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Abstract

Since World War I, helmets have been used to protect the head in warfare, designed primar-

ily for protection against artillery shrapnel. More recently, helmet requirements have

included ballistic and blunt trauma protection, but neurotrauma from primary blast has never

been a key concern in helmet design. Only in recent years has the threat of direct blast wave

impingement on the head–separate from penetrating trauma–been appreciated. This study

compares the blast protective effect of historical (World War I) and current combat helmets,

against each other and ‘no helmet’ or bare head, for realistic shock wave impingement on

the helmet crown. Helmets included World War I variants from the United Kingdom/United

States (Brodie), France (Adrian), Germany (Stahlhelm), and a current United States combat

variant (Advanced Combat Helmet). Helmets were mounted on a dummy head and neck

and aligned along the crown of the head with a cylindrical shock tube to simulate an over-

head blast. Primary blast waves of different magnitudes were generated based on estimated

blast conditions from historical shells. Peak reflected overpressure at the open end of the

blast tube was compared to peak overpressure measured at several head locations. All hel-

mets provided significant pressure attenuation compared to the no helmet case. The mod-

ern variant did not provide more pressure attenuation than the historical helmets, and some

historical helmets performed better at certain measurement locations. The study demon-

strates that both historical and current helmets have some primary blast protective capabili-

ties, and that simple design features may improve these capabilities for future helmet

systems.

Introduction

‘That men do not learn very much from the lessons of history is the most important of all the

lessons that history has to teach.’—Aldous Huxley.

At the start of World War I (WWI) in July 1914, helmets were not part of the standard mili-

tary equipment for any of the allied or central powers [1]. Most headwear consisted of cloth

(e.g. French Kepi [2]) or leather (e.g. German Pickelhaube [3]) and did not offer the wearer

any protection from blasts, shrapnel, or ballistic impacts. Multiple reports at the time estimated
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that at the start of the war, over fifty per cent of fatalities occurred due to shrapnel or artillery

shell fragments, often striking the head, for which steel helmets could be effective [1, 4].

In 1915, France was the first nation in WWI to equip soldiers with steel helmets, utilizing

the M15 Adrian helmet, named after the design by General Adrian [5]. Inventor John L. Bro-

die addressed the British need for head protection in late 1915 with a helmet design aimed at

shrapnel protection while focusing on ease of manufacturing [6]. Other nations also used the

Brodie helmet, including the United States when they joined the war in late 1917 [7]. After

extensive testing of Allied helmets, the Stahlhelm (translation: steel helmet) was rolled out to

German soldiers at the start of 1916 [8].

These helmets were effective in their design to protect against artillery shell shrapnel [1].

Besides propelling shrapnel, exploding artillery shells also create a shock wave. The shock wave

is referred to as primary blast, while the projectiles launched during an explosion are considered

secondary blast. In WWI, the effects of these blast waves were experienced on a large scale for

the first time in the combat theatre. Soldiers who experienced explosions in close vicinity were

delivered to field hospitals despite having little to no signs of external trauma. British physician

Charles Myers used the term ‘Shell Shock’ in 1915 to describe an array of symptoms experi-

enced by soldiers after shell explosions [9], today believed to be potentially caused by a combi-

nation of traumatic brain injury (TBI) and psychological trauma [10].

Since the early 1900s, exploding artillery shells have been the largest cause of combat casual-

ties in major conflicts [11]. In US wars since WWI, there has been an increasing trend towards

greater number of casualties being caused by explosions, with one study reporting 78% of

all injuries in the 2001–5 period of the conflict in Iraq being caused by explosions [12]. During

the conflicts in Iraq and Afghanistan, over 65% of reports of TBI were associated with an

explosion [13]. A 2008 study of US Army Infantry soldiers returning from deployment in Iraq

found more than 15% of them suffered some form of mild traumatic brain injury (mTBI) [14].

In the past decade, there has been an increase in the awareness of long-term debilitating effects

of primary blast mTBI, such as axonal injuries [15, 16]. Blast exposures causing minimal acute

injuries might cause functional brain changes over time or with repeated exposures. Since

most blast TBI is classified as ‘mild,’ there is an increasing demand for combat helmets to pro-

tect against these exposures.

