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1  | INTRODUC TION

SARS-CoV-2, the virus responsible for the COVID-19 pandemic, is a 
new member of the subgenus Sarbecovirus, in the Orthocoronavirinae 
subfamily, but is distinct from MERS-CoV and SARS-CoV.1 The virus 
has been isolated from the lower respiratory tracts of patients with 

pneumonia, sequenced and visualized by electron microscopy.1 
Coronaviruses are single-stranded RNA viruses, sharing properties 
with other single-stranded RNA viruses such as hepatitis C virus 
(HCV), West Nile virus, Marburg virus, HIV virus, Ebola virus, den-
gue virus, and rhinoviruses. In particular, coronaviruses and HCV are 
both positive-sense single-stranded RNA viruses,2,3 and thus have 
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Abstract
SARS-CoV-2, a member of the coronavirus family, has caused a global public health 
emergency. Based on our analysis of hepatitis C virus and coronavirus replication, 
and the molecular structures and activities of viral inhibitors, we previously reasoned 
that the FDA-approved hepatitis C drug EPCLUSA (Sofosbuvir/Velpatasvir) should 
inhibit coronaviruses, including SARS-CoV-2. Here, using model polymerase exten-
sion experiments, we demonstrate that the active triphosphate form of Sofosbuvir is 
incorporated by low-fidelity polymerases and SARS-CoV RNA-dependent RNA poly-
merase (RdRp), and blocks further incorporation by these polymerases; the active 
triphosphate form of Sofosbuvir is not incorporated by a host-like high-fidelity DNA 
polymerase. Using the same molecular insight, we selected 3’-fluoro-3’-deoxythymi-
dine triphosphate and 3’-azido-3’-deoxythymidine triphosphate, which are the active 
forms of two other anti-viral agents, Alovudine and AZT (an FDA-approved HIV/AIDS 
drug) for evaluation as inhibitors of SARS-CoV RdRp. We demonstrate the ability of 
two of these HIV reverse transcriptase inhibitors to be incorporated by SARS-CoV 
RdRp where they also terminate further polymerase extension. Given the 98% amino 
acid similarity of the SARS-CoV and SARS-CoV-2 RdRps, we expect these nucleotide 
analogues would also inhibit the SARS-CoV-2 polymerase. These results offer guid-
ance to further modify these nucleotide analogues to generate more potent broad-
spectrum anti-coronavirus agents.
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a similar replication mechanism requiring an RNA-dependent RNA 
polymerase (RdRp).

The coronavirus life cycle has been described.2 Briefly, the virus 
enters the cell by endocytosis, is uncoated, and ORF1a and ORF1b 
of the positive-stranded RNA are translated to produce nonstruc-
tural protein precursors, including a cysteine protease and a ser-
ine protease; these further cleave the precursors to form mature, 
functional helicase, and RdRp. A replication-transcription complex 
is then formed, which is responsible for making more copies of the 
RNA genome via a negative-sense RNA intermediate, as well as the 
structural and other proteins encoded by the viral genome. The viral 
RNA is packaged into viral coats in the endoplasmic reticulum-Golgi 
intermediate complex, after which exocytosis results in the release 
of viral particles for subsequent infectious cycles. Potential inhib-
itors have been designed to target nearly every stage of this pro-
cess.2 However, despite decades of research, no effective drug is 
currently approved to treat serious coronavirus infections such as 
SARS, MERS, and COVID-19.

One of the most important druggable targets for coronaviruses 
is the RdRp. This polymerase is highly conserved at the protein level 
among different positive-sense RNA viruses, to which coronaviruses 
and HCV belong, and shares common structural features in these vi-
ruses.4 Like RdRps in other viruses, the coronavirus enzyme is highly 
error-prone,5 which might increase its ability to accept modified 
nucleotide analogues as substrates. Nucleotide and nucleoside an-
alogues that inhibit polymerases are an important group of anti-viral 
agents.6-9

