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Review Article
The Immune Response Is Involved in Atherosclerotic Plaque
Calcification: Could the RANKL/RANK/OPG System Be a Marker
of Plaque Instability?
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Atherogenesis is characterized by an intense inflammatory process, involving immune and vascular cells. These cells play a crucial
role in all phases of atherosclerotic plaque formation and complication through cytokine, protease, and prothrombotic factor
secretion. The accumulation of inflammatory cells and thus high amounts of soluble mediators are responsible for the evolution
of some plaques to instable phenotype which may lead to rupture. One condition strongly associated with plaque rupture is
calcification, a physiopathological process orchestrated by several soluble factors, including the receptor activator of nuclear factor
(NF)κB ligand (RANKL)/receptor activator of nuclear factor (NF)κB (RANK)/osteoprotegerin (OPG) system. Although some
studies showed some interesting correlations with acute ischemic events, at present, more evidences are needed to evaluate the
predictive and diagnostic value of serum sRANKL and OPG levels for clinical use. The major limitation is probably the poor
specificity of these factors for cardiovascular disease. The identification of tissue-specific isoforms could increase the importance
of sRANKL and OPG in predicting calcified plaque rupture and the dramatic ischemic consequences in the brain and the heart.

Copyright © 2007 Fabrizio Montecucco et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

During the recent years, atherogenesis has been well known
as an intense inflammatory systemic process, involving
immune and vascular cells [1]. The anatomic structure
of atherosclerotic plaques is well known. The atheroscle-
rotic plaque is localized in the arterial intima and con-
tains immune cells (T cells, B cells, NK cells, monocyte/
macrophages, mast cells, dendritic cells), foam cells, vascu-
lar endothelial cells, and smooth muscle cells [2–5], that are
around a core of lipids, extracellular matrix and lipid-rich
debris from dead cells [1]. All these cells play a crucial role in
all phases of atherosclerotic plaque formation and compli-
cation through TH1-type cytokine, protease, and prothrom-
botic factor secretion [2]. On the other hand, despite these
proatherosclerotic activities, these cells are also capable of at-
tenuating the maturation of atherosclerotic plaques, through
the production of anti-inflammatory cytokines, such as TGF-
β and IL-10 [6, 7]. In particular, a subpopulation of T cells,
called CD4+CD25+ regulatory T cells (Treg), was recently

shown to reduce atherosclerosis in ApoE−/− mice [8, 9].
A fibrous cap of smooth muscle cells and collagen fibres
surrounds the complex pro/anti-inflammatory tissue (called
lipid core); and an endothelial cell layer divides the plaque
from the blood stream [1]. The plasticity of these cells and
the great variety of soluble mediators are responsible for the
evolution of some plaques to instability, with high risk of
fibrous cap disruption and the subsequent acute ischemic
and thrombotic events, such as artery occlusion or arterial
embolism. One condition strongly associated to plaque rup-
ture is calcification [10–13]. In fact, the degree of calcifica-
tion promotes the number of interfaces between rigid and
distensible portions of the plaque until the point of rup-
ture. This suggests that dystrophic calcification at the thin
fibrous cap [14], rather than the histological appearance of
fully formed bone with trabeculations of the plaque [15], is
related to the increased risk of plaque rupture with the con-
sequent dramatic ischemic events [16]. Monocytes, dendritic
cells, and smooth muscle cells are crucial for calcium depo-
sition in the lesion, because of their retained capability to
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differentiate into osteoblast-like cells and osteoclast-like cells
[17–22]. These cells, controlled by cytokines and other solu-
ble factors, are the key players of the calcification process.