Risk assessment of human blast injury to the pulmonary system was developed in the 1960s

[17] and recently given a stronger experimental basis [18, 19]. The bulk of historical blast work

implies that pulmonary tolerance is much lower than neurotrauma tolerance for blast [20–22].

This has been recently confirmed in direct comparative experimentation in rabbits [23]. In

concert with these studies, researchers have recently developed risk functions for potential

neurotrauma from blast [23, 24] that provide assessment tools for primary blast effects on the

head. Initially perplexing, the incidence of blast pulmonary trauma following blast exposure in

current military conflicts is quite low compared with blast neurotrauma [25], despite the dif-

ference in tolerance. This apparent contradiction is resolved by the almost universal use of

body armor which dramatically increases the pulmonary tolerance of blast relative to that of

the brain [26].

The battlefield conditions of WW1 on the Western Front provide similar blast conditions

to those seen today. Battles fought from trenches in short spurts of unit advancement largely

result in the helmeted head being exposed to the blast, while the torso is more distant or cov-

ered, decreasing the potential for blast pulmonary trauma. No current fielded helmet system

has been specifically designed for blast protection, though careful studies suggest that modern

helmets have a degree of blast protective effects [27–29].

This study compares the blast protective capabilities of principal military helmets from

WWI combatants with a modern composite helmet. For the three historical helmets discussed
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in this study, no record of primary blast evaluation was found in the scientific literature. The

current study is, to our knowledge, the first to assess the protective capabilities of these histori-

cal combat helmets against blast. Brain injury due to primary blast was first recognized around

the same time these helmets were being developed [30], and primary blast is now a generally

recognized mechanism of injury to the brain. This study is an investigation into whether

improvements have been made in combat helmet primary blast protection or if there is a les-

son to be learned from these 100-year-old designs.

Methods

Helmets

Three authentic historical WWI infantry combat helmets including the original lining, were

acquired for blast testing: an M15 (1915 model) Adrian Helmet used by the French Army

(denoted FRC), an M1916 Stahlhelm used by the Imperial German Army (denoted GER), and

an M1917 Brodie Helmet used by the U.S. Army (based on the M1915 British design and

denoted AMR). The M1917 Brodie Helmet was manufactured by the Columbian Enameling

and Stamping Company (Terre Haute, IN, USA). The Advanced Combat Helmet, the current

combat helmet used by the U.S. Army, was included (size large, denoted ACH) for comparison

to current combat helmets. A ‘no helmet’ bare head case was used as a control (denoted BAR).

The three WWI helmets are made of formed steel, and the Advanced Combat Helmet

(ACH) has a fiber composite construction. The average wall thickness of each helmet was mea-

sured using electronic calipers (EC799, L. S. Starrett Company; Athol, MA, USA). The pro-

jected area for the top view of each of the helmets was calculated using ImageJ (NIH; Bethesda,

MD, USA). Weight, wall thickness, and projected area of each of the helmets, and abbreviations

used in this manuscript are described in Table 1. High resolution X-ray computed tomography

images(Nikon XTH 225 ST, Nikon Inc.; Minato, Tokyo, Japan) were made of the historical hel-

mets and coronal sections are displayed in Fig 1.

Blast setup

Helmets were mounted on a Hybrid III1 50th percentile male dummy head (Humanetics; Far-

mington Hills, MI, USA) and affixed to the Hybrid III neck. Each helmet was secured around

the chin and back of the dummy head (Fig 2) to prevent extraneous helmet motion during test-

ing. Original buckles and leather straps were not used due to the degraded conditions that

would not withstand the blast scenarios. For the ACH, original helmet straps were used. The

ACH fit properly on the dummy head, covering the forehead while leaving one to two centi-

meters space above the eyes as described in the ACH operator’s manual. The historical helmets

all fit on top of the head, with the head held in the internal suspension without the crown of

the head touching the helmet. Each helmet had both the external steel components and inter-

nal textile/leather components intact. The dummy head was faced downwards, and the center

of the head was aligned with the open end of a cylindrical blast tube (schematic in Fig 3). This

Table 1. Helmet abbreviations and properties.