Based on our analysis of hepatitis C virus and coronavirus repli-
cation, and the molecular structures and activities of viral inhibitors, 
we previously reasoned that the FDA-approved hepatitis C drug 
EPCLUSA (Sofosbuvir/Velpatasvir) should inhibit coronaviruses, 
including SARS-CoV-2.10 Sofosbuvir is a pyrimidine nucleotide an-
alogue prodrug with a hydrophobic masked phosphate group en-
abling it to enter infected eukaryotic cells, and then be converted 
into its active triphosphate form by cellular enzymes (Fig. 1). In this 
activated form, it inhibits the HCV RdRp NS5B.11,12 The activated 
drug (2’-F,Me-UTP) binds in the active site of the RdRp, where it is 
incorporated into RNA, and due to fluoro and methyl modifications 
at the 2’ position, inhibits further RNA chain extension, thereby 

halting RNA replication and stopping viral growth. It acts as an RNA 
polymerase inhibitor by competing with natural ribonucleotides. 
Velpatasvir inhibits NS5A, a key protein required for HCV replica-
tion. NS5A enhances the function of RNA polymerase NS5B during 
viral RNA synthesis.13,14

There are many other RNA polymerase inhibitors that have 
been evaluated as antiviral drugs. A related purine nucleotide 
prodrug, Remdesivir (Fig. 2B), was developed by Gilead to treat 
Ebola virus infections, though not successfully, and is currently in 
clinical trials for treating COVID-19.15,16 In contrast to Sofosbuvir 
(Fig. 2A), both the 2’- and 3’-OH groups in Remdesivir (Fig. 2B) are 
unmodified, but a cyano group at the 1’ position serves to inhibit 
the RdRp in the active triphosphate form. In addition to the use of 
hydrophobic groups to mask the phosphate in the Protide-based 
prodrug strategy,17 as with Sofosbuvir and Remdesivir, there are 
other classes of nucleoside prodrugs including those based on 
ester derivatives of the ribose hydroxyl groups to enhance cellu-
lar delivery.18,19

The replication cycle of HCV3 is very similar to that of the coro-
naviruses.2 Analyzing the structure of the active triphosphate form 
of Sofosbuvir (Fig. 2A) compared to that of Remdesivir (Fig. 2B), both 
of which have already been shown to inhibit the replication of spe-
cific RNA viruses (Sofosbuvir for HCV, Remdesivir for SARS-CoV-2), 
we noted in particular that the 2’-modifications in Sofosbuvir (a flu-
oro and a methyl group) are substantially smaller than the 1’-cyano 
group and the 2’-OH group in Remdesivir. The bulky cyano group in 
close proximity to the 2’-OH may lead to steric hindrance that will 
impact the polymerase reaction termination efficiency of the acti-
vated form of Remdesivir. Interestingly, it was recently reported that, 
using the MERS-CoV polymerase, the triphosphate of Remdesivir 
was preferentially incorporated relative to ATP in solution assays.20 
Nevertheless, it has been shown that the active triphosphate form 
of Remdesivir does not cause immediate polymerase reaction termi-
nation and actually leads to delayed polymerase termination in Ebola 
virus and respiratory syncytial virus, likely due to its 1’-cyano group 
and the free 2’-OH and 3’-OH groups.20,21 Compared to the active 
form of Sofosbuvir (2’-fluoro-2’-methyl-UTP), two other nucleotide 
inhibitors with related structures were reviewed as follows: 2’-flu-
oro-UTP is incorporated by polymerase, but RNA synthesis may 
continue past the incorporated nucleotide analogue;22 2’-C-methyl-
UTP has been shown to terminate the reaction catalyzed by HCV 
RdRp,22 but proofreading mechanisms can revert this inhibition in 
mitochondrial DNA-dependent RNA polymerases.23 Additionally, 
HCV develops resistance to 2’-C-methyl-UTP due to mutations of 
the RdRp.24 A computational study published in 2017 considered the 
ability of various anti-HCV drugs to dock in the active site of SARS 
and MERS coronavirus RdRps as potential inhibitors.25 Recently, 
Elfiky used a computational approach to predict that Sofosbuvir, 
IDX-184, Ribavirin, and Remdesivir might be potent drugs against 
COVID-19.26

