to SD, decrease mRNA
stability.

Regulation of ilvA expression prevents
isoleucine synthesis.

Marinho et al.,
2019

Mycobacterium
tuberculosis

Tuberculosis 6C Negative regulation of targets by
chaperone-independent binding to
mRNAs.

Some targets include DNA replication or protein
secretion.

Mai et al., 2019

Mycobacterium
tuberculosis

Tuberculosis 189 sRNAs;
MrsI

Target binding by non-canonical
chaperones.

The studied sRNA is expressed during iron
starvation and membrane stress.

Gerrick et al.,
2018

Mycobacterium
tuberculosis

Tuberculosis ASdes N/A sRNA detected in plasma of patients,
diagnostic biomarker potential.

Fu et al., 2018

Salmonella
enterica serovar
Typhimurium

Typhoid fever STnc540 Hfq independent, mediation by
ProQ.

Represses the expression of a
magnesium-translocating P-type ATPase.

Westermann
et al., 2019

Staphylococcus
aureus

Opportunistic Teg41 Suggested stabilization of the
mRNA.

Positive regulation of PSM toxins. Zapf et al.,
2019

Staphylococcus
aureus

Opportunistic Teg49 Undetermined. Teg49 potentially regulates regulatory factors,
virulence, and metabolism. Together they affect
virulence at infected tissues.

Manna et al.,
2018

Streptococcus
pneumoniae

Sepsis, meningitis,
pneumonia

112 sRNAs N/A Regulation of different targets, some related to
pathogen metabolism.

Sinha et al.,
2018

LEE, locus of enterocyte effacement; RBS, ribosome binding site; PSM, phenol soluble modulin.

strategy, especially when entering macrophages. This response
seems to be activated when the bacteria starts to suffer
membrane and oxidative stresses, as the previous state of iron
deprivation. This anticipatory response is not exclusive for
M. tuberculosis, but according to authors has been observed
in different prokaryotic organisms and it may have been
developed as an evolutionary response to the inflammatory
response by the host.

There is interest in developing sRNAs as stable markers for
early diagnosis of the disease (Fu et al., 2018). Bacterial cell
cultures of tuberculosis were studied by Fu and collaborators
(Fu et al., 2018), who report four types of sRNAs (ASdes, ASpks,
AS1726, and AS1890) (Table 2). On a first phase of this study,
the authors tested whether these sRNAs would be detectable
in the supernatant of cultures of Mycobacterium bovis BCG.
Cultures of BCG were selected because the regulatory RNAs
display 100% identity in silico between both strains. Once it
was clear that the methodology was robust for identification
of sRNAs from supernatant, authors tested the plasma of
infected patients (Mycobacterium tuberculosis) in comparison
with healthy controls. Among the four above mentioned
regulatory RNAs, only ASdes was traced to the plasma of
most tuberculosis patients, with statistical significance. These
results are promising for the development of quick diagnostic
assays based on the detection in blood or saliva of sRNAs
derived from pathogens.

Gastrointestinal pathogenic diseases
When enterohemorrhagic Escherichia coli O157:H7 (EHEC), a
food-borne pathogen, enters the digestive tract, it must adapt
from oxygen rich environments to an increasingly oxygen-
limiting environment toward the colon, where pathogens sense
the differential gas concentrations and start to express their
virulence factors (Melson and Kendall, 2019). As mentioned
above, this is a key behavior of bacterial strains in order to set
the basis of the infection onset, which seems to have evolved to
start from a very low number of input cells (Van Elsas et al.,
2011). DicF is a sRNA dependent on Hfq directly targeting the
SD sequence of the transcriptional activator pchA, to promote its
expression under low oxygen conditions (Melson and Kendall,
2019; Table 2). Ultimately, DicF has an effect over virulence by
indirect increase of the expression of the locus of enterocyte
effacement (LEE) pathogenicity island, but only when Hfq is
present and oxygen concentration is very low (Figure 8). This
means that during the disease establishment and progression, the
pathogen has a mechanism to sense when it has reached the colon
so that the virulence factors should be expressed at the right time.
One of the most relevant and novel aspects of the previous study,
is the reporting on a sRNA that has a positive expression effect
by liberating a transcriptional activator virulence gene from its
own mRNA repressive activities (Figure 8). Another sRNA was
recently shown to be involved in regulation of LEE and flagellar
genes (Sudo et al., 2018). Esr41 requires Hfq mediation, and
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has regulatory functions over cell motility (Sudo et al., 2014) by
induced activation of fliA, which encodes the transcription factor
σ28 that regulates the expression of the class 3 flagellin subunit
genes (Aldridge et al., 2006). Esr41 forms a ternary complex with
the ler mRNA and Hfq for repression of the gene (Figure 9),
leading to consequent repression of the LEE and a decrease in
the adhesion ability of the pathogen (Sudo et al., 2018).