Helmet Abbreviation Weight (kg) Average thickness (mm) Projected area from above (cm2)

Adrian M15 helmet FRC 0.67 0.75 439.9

Stahlhelm M1916 GER 1.23 1.20 544.5

Brodie M1917 helmet AMR 0.88 0.95 689.2

Advanced Combat Helmet ACH 1.51 8.40 516.4

Bare head BAR / / 327.6

https://doi.org/10.1371/journal.pone.0228802.t001
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Fig 1. Coronal CT sections of tested helmets. (a) Adrian helmet, (b) Brodie helmet, (c) Stahlhelm, (d) Advanced

Combat Helmet (ACH). The Adrian helmet (a) is the thinnest steel followed by the Brodie (b) and the Stahlhelm (c).

The ACH (d) is made with a fiber composite material.

https://doi.org/10.1371/journal.pone.0228802.g001

Fig 2. Helmets on Hybrid III head in test setup. (a) Brodie helmet, (b) Adrian helmet, (c) Stahlhelm, (d) Advanced

Combat Helmet, (e) No helmet.

https://doi.org/10.1371/journal.pone.0228802.g002

Fig 3. Shock tube setup schematic. Exposure is in the direction of the crown, simulating overhead blast that is typical

exposure for personnel in trenches or prone on the ground.

https://doi.org/10.1371/journal.pone.0228802.g003
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orientation and blast exposure simulate an overhead blast scenario, as would have been com-

mon in trench warfare due to artillery shells exploding above trenches.

The top of the helmet was aligned with the end of the blast tube to minimize standoff dis-

tance. The blast tube has a diameter of 305 mm and consists of a driver section (305 mm length),

where helium gas is compressed, and a driven section (3.05 m length). The driver and driven

section are separated by a diaphragm consisting of a number of polyethylene terephthalate

(PET) membranes. High pressure helium is released into the driver section until the PET dia-

phragm bursts, allowing a shock wave to travel down the driven section of the blast tube. The

10:1 driven length to driver length ratio allows the shockwave to develop a uniform shock front,

with approximate equal pressure across the tube section [31]. In a previous study [31], it was

shown that testing outside the blast tube is appropriate as long as standoff distance is minimized.

The helmets were exposed to shock waves at three separate blast intensities by varying the

thickness of the bursting diaphragm with PET membranes: two membranes of 0.254 mm

thickness (total thickness: 0.508 mm), nine (2.286 mm), and twelve (3.048 mm). These choices

for membrane thickness and resulting shock intensity were made to represent historical blast

exposure (see blast simulation) and approximate blast levels corresponding to 50% risk for

respectively mild meningeal bleeding, moderate meningeal bleeding, and severe meningeal

bleeding based on bare head ferret brain blast data from Rafaels et al. [24]. In total, forty-six

blast tests were performed for this study, detailed in Table 2. All two-membrane tests were

performed first in the order ACH-FRC-AMR-GER-BAR, followed by all nine-membrane tests

in the order BAR-GER-AMR-FRC-ACH, and finally all twelve-membrane tests in the order

ACH-AMR-FRC-GER-BAR. For each helmet all tests at a specific number of membranes were

performed consecutively.

Data acquisition

Blast overpressure was measured using three pressure transducers (Endevco 8530B; San Juan

Capistrano, CA, USA) at the exit of the shock tube, inside the tube wall, incident to the direc-

tion of the wave. One transducer was positioned at the top of the tube, with the two others

symmetrically positioned 120˚ clockwise and counter-clockwise from the position of the first.

In addition to tube pressure measurements, five pressure transducers were inserted in the

Hybrid III dummy head. Oriented radially outward, transducers were located at the crown,

forehead, right ear, left eye, and back of the head. The pressure measurement locations on the

Hybrid III Head are indicated on Fig 4. A three-axis load cell (Model 2564, Robert A. Denton,

Inc; Rochester Hills, MI, USA) was mounted between the Hybrid III Head and Neck, to exam-

ine neck forces. Neck load cell data are not reported in the current study. Pressure and forces

were sampled at 200 kHz using a meDAQ1 (Hi-Techniques, Inc.; Madison, WI, USA) data

acquisition system. Pressure traces were demeaned to an ambient pressure of zero but were

not filtered. An example pressure trace for each helmet at the highest tested pressure amplitude

is shown in Fig 5. High speed video of each blast was collected at 8000 fps using a Phantom1

V711 camera (Vision Research; Wayne, NJ, USA).