Thus, based on our analysis of the biological pathways of hepa-
titis C and coronaviruses, the molecular structures and activities of 
viral inhibitors, model polymerase and SARS-CoV RdRp extension 

F I G U R E  1   Conversion of Sofosbuvir to active triphosphate 
(2’-F,Me-UTP) in vivo to inhibit viral polymerases. 
Adapted from 11

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3139
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3139
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7368
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experiments described below, and the efficacy of Sofosbuvir in in-
hibiting the HCV RdRp, we expect that Sofosbuvir or its modified 
forms should also inhibit the SARS-CoV-2 polymerase.10

The active triphosphate form of Sofosbuvir (2’-F,Me-UTP) was 
shown to be incorporated by HCV RdRp and prevent any further 
incorporation by this polymerase.22,27 Other viral polymerases have 
also been shown to incorporate active forms of various anti-viral pro-
drugs to inhibit replication.28 Since, at the time of the preparation 
of this manuscript, we did not have access to the RdRp from SARS-
CoV-2, we first selected two groups of polymerases to test the ter-
mination efficiency of the active form of Sofosbuvir, one group with 
high-fidelity behavior with regard to incorporation of modified nucle-
otide analogues, which one would expect for host cell polymerases, 
the other group with low-fidelity mimicking viral polymerases, as 
well as the RdRp from SARS-CoV, the virus causing the 2003 and 
subsequent outbreaks of SARS. Our rationale is that the low-fidelity 
viral-like enzymes would incorporate 2’-F,Me-UTP and stop further 
replication, whereas the high-fidelity polymerases, typical of host 
cell polymerases, would not. Experimental proof for termination of 
the SARS-CoV polymerase reaction would provide further support 
for this rationale, indicating that Sofosbuvir or its modified forms will 
inhibit SARS-CoV-2.

2  | MATERIAL S AND METHODS

2.1 | Extension reactions with DNA polymerases

Oligonucleotides were purchased from Integrated DNA Technologies 
(IDT Inc.). The 20 µl extension reactions consisted of 3 µM DNA 
template and 5 µM DNA primer (sequences shown in Fig. 3), 10 µM 
2’-F,Me-UTP (Sierra Bioresearch), 1x Thermo Sequenase buffer 
or 1x ThermoPol buffer (for Therminator enzymes), and either 10 
U Thermo Sequenase (GE Healthcare), 4 U Therminator II or 10 U 
Therminator IX (New England Biolabs). The 1x Thermo Sequenase 
buffer consists of 26 mM Tris-HCl, pH 9.5, and 6.5 mM MgCl2. The 
1x ThermoPol buffer contains 20 mM Tris-HCl, pH 8.8, 10 mM 
(NH4)2SO4, 10 mM KCl, 2 mM MgSO4, and 0.1% Triton X-100. 
Incubations were performed in a thermal cycler using 15 cycles of 
30 sec each at 65°C, 45°C, and 65°C. Following desalting using an 
Oligo Clean & Concentrator (Zymo Research), the samples were sub-
jected to MALDI-TOF-MS (Bruker ultrafleXtreme) analysis, following 
a previously described method.29

2.2 | Extension reactions with SARS-CoV  
RNA-dependent RNA polymerase

Oligonucleotides were purchased from IDT, Inc. Following a pub-
lished strategy,41,42 the primer and template (sequences are shown 
in Fig. 4) were annealed by heating to 70°C for 10 min and cooling 
to room temperature in 1x reaction buffer. The RNA polymerase 
mixture consisting of 2 µM nsp12 and 6 µM each of cofactors nsp7 
and nsp8 was incubated for 15 min at room temperature in a 1:3:3 
ratio in 1x reaction buffer. Then 5 µl of the annealed template primer 
solution containing 2 µM template and 1.7 µM primer in 1x reac-
tion buffer was added to 10 µl of the RNA polymerase mixture and 
incubated for an additional 10 min at room temperature. Finally, 5 µl 
of a solution containing either 2 mM 2’-F,Me-UTP, 2 mM 3’-F-dTTP, 
2 mM 3’-N3-dTTP or 2 mM UTP in 1x reaction buffer was added, 
and incubation was carried out for 2 hr at 30°C. The final concentra-
tions of reagents in the 20 µl extension reactions were 1 µM nsp12, 
3 µM nsp7, 3 µM nsp8, 425 nM RNA primer, 500 nM RNA template, 