Listeria monocytogenes is the causative agent of listeriosis
(Ágoston et al., 2009), characterized by different episodes of
fever, diarrhea, or meningoencephalitis among other symptoms
(Swaminathan and Gerner-Smidt, 2007). There are mainly two
forms of this disease, the non-invasive gastrointestinal febrile
manifestation, and the invasive life-threatening form causing for
instance meningoencephalitis (Allerberger and Wagner, 2010).
In this organism, the seven sRNAs comprising the LhrC family
act by regulating the target tcsA that encodes a virulence protein,
CD4+ T cell-stimulating antigen (Sanderson et al., 1995). The
regulatory mechanism of LhrCs was recently elucidated, and
follow a non-canonical pathway, where sRNAs bind far upstream
of the RBS, impairing the stability of the mRNA through the
participation of an unknown RNase decreasing the messenger
half-life (Ross et al., 2019; Table 2). During the nutritional
starvation confronted by the pathogen in the host, the bacteria
can make use of the available iron at the host iron-containing
proteins, as the heme group in hemoglobin (Cassat and Skaar,
2013). LhrC1-5, belonging to the LhrC family of sRNAs, has been
related to the regulation of heme usage in this pathogen. dos
Santos et al. (2018) have shown the involvement of these five
sRNAs in the regulation of three genes that control heme toxicity
(tcsA, oppA, and lapB). Besides, authors found indications of
regulation through these sRNAs of three genes related with the
uptake and use of heme. Host induced starvation of amino
acids is one of the strategies of nutritional immunity used by
mammalian hosts to limit the infection (Zhang and Rubin, 2013).
In L. monocytogenes Ril47 is an sRNA under control of the
stress activated sigma factor sigma B (σB), which is involved
in a plethora of environmental stresses affecting the pathogen
(Dorey et al., 2019). Ril47 binds to the SD sequence of the ilvA
mRNA decreasing its stability, as suggested by a recent study
(Marinho et al., 2019). The consequence is a negative regulation
of isoleucine biosynthesis by prevention of threonine deaminase
synthesis (which is encoded by ilvA).

Bacteria belonging to the genus Salmonella cause mainly two
affections: diarrheal disease and typhoid fever. The latter has a
mortality rate of 10−20% if it is not treated with antibiotics, being
its causative agent is Salmonella enterica serovar Typhimurium
(Fàbrega and Vila, 2013). An example of influence of sRNAs over
the nutritional adaptation of this pathogen was provided in the
study of Kröger et al. (2018), where they report two novel sRNAs
involved in positive (STnc1740) and negative (RssR) modulation
of the growth of S. enterica serovar Typhimurium, through
utilization of myo-inositol as carbon source. While the role of
Hfq has been widely studied in this pathogen, Westermann et al.
(2019) evaluated the contribution of ProQ as alternative RBP.
Authors followed a previous study where ProQ was reported to
display novel posttranscriptional regulatory activities (Smirnov
et al., 2016). The study from Westermann sought to shed light

over the role of ProQ in virulence by altering the phenotype
(deletion of the RBP) and used a dual RNA-seq approach. The
invasion capabilities of the single mutant were decreased (2-fold
vs. WT), but no dramatic differences were found when the RBP
was overexpressed. While these phenotypes were observed when
infecting HeLa cells, very mild virulence was reported during
infection of human phagocytic cells. Further evaluation of the
dual RNA-seq results (HeLa cells as host) revealed alteration in
metabolism of the host and immune signaling pathways. The
mutant pathogen had a range of transcriptomic alterations over
genes involved in chemotaxis and motility (downregulation), or
in ribosomal and invasion genes (upregulation). In their analysis
authors identified STnc540 as an sRNA independent of Hfq
and regulated by ProQ. The interplay between sRNA and RBP
was further shown to affect the expression of a magnesium-
translocating P-type ATPase.

Antibiotic resistance
Antibiotic resistance is a serious concern for society that
threatens health systems worldwide (O’Neill, 2014). One the
biggest problems is the continuous appearance of novel
mechanisms of resistance often fuelled by the natural presence
of those mechanisms in the environment, quick global spread
of antibiotic resistance genes (ARGs), uptake by pathogenic
bacteria that can become resistant to several antibiotics, and
lastly the lack of alternatives for treatment of infections caused
by multidrug resistant bacteria (MDR) (O’Neill, 2014). The
emergence of novel antibiotic resistance genes has dramatic
consequences when they reach the clinical practice as they will
be irreversibly fixed (Böhm et al., 2020). This brings to memory
ideas of bacterial caused plagues in the pre-antibiotic era, when
there were no means of controlling pathogens. Resistance to
antimicrobials is additionally shaped by environmental stresses
(in many cases of anthropogenic origin) faced by bacteria (Poole,
2012), but also interestingly coincide with those highlighted in
section “sRNAs Regulate Key Processes for the Establishment of
Infection.”