Table 2. Number of blast tests performed for each case, 46 in total.

Number (thickness) of PET burst membranes

Helmet 2 (0.508 mm) 9 (2.286 mm) 12 (3.048 mm)

BAR 4 4 3

ACH 3 3 3

GER 3 4 2

AMR 3 3 2

FRC 3 3 2

https://doi.org/10.1371/journal.pone.0228802.t002
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Fig 4. Views of Hybrid III head with pressure sensor locations indicated. (a) crown, (b) forehead, (c) eye, (d) back

head, and (e) ear.

https://doi.org/10.1371/journal.pone.0228802.g004

Fig 5. Representative pressure traces. Measured at the crown of the dummy head, for 12 membrane (3.048 mm PET)

tests of the (a) Bare Head, (b) Advanced Combat Helmet, (c) Brodie Helmet, (d) Adrian Helmet, and (e) Stahlhelm.

https://doi.org/10.1371/journal.pone.0228802.g005
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Pressure conversion

To compare pressure measured by ‘side-on’ transducers in the wall of the blast tube to pressure

measured by the ‘face-on’ transducer at the crown of the head, Rankine-Hugoniot relation-

ships were used to convert the incident pressure to reflected pressure (Eq 1) [32].

Prefl ¼ 2Pinc
7Patm þ 4Pinc

7Patm þ Pinc

� �

ð1Þ

In Eq 1, Prefl is the reflected pressure (gauge), Patm is the atmospheric pressure, set to

101.325 kPa, and Pinc is the measured incident pressure (gauge).

Injury risk curves

Injury risk curves from Rafaels et al. [24] were used to provide a brain injury risk value for the

measured crown overpressure. Meningeal bleeding risk curves were obtained from scaled fer-

ret blast brain experiments, with mild, moderate and severe bleeding defined by brain surface

area covered by hemorrhaging (< 3%, 3–10%, and> 10% respectively). The duration of blast

in these experiments was scaled to a reference mass of a 70 kg human using cube root of body

mass scaling. Using Eq 1, the risk curves were converted from incident to reflected pressure.

Risk curves from Richmond et al. [33] were used in conjunction with pressure measure-

ments at the ear location to estimate the risk for eardrum rupture. The measurements at the

ear were recorded with an incident orientation to the shock wave. Pressure-time curves for the

50% injury risk of three eardrum rupture levels were defined: minor (minor slits, linear disrup-

tion of drum fibers), moderate (large tears, multiple small holes or tears), and major (total dis-

ruption, large flaps of the drum).

Blast simulation

Blast conditions used in this study were compared to WWI Germany artillery shell explosions

to determine comparable exposure ranges. Details on German artillery shells are shown in

Table 3 [34]. These shells represent most of the German artillery fired on the Western Front

[35]. The distance from the charge to experience a blast similar to the tested conditions was

calculated for each of these shells using ConWep (U.S. Army Corps of Engineers, Protective

Design Center, Vicksburg, MS). Tested blast conditions were binned into 3 severity groups

based on PET membrane thickness used to generate the blast (Table 4). Mean bare head

crown pressure and positive phase duration were used as a representative blast for each sever-

ity level. The results of the simulations are displayed in Fig 6, showing at what range the tested

blast conditions would compare to WWI German artillery shell explosions.

Statistical analysis

JMP1 Pro 13.0.0 (SAS Institute Inc.; Cary, NC, USA) was used for statistical analysis. A gen-

eral linear model (GLM) was constructed with peak crown pressure as the outcome variable.

Table 3. German artillery rounds used in WWI [34].