F I G U R E  2   Comparison of structures 
of prodrug viral inhibitors. Top: Prodrug 
(phosphoramidate) form; Bottom: Active 
triphosphate form

F I G U R E  3   Incorporation of 2’-F,Me-UTP as a terminator by 
two low-fidelity polymerases but not by a high-fidelity polymerase. 
The sequence of the primer and template used for these extension 
reactions is shown at the top of the figure. Polymerase extension 
reactions were performed by incubating the primer and template 
with 2’-F,Me-UTP and the appropriate reaction buffer for the 
specific enzyme, followed by detection of the reaction products 
by MALDI-TOF MS. The MS spectra of the extension products 
generated by Therminator II (T2) in (A) and Therminator IX (T9) in 
(B) indicate single-base incorporation and termination, whereas 
the MS spectrum for Thermo Sequenase (TS) in (C) indicates no 
incorporation, showing only a primer peak. The accuracy for m/z 
determination is ± 10 Da
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either 500 µM 2’-F,Me-UTP (Sierra Bioresearch), 500 µM 3’-F-dTTP 
(Amersham Life Sciences), or 500 µM 3’-N3-dTTP (Amersham Life 
Sciences), and 1x reaction buffer (10 mM Tris-HCl pH 8, 10 mM 
KCl, 2 mM MgCl2 and 1 mM β-mercaptoethanol). In the experiment 
with UTP shown in Fig. S2, the final concentrations were 500 nM 
nsp12, 1.5 µM nsp7, 1.5 µM nsp8, 425 nM RNA primer, 250 nM RNA 
template, and 500 µM UTP (Fisher) and the reaction time was 1 h 
at 30°C. Following desalting using an Oligo Clean & Concentrator 
(Zymo Research), the samples were subjected to MALDI-TOF-MS 
(Bruker ultrafleXtreme) analysis.

2.3 | Nomenclature of Targets and Ligands

Key protein targets and ligands in this article are hyperlinked 
to corresponding entries in http://www.guide topha rmaco logy.
org, the common portal for data from the IUPHAR/BPS Guide to 
PHARMACOLOGY (Harding et al., 2018),65 and are permanently 
archived in the Concise Guide to PHARMACOLOGY 2019/20 
(Alexander et al., 2019).66

3  | RESULTS AND DISCUSSION

We first carried out DNA polymerase extension reactions with the 
active form of Sofosbuvir (2’-F,Me-UTP) using Thermo Sequenase 
as an example of high fidelity, host-like polymerases, and two mu-
tated DNA polymerases which are known to be more promiscuous 
in their ability to incorporate modified nucleotides, Therminator II 
and Therminator IX, as examples of viral-like low-fidelity enzymes. 
A DNA template-primer complex, in which the next two available 
bases were A (Fig. 3), was incubated with either 2’-F,Me-UTP (struc-
ture shown in Fig. 2a), or dTTP as a positive control, in the appro-
priate polymerase buffer. If the 2’-F,Me-UTP is incorporated and 
inhibits further incorporation, a single-base primer extension prod-
uct will be produced. By contrast, dTTP incorporation will result in 
primer extension by 2 bases. After performing the reactions, we 
determined the molecular weight of the extension products using 
MALDI-TOF-mass spectrometry (MALDI-TOF MS).