2. CURRENT STRATEGIES TO REDUCE
PLAQUE CALCIFICATION

During the last decades, some unstandardized treatments
have been proposed to reduce the maturation of the plaque
towards calcification. Given the involvement of immune
cells, an immunosuppressing pharmacological approach was
attempted with some significant results. For instance, in pre-
clinical studies, cyclosporin was found capable of reducing
intimal cell proliferation after arterial injury [23]. In ad-
dition, clinical studies suggested that sirolimus and statins
reduce atherosclerotic complications [24, 25]. Employing
a different strategy, researchers focused their attention on
molecules capable of reducing atherosclerotic risk factors.
Beta blockers and estrogens were found capable of reduc-
ing the development of calcification in coronary arteries
[26, 27]. No clear evidences for antiatherosclerotic activi-
ties are actually attributed to the ligands for peroxisome-
proliferator-activated receptors (PPARs), the nonsteroidal
anti-inflammatory drugs (NSAIDs), and bisphosphonates,
because there were controversial effects between in vitro
and in vivo experiences [28–33]. All these pharmacologi-
cal molecules were focused on modulating the innate and
adaptive immunity to reduce the inflammatory processes,
and thus preventing plaque calcification. On the other hand,
Price and coworkers also proposed a new therapeutic ap-
proach, focused on arterial calcification physiopathology.
They performed a treatment with 1 mg/day osteoprotegerin
(OPG) for inhibiting artery calcification induced by Warfarin
and by vitamin D in mice and they obtained a dramatic re-
duction of calcification of arteries [34]. Although the real
role of OPG as a cardiovascular risk factor is not well clar-
ified and further studies are needed, the use of OPG could
be a very promising therapeutic strategy based on arterial
physiopathology. Another approach independent of CD4+ T
cell activation was recently performed. For instance, Ldlr−/−

mice vaccinated with malondialdehyde-modified LDL; and
HSP60 demonstrated some encouraging preliminary results
[35, 36]. Intriguingly, these interventions strongly support
the importance of humoral immunity in atherosclerotic pro-
cesses. The modulation of both innate and adaptive immu-
nity may be a useful strategy to reduce the development of
atherosclerotic plaque calcification. The development of new
therapeutic approaches is needed because when established,
arterial calcifications are irreversible [37] and, despite con-
troversies, only the surgical treatment remains [38]. For all
these reasons, new therapies capable of reducing established
and developing calcification of the plaque need to be devel-
oped to reduce acute ischemic cardiovascular events, inde-
pendently of traditional risk factors [39–43]. The present re-
view is focused on identifying molecular mechanisms and
serological markers to better characterize the cardiovascular
risk and possible targets for future therapies against arterial
calcification and the consequent plaque rupture.

3. MOLECULAR MECHANISMS OF ARTERIAL
CALCIFICATION

Although previously considered as a passive precipitation,
recent work suggests that calcium mineral deposition in
atherosclerotic plaques is the result of intra-arterial processes
of osteogenesis [10]. Despite considerable confusion, in 2004
Doherty et al. had identified two different types of arterial
calcification, localized in the media or the intima, respec-
tively [44]. Medial and intimal calcifications are different en-
tities that are not necessarily separated from each other. In
fact, medial calcification occurs independently of atheroscle-
rosis [45], and is observed with high frequency in Moncke-
berg’s sclerosis [46], hypervitaminosis D [47], end-stage re-
nal failure disease (ESRD) [48, 49], and diabetes mellitus
[50, 51]. Although the precise mechanism of medial calci-
fication is not clear, at least for ESRD, an association be-
tween arterial calcification and increased serum phosphorus
and increased ion product [Ca2+ × PO4

−3] was shown [52].
In diabetes mellitus, different hypotheses for medial calcifi-
cation formation were formulated. For instance, Edmonds
suggested a possible involvement of stiffening of arterial tone
and endothelial dysfunction [53]. However, much remains to
be investigated about medial arterial calcification, such as a
possible association with the cardiovascular risk [54, 55].

On the other hand, intimal calcification was observed al-
most exclusively in atherosclerotic plaques [10], and it occurs
in two distinct patterns (punctate or diffuse), with still un-
clear implications [44]. So far, several molecular mechanisms
of plaque calcification have been identified, with many sim-
ilarities to physiopathological processes of bone formation
[56] and resorption [57]. Intimal arterial calcification might
be secondary to an imbalance between these two opposing
processes, with the inhibition of osteoclast-like (OCL) cell
mineral resorption and the increase of osteoblast-like (OBL)
cell mineral deposition [58]. In the following, we will discuss
three different models of plaque calcification that have been
proposed by Doherty and colleagues, with complementary
molecular mechanisms, which might be involved [59].