German artillery Shell weight (kg) Explosive charge (kg-TNT) Rounds fired (million)

77 mm FK 6.5 0.4 156

105 mm FH 15 1.5 67

150 mm FH/K 38.6 5.6 42

210 mm Mörser 114.5 11.6 7

https://doi.org/10.1371/journal.pone.0228802.t003
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Helmet type (no helmet, ACH, Brodie, Adrian, Stahlhelm) and measurement location (crown,

forehead, back head, eye, ear) were included as factors with measured peak tube pressure as a

covariate. All interaction terms were found to be significant (p<0.0001), so a subdivision was

made to consider each measurement location separately. The interaction between helmet type

and peak tube pressure was found to be significant (p<0.0001) for each measurement location

and was included in the model (i.e. the slope of the linear regression between tube pressure

and crown pressure differs by helmet). Pairwise comparisons between the helmets were done

by examining the significance of the interaction term between helmet type and tube pressure

when including only the compared helmet conditions in the model. If the interaction term was

not significant, it was removed from the model to examine an overall helmet effect when slopes

are equal.

Results

In total, forty-six blast tests were performed for the five helmets over three blast conditions

described in Table 2. After observing deformations that may affect the structural integrity in

the Brodie and Adrian helmet (Fig 7) at the highest tested peak pressures, it was decided to

keep the number of 3.048 mm PET tests at two for the historical helmets. For all other

Table 4. Severity bins for bare head blasting conditions.

Severity PET membranes (thickness, mm) Peak crown pressure (kPa +/- SD) Positive phase duration (ms +/- SD)

Low 2 (0.508) 880 +/- 91 1.47 +/- 0.11

Medium 9 (2.286) 3558 +/- 224 3.25 +/- 0.07

High 12 (3.048) 4521 +/- 488 3.66 +/- 0.13

SD, standard deviation

https://doi.org/10.1371/journal.pone.0228802.t004

Fig 6. Equivalent distance to WWI shell explosions. Distance from a WWI German shell explosion to experience

blast conditions tested in this study. Pressure measurements from bare head testing conditions were used to calculate

these distances.

https://doi.org/10.1371/journal.pone.0228802.g006
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exposures, helmets experienced minimal deformation and no evidence of degradation by

repeated blast exposure was observed. Blunt impact of helmet deformation on the head was

not assessed in this study.

Peak tube pressure, helmet type, and their interaction were each found to have a statistically

significant effect on the crown pressure for each measurement location (p<0.001). Statistical

significance of the interaction term between helmet type and tube pressure justifies the use of

different regression slopes for the different helmet types.

At the crown of the head, the interaction term differed significantly between the bare head

and all helmets (p<0.0001), with higher crown pressures for the bare head. There was also a

significant difference in slope between the ACH and the French Adrian helmet (p<0.0001).

When removing the interaction term, the Adrian Helmet results showed a significant differ-

ence in pressure compared to the British/American Brodie helmet and the German Stahlhelm

(p<0.01). The Adrian helmet resulted in lower crown pressures than all other cases. The ACH,

Stahlhelm (GER), and Brodie helmet (AMR) were not found to be significantly different from

each other (p>0.05). The results of the general linear model for the crown measurement loca-

tion are shown in Fig 8. Some of the regression lines for the helmet blast results do not pass

through the origin, suggesting that the peak pressure attenuation provided by helmets might

be nonlinear at lower blast pressures.

Besides lower peak pressures, the crown pressure traces also showed a more gradual loading

rather than a near instantaneous shock front when assessing the helmeted case compared to

the bare head (Fig 5). Video analysis of the blast event showed that the delay in pressure rises

seen in the figure corresponds to the helmet moving in the suspension towards the head, and

the peak pressure time roughly corresponds to the maximum compression of the helmet sus-

pension. However, because of the short durations (< 2 ms) of these pressure peaks, the use of a

blast injury criterion was deemed appropriate.

The blast tests carried out at different amplitudes were found to be in the 50% risk range for

mild, moderate and severe meningeal bleeding for crown pressure on the bare head (Fig 9)

based on the scaled ferret risk curves (section 2.5) [24]. Wearing a helmet was associated with

a decrease in bleeding risk. This shows that the performed tests simulate realistic exposures

where wearing a helmet might change physiological outcomes in the brain. In Fig 10, the 50%

moderate meningeal bleeding case for the bare head is compared to the helmet results at that

level. For the same blast conditions, risk of moderate bleeding is lower than 10% in all helmets,

and close to 1% for the Adrian helmet.