As seen in Figure 3A and B, when the primer-template complex 
(sequences shown at top of Figure 3) and 2’-F,Me-UTP were incubated 
with the low-fidelity 9oN polymerase mutants,29-31 Therminator II 
(T2) and Therminator IX (T9), we observed single-product peaks 
with molecular weights of 5492 Da and 5488 Da, indicating single 
base extension in the polymerase reaction. Thus 2’-F,Me-UTP was 
able to be incorporated and block further nucleotide incorporation. 
In contrast, when the extension reactions were carried out with 
high-fidelity Thermo Sequenase DNA polymerase (TS),32 there was 
no incorporation, as evidenced by a single primer peak at 5172 Da 
(Figure 3C). This supports our rationale that Thermo Sequenase, 
a high-fidelity enzyme originally designed for accurate Sanger se-
quencing, will not incorporate 2’-F,Me-UTP, whereas a low-fidelity 
polymerase, such as T2 or T9, will incorporate 2’-F,Me-UTP and stop 

further nucleotide incorporation. When dTTP was used as a positive 
control with these three enzymes, incorporation continued past the 
first A in the template, resulting in a higher molecular weight peak.

These results demonstrate that lower fidelity polymerases will 
have a high likelihood of incorporating 2’-F,Me-UTP and inhibit viral 
RNA replication, whereas high-fidelity enzymes, more typical of the 
host DNA and RNA polymerases, will have a low likelihood of being 
inhibited by 2’-F,Me-UTP. Anti-viral drug design based on this prin-
ciple may lead to potent viral polymerase inhibitors with fewer side 
effects. To provide further proof that SARS-CoV-2 RdRp might be 
inhibited by 2’-F,Me-UTP, we next tested the ability of this mole-
cule to be incorporated into an RNA primer to terminate the reac-
tion catalyzed by the RdRp from SARS-CoV, using an RNA template. 
As shown in Figure 4A, the active triphosphate form of the drug 
Sofosbuvir not only was incorporated by the RdRp, but prevented 
further incorporation, behaving as a terminator in the polymerase 
reaction.

Based on our similar insight related to their molecular structures 
and previous antiviral activity studies, in comparison with Sofosbuvir, 
we selected the triphosphate forms of Alovudine (3’-deoxy-3’-fluo-
rothymidine) and azidothymidine (AZT, the first FDA-approved drug 
for HIV/AIDS) for evaluation as inhibitors of the SARS-CoV RdRp. 
These two molecules share a similar backbone structure (base and 
ribose) with Sofosbuvir, but have only one modification group at the 
3’ carbon of the deoxyribose. Furthermore, because these modifi-
cations on Alovudine and AZT are on the 3’ carbon in place of the 
OH group, they directly prevent further incorporation of nucleotides 

F I G U R E  4   Incorporation of 2’-F,Me-UTP, 3’-F-dTTP and 
3’-N3-dTTP by SARS-CoV RdRp to terminate the polymerase 
reaction. The sequence of the primer and template used for these 
extension reactions, which are within the N1 coding sequence 
of the SARS-CoV-2 genome, is shown at the top of the figure. 
Polymerase extension reactions were performed by incubating (A) 
2’-F,Me-UTP, (B) 3’-F-dTTP, and (C) 3’-N3-dTTP with preassembled 
SARS-CoV polymerase (nsp12, nsp7, and nsp8), the indicated RNA 
template and primer, and the appropriate reaction buffer, followed 
by detection of reaction products by MALDI-TOF MS. The detailed 
procedure is shown in the Methods section. For comparison, data 
for extension with UTP are presented in Fig. S2. The accuracy for 
m/z determination is ± 10 Da

http://www.guidetopharmacology.org
http://www.guidetopharmacology.org
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4825
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leading to permanent termination of RNA synthesis and replication 
of the virus. Both Alovudine and AZT are deoxythymidine analogues. 
However, because their size, structure and base-pairing properties 
are similar to uridine and the SARS-CoV RdRp has low fidelity, the 
triphosphate forms of these two analogues might still be substrates 
of the viral polymerase.