3.1. The “active model” of arterial calcification

In 1993, Bostrom et al. showed the presence of pluripotent
arterial cells, called calcifying vascular cells (CVCs), which
are immunologically distinct from the other arterial cells
[60]. These cells colocalized in atherosclerotic plaques with
bone-related proteins and transcriptional factors, such as
BMP-2 and Cbfa1 [60, 61]. Furthermore, they were found
capable of forming in vitro mineralized structures [62, 63].
These data were confirmed by other groups, which extended
the active model of bone matrix formation also to other ar-
terial cell types, such as smooth muscle cells [64–66]. The
name “active model” is derived from the bone formation
activity of these cells, also called OBL cells. The validity of
the present model was also confirmed by in vivo experiences
showing that both human and animal artery mineralization
processes are very similar to that observed in bone [67–69].
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3.2. The “passive physicochemical model” of
arterial calcification

This model was proposed by Gijsbers et al. [70] and Schinke
and Karsenty [71] and is based on the concept that calcium
and phosphate ions are in a metastable state when they are
near the point of precipitation in solid phase within bio-
logical fluids. Vermeer showed that several proteins, which
chelate calcium cations, inhibited mineral salt deposition in
arteries. These proteins (mainly homeostatic clotting factors
and osteocalcin) were found to contain glutamine residues
carboxylated at the γ-position gamma-carboxyglutamic acid
(Gla) residues, and thus were called Gla proteins [72]. In ac-
cordance with this model, atherosclerotic plaque calcification
is due to a deficient chemical γ-carboxylation of Gla pro-
teins. This “passive” model is mainly supported by two sev-
eral independent findings. First, the enzyme γ-carboxylase
was found less active in atherosclerotic rather than in normal
arteries in both humans and animals [13, 73]. This may be
due to a deficiency of the two cofactors (two isoforms of vi-
tamin K, named phylloquinone and menaquinone), needed
for the chemical reaction [74]. Secondly, mice deficient for
matrix gamma-carboxyglutamic acid (Gla) protein (MGP)
showed a massive arterial calcification [75].

On the other hand, other studies raised several doubts
on the real relevance of the passive model of arterial cal-
cification. For instance, in Keutel syndrome, a human dis-
ease characterized by a nonfunctional MGP gene, patients
do not develop a massive arterial calcification [73]. In ad-
dition, MGP knockout mice and rats develop medial rather
than intimal calcification, which characterizes atheroscle-
rosis [75]. Therefore, a combined role of MGP deficiency
with other factors has been suggested. Moreover, the cysteine
protease inhibitor AHSG [76], apoptotic bodies [77], and
lipids [78] were found to be important modulatory factors
of atherosclerotic intimal calcification. To summarize, cur-
rent evidence suggests that the “passive” model of calcifica-
tion appears to be relevant mainly in medial calcification, a
histological entity not clearly related to atherosclerosis.

3.3. The arterial OCL model

We have previously described that bone remodelling results
from the balance between formation (osteoblasts) and degra-
dation (osteoclasts). While the “active model” highlights the
importance of OBL cells, the “arterial OCL model” proposes
that arterial calcification is due to a lack of activity of OCL
cells. Several molecular factors influence OCL survival, dif-
ferentiation, and function. Macrophage-colony stimulating
factor (M-CSF), a cytokine, and growth factor for mononu-
clear phagocytic cells (MPCs) is crucial in survival and dif-
ferentiation of osteoclast progenitors [57, 79]. This role is
strongly supported by independent evidences, showing that
the lack of M-CSF alone was sufficient to reduce the num-
ber of osteoclasts and induce osteopetrosis [80–82]. In addi-
tion, despite a significant reduction of atherosclerotic lesion
formation, mice deficient for both M-CSF and apoliprotein
(apo) E-developed plaque calcification [83]. These data high-
light the dual role of M-CSF in atherosclerosis: the promo-

tion of atherogenesis (plaque formation) and the inhibition
of plaque calcification (plaque complication).