Fig 7. High speed frames of blast impact on the head. Frames from high speed video recording of high intensity blast

tests immediately after blast wave impingement on the (a) Brodie helmet and (b) Adrian helmet.

https://doi.org/10.1371/journal.pone.0228802.g007
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At the forehead measurement location (Fig 11a), there was a significant difference in slopes

between the bare head and all helmets (p<0.0001), and the Stahlhelm was different from the

ACH and Brodie helmet (p<0.05) with higher pressures. No additional differences were found

when the interaction term was removed (p>0.05).

For the back of the head (Fig 11b), there was again a significant difference in slopes between

the bare head and all helmets (p<0.0001). When removing the interaction term to consider

equal slopes, the Stahlhelm was found to differ from the Brodie helmet and ACH (p<0.01),

and the Adrian helmet also differed from the Brodie helmet and ACH (p<0.005).

For pressure measured at the left eye (Fig 11c), the bare head and the ACH both differ in

slopes compared all other helmets (p<0.0001) with higher pressures. The Adrian helmet slope

differs significantly from the Brodie helmet (p<0.001). With equal slopes, the bare head has a

significantly higher pressure than the ACH (p<0.0001).

At the right ear measurement location (Fig 11d), the bare head had a steeper slope than all

helmets (p<0.0001). Comparing with equal slopes, the Adrian helmet had a higher pressure

than the Brodie helmet and ACH (p<0.01), and the Stahlhelm (p<0.05).

The ear pressures for the bare head condition exceeded 50% major rupture risk [33] for all

tested severity levels (Fig 12). Rupture risk was reduced in all helmeted conditions, with less

than 50% risk for a minor rupture at the low severity levels for all helmets except the Adrian

helmet and 50% moderate to 50% major rupture risk at the medium and high severity levels.

Discussion

Blast exposure to the bare head was more severe than any helmeted test for every blast intensity

and at every measurement location. The bare head experienced three to five times higher peak

Fig 8. Higher crown pressures seen without helmet, lower with Adrian helmet. Measured tube and crown pressure

for each test performed, and the linear regression fit for each helmet type. Bare head crown pressure is higher than all

helmets (p<0.0001), and the French Adrian helmet crown pressure is lower than all other helmets (p<0.01).

https://doi.org/10.1371/journal.pone.0228802.g008
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Fig 9. Helmets reduce the risk of meningeal bleeding. Tested blast conditions plotted on brain blast meningeal

bleeding risk curves from Rafaels et al. [24]. Bare head testing conditions are roughly situated in the 50% mild,

moderate, and severe meningeal bleed risk range, whereas the bleeding risk for helmeted tests is much lower (see Fig

10 for a more detailed example).

https://doi.org/10.1371/journal.pone.0228802.g009

Fig 10. Risk reduction for moderate bleeding in helmeted cases. Mean peak pressure measured at the crown of the

head for moderate severity blasts (Table 4), including standard error indicated on the bars. For approximately a 50%

moderate bleeding risk in the bare head scenario, moderate bleeding risks for all helmets is more than 5x lower for the

same testing condition.

https://doi.org/10.1371/journal.pone.0228802.g010
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pressures (Fig 8) at the crown of the head (at similar positive phase durations), which corre-

sponds to higher risk of meningeal bleeding and other potential brain injuries [24]. Helmets

provided more shock wave attenuation at lower pressure levels than at higher pressure levels

(Fig 8), suggesting that helmets might play an especially important role in protection against

mild primary blast induced brain trauma. The effect of wearing a helmet, especially for short

positive phase durations (0.5–5 ms), is a significant reduction in risk of blast brain injury at the

crown of the head for overhead blast scenarios. In other orientations, blast wave measurements

are complicated by the difference between reflective (measured with pressure gauges oriented

parallel to the direction of the blast) and incident (measured with pressure gauges oriented

perpendicular to the direction of the blast) pressures, leading to conflicted reports of helmets

possibly increasing the risk of primary blast injury [36–42]. This risk has to be carefully evalu-

ated because reflected pressure measurements can be two to eight times greater than incident

pressure measurements for the same blast scenario [32].