Alovudine is one of the most potent inhibitors of HIV reverse 
transcriptase and HIV-1 replication.33 This promising drug was dis-
continued after a Phase II trial due to its hematological toxicity. 
However, subsequent in vitro studies showed Alovudine was very 
effective at suppressing several nucleoside/nucleotide reverse tran-
scriptase inhibitor (NRTI)-resistant HIV-1 mutants.34 New clinical 
studies were then carried out in which low doses of Alovudine were 
given as supplements to patients showing evidence of infection by 
NRTI resistant HIV strains and not responding well to their current 
drug regimen. A 4-week course of 2 mg/day Alovudine reduced viral 
load significantly and was relatively well tolerated with no unex-
pected adverse events.35

AZT is another antiretroviral medication that has long been used 
to prevent and treat AIDS.36-38 Upon entry into the infected cells, 
similar to Alovudine, cellular enzymes convert AZT into the effective 
5'-triphosphate form (3’-N3-dTTP, structure shown in Figure 2D), 
which competes with dTTP for incorporation into DNA by HIV-
reverse transcriptase resulting in termination of HIV's DNA synthe-
sis.39 Since the side effects and toxicity of AZT are well understood, 
novel methodologies have been directed at enhancing AZT plasma 
levels and its bioavailability in all human organs in order to improve 
its therapeutic efficacy. Among these possibilities, an AZT prodrug 
strategy was proposed.40

We thus assessed the ability of 3’-N3-dTTP and 3’-F-dTTP, the 
active triphosphate forms of AZT and Alovudine, along with 2’-F,Me-
UTP, to be incorporated by SARS-CoV RdRp into an RNA primer and 
terminate the polymerase reaction.

The RdRp of SARS-CoV, referred to as nsp12, and its two pro-
tein cofactors, nsp7 and nsp8, shown to be required for the pro-
cessive polymerase activity of nsp12, were cloned and purified as 
described.41,42 These three viral gene products have high homology 
(e.g., 96% identity and 98% similarity for nsp12, with similar homol-
ogy levels at the amino acid level for nsp7 and nsp8) to the equivalent 
gene products from SARS-CoV-2, the causative agent of COVID-19. 
A detailed description of the homologies of nsp7, nsp8, and nsp12 is 
included in Fig. S1 which highlights key functional motifs in nsp12 
described by Kirchdoerfer and Ward.42 Of these, Motifs A, B, E, F, 
and G are identical in SARS-CoV and SARS-CoV-2 at the amino acid 
level, and Motifs C and D display only conservative substitutions.

We performed polymerase extension assays with 2’-F,Me-UTP, 
3’-F-dTTP, 3’-N3-dTTP, or UTP following the addition of a prean-
nealed RNA template and primer to a preassembled mixture of the 
RdRp (nsp12) and two cofactor proteins (nsp7 and nsp8). The ex-
tended primer products from the reaction were subjected to MALDI-
TOF-MS analysis. The RNA template and primer, corresponding to 
the N1 epitope region of the N protein of the SARS-CoV-2 virus, 
were used for the polymerase assay, and their sequences are 

indicated at the top of Figure 4. Because there are two As in a row in 
the next available positions of the template for RNA polymerase ex-
tension downstream of the priming site, if 2’-F,Me-UTP, 3’-F-dTTP, 
or 3’-N3-dTTP are incorporated by the viral RdRp, the nucleotide an-
alogue will be added to the 3’-end of the primer strand. If they are 
indeed inhibitors of the polymerase, the extension should stop after 
this incorporation; further 3’-extension should be prevented. In the 
case of the UTP control reaction, two UTPs should be incorporated. 
As shown in Figure 4 and Fig. S2, this is exactly what we observed. 
In the MALDI-TOF MS trace in Figure 4a, a peak indicative of the 
molecular weight of a primer extension product terminated with one 
2’-F,Me-UTP was obtained (7217 Da observed, 7214 Da expected). 
Similarly, in the trace in Figure 4b a single extension peak indica-
tive of a single-base extension product terminated by 3’-F-dTTP is 
revealed (7203 Da observed, 7198 Da expected), with no further 
incorporation. And in the trace in Figure 4c, a single extension peak 
indicative of a single-base extension by 3’-N3-dTTP is seen (7227 Da 
observed, 7218 Da expected), with no evidence of further incorpo-
ration. As a positive control, primer extension by 2 UTPs occurred 
(7506 Da observed, 7504 Da expected) as shown in the MALDI-TOF 
MS trace in Fig. S2.