On the other hand, the receptor activator of nuclear
factor (NF)κB ligand (RANKL), which is also called tu-
mor necrosis factor- [TNF-] related activation-induced cy-
tokine (TRANCE) or osteoprotegerin ligand (OPGL) [84],
is also necessary and sufficient for the generation and func-
tion of OCL cells in the plaque (Figure 1). RANKL, which
is expressed in unstable atherosclerotic plaques [85–87], is
capable of modulating different cell-type activities (mainly
monocyte-derived osteoclast precursors, T cells, B cells, and
dendritic cells) [88, 89] through its transmembrane recep-
tor RANK. After the binding with RANK, several intracel-
lular signal transduction pathways are activated, with cru-
cial role for mitogen-activated protein kinases (MAPKs) and
(NF)κB [90, 91]. Taking into the account these premises,
RANKL appears as an anticalcifying molecule, and probably
capable of reducing the plaque vulnerability. Some of these
findings were not confirmed by Sandberg and colleagues
[87], showing surprisingly that RANKL induces plaque in-
stability in humans by inducing MCP-1 and matrix metal-
loproteinase (MMP) production [87]. Thus, the exact role
of RANKL in plaque dystrophic calcification remains un-
clear. In fact, in absence of the RANKL neutralizing agent
OPG, the decoy receptor of RANKL, mice not only devel-
oped osteoporosis (bone loss), but also arterial calcification
[92]. There are at least two explanations suggesting a dif-
ferent role of RANKL between human and mice. First, al-
though expressed in human arteries, RANKL, and RANK are
not expressed in normal mouse arteries, but only in calci-
fied plaque [93]. This suggests that the calcification process
itself might upregulate RANK and RANKL expression and
signalling. In this case, RANKL-induced OCL anticalcifica-
tion activity is secondary to the establishment of a consoli-
dated calcification, without involvement in plaque formation
and maturation, at least in mice. Second, RANKL signalling
can also promote mineral deposition in mouse plaques. This
interesting hypothesis is sustained by Lin et al., showing os-
teoblast proliferation in murine calvarial organ culture [94].
On the contrary, evidences showed RANKL and OPG pres-
ence and activity in early and advanced atherosclerotic le-
sions in humans [95, 96]. The soluble form of RANKL and
serum OPG detected in human blood stream (mainly re-
leased from endothelial cells) are both under investigation as
possible clinical biomarkers of several bone-related diseases,
including atherosclerosis [97, 98]. Therefore, even though
the full mechanism of bone resorption is still not clarified,
the “OCL model” has to be considered as directly involved
in intimal plaque calcification through the active inhibition
of calcification and the degradation of existing mineral de-
posits.

4. MOLECULAR FACTORS INVOLVED IN
ATHEROSCLEROTIC ARTERIAL CALCIFICATION

Although several studies on arterial calcification have been
performed, the molecular mechanisms influencing bone
metabolism are still unclear. Bone remodelling is a pro-
cess common to various diseases, often coexisting. The real
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RANKL/RANK/OPG axis in plaque calcification
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Figure 1: Schematic diagram of potential OCL differentiation in the plaque. Soluble RANKL (sRANKL) and OPG are secreted in the
atherosclerotic plaque and in the blood stream mainly by smooth muscle cells (SMCs) and endothelial cells (ECs). sRANKL promotes OCL
precursor (mainly monocytes/macrophages (M), dendritic cells, and SMCs) differentiation into OCL cells (as indicated by dotted arrows).
OPG neutralizes the action of RANKL. The balance between these two soluble molecules regulates the bone resorption in calcified plaques,
which is correlated to plaque rupture.