Genes conferring resistance to antibiotics are essentially
subjected to genetic regulation, and thus, their expression
can be as well tuned by sRNAs (Lalaouna et al., 2014).
This fact makes sRNAs a potentially invaluable tool to treat
emerging infections mediated by antibiotic resistant bacteria
(ARBs). An increasing number of studies point toward that
direction, and have been excellently reviewed by Lalaouna
et al. (2014), Dersch et al. (2017), Felden and Cattoira (2018).
The antibiotic susceptibility of multidrug-resistant (MDR)
Pseudomonas aeruginosa was dramatically altered when AS1974
sRNA was overexpressed (Law et al., 2019). Authors of the
study carried out a first screening on the sRNAs repertoire on
three MDR clinical isolates, having found three small-regulatory
RNAs that were significantly downregulated. Targets of AS1974
are involved mostly in pathways related with drug-resistance,
but also regulation over oxidative stress, pilus biogenesis, and
iron acquisition.

Escherichia coli can activate a stress-response mechanism
mediated by RpoS (Poole, 2012). However, this mechanism is
under regulation of a non-coding RNA, rprA, which induced
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FIGURE 8 | Type III secretion system in EHEC. The pchA transcript has autoinhibitory activity, as it forms a secondary structure covering the SD site. When
concentration of oxygen is low, DicF by mediation of Hfq frees the SD of pchA, allowing translation. PchA activates transcription of LEE genes involved in the
synthesis of components of the T3SS. CyM, Cytoplasmic membrane; HM, Host cell membrane; IL, Gastrointestinal lumen; OuM, Outer membrane; PG,
peptidoglycan; T3SS, Type III secretion system. Black thick arrows indicate flow of a biological process, e.g., protein translation. Green thick arrows indicate
activation. References: Deng et al., 2004; Pallen et al., 2005; Izoré et al., 2011; Ruano-Gallego et al., 2015; Furniss and Clements, 2018; Pena et al., 2019.

ampicillin resistance when overexpressed (Sahni et al., 2019).
The mRNA levels of this sRNA had been previously shown to
increase in cells when treated with sub-inhibitory concentrations
of ampicillin (Gutierrez et al., 2013).

Shigella strains are gaining attention due to the accumulation
of resistances toward antibiotics (Puzari et al., 2018), for instance
using efflux pumps to extrude fluoroquinolones from their
intracellular space (Roy et al., 2020). Gan and Tan (2019)
evaluated whether the sRNA SdsR, a transcriptomic regulator of
the efflux pump tolC in E. coli and Salmonella (Choi et al., 2018),
plays as well a regulatory role in Shigella sonnei or not. Although
in previous reports SdsR lowers the levels of TolC mRNA and
increases its sensitivity to fluoroquinolones, in their study the
authors found that at decreasing levels of TolC mRNA the strain
was less sensitive to antibiotics, such as norfloxacin.

DISCUSSION

This review focuses on the latest advances on small non-
coding regulatory RNAs involved in bacterial infections, a
field that has grown substantially in the last 2 years since
the appearance of a previous review article (González Plaza,
2018). The importance of studying infectious diseases lies within
the fact that global warming can lead to changing patterns
in the distribution of bacteria causing diseases, or in the

vectors harboring those microorganisms (Cohen, 2000; Epstein,
2001; Rodó et al., 2002; Khasnis and Nettleman, 2005). But
not only from an anthropogenic perspective, these changing
patterns in the distribution of infectious diseases can even
cause the extinction of whole species (Harvell et al., 2002;
Pounds et al., 2006).