In summary, these results demonstrate that the nucleotide 
analogues 2’-F,Me-UTP, 3’-F-dTTP, and 3’-N3-dTTP, are perma-
nent terminators for the SARS-CoV RdRp. Their prodrug versions 
(Sofosbuvir, 3’-F-5’-O-phosphoramidate dT nucleoside and 3’-N3-
5’-O-phosphoramidate dT nucleoside) can be readily synthesized 
using the ProTide prodrug approach, as shown in Figure 2A, C and 
D, and can be evaluated as potential therapeutics for both SARS and 
COVID-19.

One factor that has confounded the development of RdRp in-
hibitors in coronaviruses is the presence of a 3’-exonuclease-based 
proofreading activity such as that associated with nsp14, a key 
component of the replication-transcription complex in SARS-
CoV,43,44 and also encoded in SARS-CoV-2. This exonuclease activ-
ity can be overcome with the use of 2’-O-methylated nucleotides.43 
Importantly, since both Sofosbuvir and AZT are FDA-approved 
drugs for the treatment of other viral infections and their toxicity 
profiles are well-established, their ability to inhibit coronaviruses 
can be evaluated quickly in laboratory and clinical settings.

A preprint of this manuscript was posted on bioRxiv on March 
14, 2020.45 In our two recent publications, we used the polymerase 
extension and MS detection approach described in this manuscript 
to evaluate a larger library of nucleotide analogues as SARS-CoV-2 
inhibitors, demonstrating that the approach is robust.46,47 We 
confirmed our prediction that the three molecules (2’-F,Me-UTP, 
3’-F-dTTP, 3’-N3-dTTP) reported in this paper as well as four others 
also inhibited SARS-CoV-2 polymerase to varying degrees.46 In addi-
tion, we analyzed a library of 11 additional nucleoside triphosphates 
as inhibitors of SARS-CoV and SARS-CoV-2.47

The field of COVID-19 therapeutics development is moving 
rapidly, and while this manuscript was under review and revision, 
numerous publications and preprints have appeared. Structural 
studies have indicated possible binding sites in the SARS-CoV-2 
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RdRp for potential polymerase inhibitors.48-52 Given the high ho-
mology of the SARS-CoV and SARS-CoV-2 RdRp active site do-
mains, it is likely that they will bind nucleotide analogues such as 
Sofosbuvir in a similar way, as we have recently reported.46 The 
structures of the SARS-CoV-2 RNA-dependent RNA polymerase 
nsp12 and its complex with nsp7 and nsp8 have been determined 
by cryo-EM,49,50 and these structures were compared with those of 
other RdRps including the SARS-CoV RdRp and HCV NS5B. These 
investigators performed docking studies to reveal likely binding 
sites for potential inhibitors and natural nucleotides. Gao et al. 
modeled Remdesivir diphosphate binding to SARS-CoV-2 nsp12 
based on superposition with Sofosbuvir diphosphate bound to HCV 
NS5B, and found that the nsp12 of SARS-CoV-2 has the highest 
similarity with the Apo state of NS5B.49 Yin et al. indicated that the 
orientations of the template-primer RNA in the active site of SARS-
CoV-2 and hepatitis C virus NS5B are similar, and the amino acid 
residues involved in RNA binding and those making up the active 
site are highly conserved.50

Several investigators have recently recommended Sofosbuvir as 
a possible antiviral for COVID-19, based on structural studies and 
multiple alignment analysis.48 By comparing the positive-stranded 
RNA genomes of HCV and SARS-CoV-2, Buonaguro et al. postulated 
that Sofosbuvir might be an optimal nucleotide analogue to repur-
pose for COVID-19 treatment.53 Gordon et al. performed a detailed 
kinetic study including Km values of triphosphates of Remdesivir, 
Sofosbuvir, and other nucleotide analogues using gel electrophore-
sis, indicating that Sofosbuvir triphosphate has an apparent lower 
efficiency than the natural nucleotide.54 Sofosbuvir was recently 
shown to inhibit SARS-CoV-2 replication in human hepatoma-de-
rived (Huh-2) and Type II pneumocyte-derived (Calu-3) cells with 
EC50 values of 6.2 and 9.5 µM, respectively.55 Sofosbuvir was 
also reported to protect human brain organoids from SARS-CoV-2 
infection.56