difficulty is to define a biomarker specific only for the car-
diovascular risk of plaque rupture and not influenced by
osteoporosis, renal failure, or other bone-related diseases.
For these reasons, several parameters altered or involved in
bone metabolism have been studied. Investigators started
with parathyroid hormone (PTH) and vitamin D, which
are the principal factors for bone homeostasis. Discordant
results were obtained [99–101] and actually no clear cor-
relation between PTH, vitamin D, and vascular calcifica-
tion were observed. On the other hand, given the low inci-
dence of coronary heart disease (CHD) in premenopausal
women [102], estrogens were investigated. Substantial ev-
idence showed that estrogens have an antiatherogenic ef-
fect, mainly through lipid-lowering [103] and endothelial
nitric oxide synthase (eNOS) activation [104]. A direct ca-
sual relationship with estrogens and arterial calcification has
been shown recently [27], even though further evidences are
needed. Lipid metabolism and leptin were studied as possi-
ble markers of plaque calcification, but no direct correlations
were identified [105]. Other markers were analysed by Do-
herty et al., but they require further studies to better eluci-
date their potential importance [44]. Among these markers,
the RANKL/RANK/OPG system appears as the most promis-
ing for an application in the near future.

5. COULD THE RANKL/RANK/OPG SYSTEM BE
CONSIDERED AS A SEROLOGICAL MARKER
FOR PLAQUE RUPTURE IN THE FUTURE?

As previously described, there is strong evidence for an im-
plication of the RANKL/RANK/OPG network in vascular
calcification. However, atherosclerotic arterial calcification
shares the activation of this system with other pathologies,

such as rheumatoid arthritis, osteoporosis, cancer metasta-
sis [106, 107], and other vascular diseases, such as diabetic
macroangiopathy, aortic aneurism, and heart failure [108].
Several studies indicate that the RANKL/RANK/OPG axis is
not specific for plaque calcification and destabilization. Nev-
ertheless, OPG and sRANKL serum levels have been pro-
posed as biomarkers of vascular risk and prognosis. The
serum levels of OPG were measured in patients with cere-
brovascular disease, stable angina, and coronary artery dis-
ease (CAD), and showed interesting correlations. In par-
ticular, OPG levels were independently associated with car-
diovascular mortality, but not bone mineral density in pa-
tients suffering from cerebrovascular diseases [109]. Further-
more, OPG is correlated with significant coronary artery nar-
rowing [110]. Interestingly, osteoprotegerin gene polymor-
phisms were shown in coronary artery disease in Caucasian
men [111]. Finally, serum OPG levels were associated to the
severity of CAD [112]. However, although further clinical
studies are needed to confirm that serum OPG levels might
help to evaluate the prognosis of vascular disease. Serum
levels of free- (not complexed to OPG) soluble RANKL
(sRANKL) were also found altered in CAD patients. In par-
ticular, they were significantly lower in patients with CAD,
without reporting a correlation to the severity of the disease
[113]. These findings were also confirmed by Jono et al. [112]
and Sandberg et al. [87], demonstrating the increase of levels
of RANKL expression in T cells during acute coronary syn-
drome [87]. Although OPG and free-soluble RANKL might
be considered as a promising marker of cardiovascular risk,
their application might be limited by poor tissue specificity.
For this reason, the identification of tissue-specific isoforms
of OPG and RANKL could contribute to highly increase fu-
ture diagnostic and prognostic significances.
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6. CONCLUSIONS

The present review shows that plaque calcification rep-
resents a crucial step for plaque destabilization and rup-
ture. Some serological markers are needed to be validated
for better defining cardiovascular risk and prognosis of
acute ischemic complications, secondary to plaque rupture.
Although not selective only for arterial calcification, the
RANKL/RANK/OPG axis could be a promising risk marker
and target for future therapies. In this context, experimental
data have provided the first evidence for the therapeutic use
of OPG as possible pharmacologic agent for reducing arte-
rial calcification [34]. On the contrary, human data suggested
the direct relationship between increased OPG serum lev-
els and plaque destabilization. This may imply that elevated
OPG levels could be compensatory rather than causational in
atherosclerotic calcification. Therefore, further clinical inves-
tigations with large number of patients are required to better
clarify the role of serum sRANKL and OPG in plaque phys-
iopathology.
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