Transference of information is a key process for quick
adaptation to dynamic environments or species interactions,
being one clear example the host-pathogen relationship.
Infectious diseases have been shaped by co-evolution between
pathogen and animal or plant hosts, both competing for the
same metabolic resources. Due to the nature of RNA as a
molecule with a short life-span, its role for modulation of
environmental signals is of paramount importance for success
of infection. This process represents a challenge for the survival
of the bacteria, because the host sets a wide range of measures
to limit the growth of the microbial strains, eliminate them,
and recover homeostasis. The overall role of sRNAs is to
fine-tune the bacterial response to different stresses, with an
impressive amount of mechanisms of induction/repression of
transcription. Not only they affect specific genes involved at
synthesis/degradation pathways, but in many cases, they regulate
the activity of transcription factors and regulators. Out of several
studies it is clear that sRNAs can have multiple targets, and
even achieve regulatory redundancy with other non-coding
regulatory RNAs.
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FIGURE 9 | EHEC flagellar system. The fliA encodes for a transcription factor controlling expression of class 3 genes. The sRNA Esr41 regulates positively via Hfq
mediation fliA. The flagellar system is regulated by sRNAs at a key point. Esr41 has as well repressing activities over LEE1 operon, when it forms a ternary complex
with Hfq and ler mRNA. This inhibition compromises coding of Ler protein, which is a transcriptional activator of different genes at the LEE. Esr41 has as well
inhibitory activities over pch that facilitate LEE1 gene expression through promoter binding. CyM, Cytoplasmic membrane; HM, Host cell membrane; IL,
Gastrointestinal lumen; OuM, Outer membrane; PG, peptidoglycan; T3SS, Type III secretion system. Black thick arrows indicate flow of a biological process, e.g.,
protein translation. Green thick arrows indicate activation. Red thick arrows with flat cap indicate inhibition. References: Kalir et al., 2001; Chevance et al., 2006; Frye
et al., 2006; Liu and Ochman, 2007; Chevance and Hughes, 2008; Sudo et al., 2014, 2018; Bhatt et al., 2016 and KEGG
(https://www.genome.jp/kegg/pathway/eco/eco02040.html).

Innate immune system response can limit nutrient (e.g.
iron and manganese) availability to induce death of the
pathogen, and a series of sRNAs help bacteria to quickly
adapt to immune system challenges, such as the iron or
nutrient withholding strategy, where the host limits the
available resources in order to limit the survival chances
of the invading bacteria. Bacteria encounter some other
challenges in the host, for instance acid pH in the stomach
of animals, or inflammation leading to oxidative stress. Many
of these microbial responsive strategies seem to be conserved
from environmental bacteria to pathogens (e.g., involvement
of sRNAs in oxidative stress response due to salinity or
inflammation), although it could have appeared owing to
convergent evolution since sRNAs are very flexible molecules in
their activities.

As presented in this review, a very useful approach, is to study
both mRNA and sRNAs in the same samples, because it can lead
to elucidate regulatory networks.

A number of the studies reviewed here are focused on
surveying the sRNome repertoire, or also on the regulation
of targets. There is a need to carry on with these studies,
since this basic research is fundamental for being able to
understand e.g., which genes could be directly modulated by

the pathogen. This brings to memory the Spanish Presidential
Elections in 2019, where as always, political parties kept
promising the rise in research funds to 2% of GDP. Although
every Spanish Scientist understands the magnitude of this false
assertion, it was concerning how politicians have made theirs
the mantra of “Applied Science” as the sole generator of
progress and development. For instance, Pfizer was reported
to have abandoned recently their program of applied research
in neurodegenerative diseases (Trullàs, 2019), which should be
an example of “how could we apply what we do not fully
understand?”. This seems to be a trend in every scientific
system around the world (Lindsley, 2016), where the application
paragraph is requested at every grant proposal, and does not
seem possible to carry out a research project where the main
aim is to obtain a “general understanding of nature and its laws”
(Bush, 1945). It becomes clear why these type of basic studies
are needed, because control of infections through drugs that
can target pathogen sRNA regulation are not possible without
a deep understanding of their structure, modes of regulation,
behavior patterns during infection, or what genes alter their
expression during infection. Small non-coding regulatory RNAs
are a promising therapeutic target in the fight against multidrug-
resistant bacteria, and since these molecules are less prone to
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changes, we may have a great opportunity to tackle antibiotic
resistance through gene-based therapies.

Having said that, what is still largely missing in the field are
more studies focusing on the inter-kingdom exchange of sRNAs,
either as counterfeit to impair the activity of the bacteria, or as
a pathogenic mechanism to hijack the metabolic machinery of
the host. Many protein effectors, such as those translocated by
the T3SS can modify the response from the host. In the case of
sRNAs, membrane vesicles (MVs) can carry the genetic material
to their targets protecting it from degradation (Toyofuku et al.,
2019), and ultimately subvert the molecular behavior of the host
(Ghosal, 2017; González Plaza, 2018).

Lastly, the wide regulatory effects of sRNAs over the
transcriptome must be taken in account due to their potential
to impact genetic studies where a loss-of-function phenotype
is considered as suggested by Popitsch et al. (2017). Deletion
may affect expression of unannotated sRNAs and have undesired
effects over the phenotype because regulation of a number of
targets could be lost. It could as well potentially affect the
expression of targets if some coding genetic regions carrying
sRNAs are overexpressed. These possibilities invite to consider
carefully the presence of small regulatory RNAs in genetic studies,
and maybe even revisit some of the studies to date.
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