An interesting result from these experiments is the blast protective effect provided by the

French Adrian helmet, which had a lower crown pressure than all other helmets, despite being

Fig 11. Helmets reduce blast overpressure at all sensor locations on the head. Linear regression fit for each helmet

for peak pressure measured in the blast tube and peak pressure measured at each location on the dummy head (Fig 4).

(a) Forehead: Bare head higher than all helmets (p<0.0001), and Stahlhelm higher than ACH and Brodie (p<0.05). (b)

Back of the head: Bare head higher than all helmets (p<0.0001), Stahlhelm higher than ACH and Brodie (p<0.01), and

Adrian higher than ACH and Brodie (p<0.005). (c) Eye: Bare head higher than all helmets (p<0.0001), ACH higher

than all other helmets (p<0.0001), and Adrian higher than Brodie (p<0.001). (d) Ear: Bare head higher than all

helmets (p<0.0001), Adrian higher than Brodie, ACH (p<0.01), and Stahlhelm (p<0.05).

https://doi.org/10.1371/journal.pone.0228802.g011
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manufactured using similar materials as the Stahlhelm and Brodie Helmet, with a thinner hel-

met wall (Table 1). This result might stem from the deflector crest along the midline of the hel-

met (Fig 1a). Specifically added with overhead shrapnel in mind [43], this feature of the helmet

could deflect the shock wave off to the side of the head, rather than allow shockwave impinge-

ment onto a more planar surface seen in the other helmets. The crest also provides an added

first layer for shock wave reflection before reflecting a second time off the helmet itself. The

crown pressure sensor used in the measurements was located under the deflector crest and

may have experienced a decreased peak pressure because of this. Further studies are needed to

see if surface geometry manipulation or helmet attachments may augment the protective capa-

bilities of helmets against blast exposure.

Peak pressures measured in locations other than the crown of the head were much lower

because of measurement at an orientation incident to the blast wave and being partly or

completely covered by the helmets. In these locations, the Adrian helmet did not provide the

same protective advantage seen at the crown. Pressure attenuation was seemingly determined

by the width of the brim and/or coverage of the helmet (Fig 2). At the ear, the small brim and

limited coverage of the Adrian helmet resulted in higher pressures than the other helmets (Fig

11d), with a corresponding increased risk in eardrum damage (Fig 12). The ACH, without a

brim as seen in the historical helmets, had increased pressures at the eye (Fig 11c) but provided

similar protection at the other measurement locations.

While ballistic protection provided by helmets has increased significantly since WWI and

saved many lives [39], the results found here suggest that the ACH did not perform quantita-

tively or qualitatively better than the historical helmets, and performed worse than the Adrian

helmet for overhead primary blast at the crown of the head. On the other hand, while ballistic

Fig 12. Helmets reduce the risk of eardrum rupture. Measured peak incident pressures at the ear and eardrum

rupture risk curves from Richmond et al. [33]. Risk of eardrum rupture is lower in all helmeted cases compared to the

bare head, and is higher in the French Adrian helmet compared to other tested helmets.

https://doi.org/10.1371/journal.pone.0228802.g012
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protection has been an active focus in combat helmets design, protection from primary blast

has not been an important design element [39], and the level of protection from primary blast

from all of the helmets tested is large compared with the bare head. One of the reasons for this

is that the mechanism for blast protection was poorly understood for the first sixty years fol-

lowing WWI. While the exact injury mechanism for primary blast is still unknown, the scien-

tific community (cf. Cooper, 1991) [44] identified acoustic impedance as one important

protection mechanism against blast waves.

The acoustic impedance protection mechanism against blast trauma is different than

against ballistic trauma. An ideal protection against ballistic impacts can locally absorb high

energy impacts without failure or excessive deformation by distributing the energy through

the material [45]. Desirable materials have high strength, high modulus, and a high local speed

of sound. Protection from primary blast waves can be obtained by attenuating the blast wave

using an acoustic impedance mismatch at an interface the wave is travelling through. An

increased difference in acoustic impedance causes a higher proportion of the blast wave to be

reflected, rather than penetrate into the body where it causes local stresses and tissue damage

[44]. The reflection coefficient R can be calculated from Eq 2.