After considering the potential advantages of Sofosbuvir in-
cluding its low toxicity, its ability to be rapidly activated to the 
triphosphate form by cellular enzymes, and the high intracellu-
lar stability of this active molecule, COVID-19 clinical trials with 
EPCLUSA (a combination of Sofosbuvir and Velpatasvir)57 and 
with Sofosbuvir plus Daclatasvir58 have been initiated in several 
countries. Recently, Sadeghi et al. reported promising results in 
a clinical trial using the combination drug Sofosbuvir (SOF) and 
Daclatasvir (DCV) to treat moderate or severe COVID-19 pa-
tients.59 These investigators showed that SOF/DCV treatment 
increased 14-day clinical recovery rates and reduced hospital 
stays. Two similar SOF/DCV clinical trials were also performed 
and provided evidence that this drug combination may have some 
benefit;60,61 the authors recommended that larger well-controlled 
randomized trials are necessary to confirm their results. Indeed, a 
network of larger COVID-19 clinical trials has been established in 
Brazil, Egypt, Iran, and South Africa.

Sofosbuvir and Velpatasvir together form the combination 
drug EPCLUSA, which is widely used for the treatment of HCV. 
Velpatasvir inhibits the viral replication protein NS5A in HCV;13,14 

Daclatasvir also inhibits this protein.62 Sacramento et al. re-
ported that Daclatasvir was able to reduce SARS-CoV-2-induced 
enhancement of TNF-α and IL-6, which are key contributors to 
the cytokine storm.55 Because Velpatasvir and Daclatasvir have 
strong structural similarity and target the same NS5A protein 
in HCV, and Daclatasvir has also been shown to inhibit SARS-
CoV-2 replication55 and is currently in COVID-19 clinical trial,58 
it is plausible that Velpatasvir will display similar inhibitory activ-
ity for SARS-CoV-2. Finally, Remdesivir has been approved under 
FDA emergency use authorization,63 and is currently being tested 
for its safety and effectiveness in various COVID-19 clinical tri-
als; in contrast, Sofosbuvir is an FDA-approved hepatitis C drug 
with wide availability and a well-characterized safety and clinical 
profile.

We recently demonstrated that Sofosbuvir terminated RNA is 
more resistant to the SARS-CoV-2 proofreading exonuclease than 
RNAs terminated by Remdesivir and natural nucleotides.64 The 
higher resistance to exonuclease of Sofosbuvir-RNA relative to the 
RNAs containing the natural nucleotide or Remdesivir can compen-
sate for the apparently lower SARS-CoV-2 RdRp incorporation effi-
ciency of Sofosbuvir triphosphate. Therefore, in view of the fact that 
Sofosbuvir triphosphate inhibits the SARS-CoV and SARS-CoV-2 
RdRps and has better resistance to the exonuclease than the nat-
ural nucleotide or Remdesivir, it is likely that Sofosbuvir will inhibit 
replication of SARS-CoV-2. These results provide a molecular basis 
supporting the current use of Sofosbuvir in combination with other 
drugs in COVID-19 clinical trials.

4  | CONCLUSION

We demonstrated the capability of low-fidelity DNA polymerases, 
as well as SARS-CoV RNA-dependent RNA polymerase, which is 
nearly identical to the SARS-CoV-2 RdRp responsible for COVID-19, 
to incorporate 2’-F,Me-UTP, the active form of Sofosbuvir, where 
it serves to terminate the polymerase reaction. We also showed 
two other nucleoside triphosphates, 3’-F-dTTP, the active form of 
Alovudine, and 3’-N3-dTTP, the active form of AZT, can be incor-
porated and terminate further nucleotide extension by the RdRp in 
the polymerase reaction, potentially preventing further replication 
of the virus. If prodrugs of these nucleotide analogues display ef-
ficacy in inhibiting SARS-CoV-2 replication in cell culture, as recently 
demonstrated for Sofosbuvir in virus-infected cells,55 they can be 
potential candidates for clinical trials for the treatment and preven-
tion of COVID-19.
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