R ¼
Zhelmet � Zair

Zhelmet þ Zair
ð2Þ

In Eq 2, Zhelmet is the acoustic impedance of the helmet and Zair is the acoustic impedance

of the air. Acoustic impedance Z is calculated as the product of speed of sound in the material

and density of the material. Ideal materials have a high local speed of sound and a high density.

Steel has a greater acoustic impedance (~38�106 Pa�s/m3 for hardened manganese steel [46],

used in WWI helmets) than composite fibers (~12�106 Pa�s/m3 for Kevlar1 129, used in ACH

[47]), but since both impedances are orders of magnitude higher than air (~440 Pa�s/m3),

reflection will be relatively similar (R = 0.999977 for steel and R = 0.999927 for Kevlar1 129).

This explains the similar results for the ACH, Brodie helmet, and Stahlhelm. Many helmet and

body armor materials have properties that are desirable for both ballistic and blast trauma.

Because a shock wave reflection occurs at every interface where there is an acoustic impedance

mismatch, primary blast protection can be improved by using multi-layered configurations of

high and low acoustic impedance, with each layer reflecting a proportion of the penetrating

wave. Not every layer of material will be beneficial to blast wave protection, and if a material

has an acoustic impedance in between two neighboring materials, it will enhance blast wave

penetration. The layered structure of the ACH might contribute to its blast protection, but

future studies are needed to evaluate the effect of a layered structure.

Helmet wall thickness improves ballistic protection by providing higher strength and

energy absorption, but it doesn’t affect blast protection much since reflection only occurs at

interfaces. While the Adrian helmet provided superior blast protection at the crown of the

head for overhead blast in this study, Dean [1] noted that the ballistic protection it provided

was less than both the Brodie helmet and Stahlhelm.

One of the limitations of this study is that only an overhead blast scenario was examined.

While this would be an accurate approximation of blasts in trench warfare as in WWI or air

bombings of soldiers in the field during major unit action, it would not be as applicable to

other cases such as improvised explosive devices (IEDs) used as roadside bombs, a significant

cause of injury and death in conflicts in Iraq and Afghanistan [48]. The current study evaluated

primary blast protection without considering reflective surfaces. In combat scenarios, reflec-

tion of a blast wave off of a surface can change outcomes considerably [49], such as when a sol-

dier lies on the ground with the crown of the head towards the blast, or is confined within a
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trench. Another limitation is that the historical helmets tested are over one hundred years old,

and their material properties might not be the same as they were originally. While properties

of steel are relatively stable, the helmet linings may have degraded. However, there is no guar-

antee that replicas would be identical copies of the original either, so this study stays as true to

the original helmets as possible. Finally, this study did not include the potential from blunt

neurotrauma from impacts of the helmet on the head following acceleration from the transit-

ing shock overpressure. This effect may be large with blasts that had larger positive phase dura-

tion and larger impulse than for the shells considered in this study.

Conclusions

Interestingly, though primary blast protection was not a design objective, both historical and

modern combat helmets provide primary blast protection. Tested modern helmets provide

similar protection to historical ones in an overhead blast scenario. All tested helmets provided

significant protection against primary blast brain injury compared to a bare head scenario.

This protection substantially decreased the potential for primary blast neurotrauma from typi-

cal World War I artillery threat equivalents based on available injury criteria. While the hel-

mets also provided protection against eardrum rupture based on current eardrum injury risk

assessments, the resulting pressures were still injurious even with the helmets with extended

brims. Major improvements made in helmet technology to increase ballistic protection do not

provide the same increase in blast protection. At certain measurement locations, some histori-

cal helmets provided more blast attenuation than the modern helmet even though the modern

helmets based on modern fiber composites are far more protective from typical ballistic

threats. Specifically, the French 1915 Adrian helmet produced a lower peak pressure at the

crown of the head compared to the Advanced Combat Helmet and the other historical hel-

mets. These results show that there is considerable overlap in materials that have good qualities

for ballistic and blast protection, but the protection mechanisms are different. Protection

against primary blast focuses largely on impedance mismatches that reduce the amplitude of

the transmitted waves to the head. The introduction of steel helmets during World War I

reduced the toll of both blast and ballistics injuries at the front. In the future, helmet protection

against primary blast might be improved by material choice, multiple material layers with dif-

ferent acoustic impedance, or the geometry of the helmet.
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