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parcellation of the neonatal cortex 
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children’s Regional infant Brain 
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Longitudinal studies measuring changes in cortical morphology over time are best facilitated by 
parcellation schemes compatible across all life stages. the Melbourne children’s Regional infant 
Brain (M-CRIB) and M-CRIB 2.0 atlases provide voxel-based parcellations of the cerebral cortex 
compatible with the Desikan-Killiany (DK) and the Desikan-Killiany-tourville (DKt) cortical labelling 
schemes. This study introduces surface-based versions of the M-CRIB and M-CRIB 2.0 atlases, termed 
M-cRiB-S(DK) and M-cRiB-S(DKt), with a pipeline for automated parcellation utilizing FreeSurfer and 
developing Human connectome project (dHcp) tools. Using T2-weighted magnetic resonance images 
of healthy neonates (n = 58), we created average spherical templates of cortical curvature and sulcal 
depth. Manually labelled regions in a subset (n = 10) were encoded into the spherical template space 
to construct M-cRiB-S(DK) and M-cRiB-S(DKt) atlases. Labelling accuracy was assessed using Dice 
overlap and boundary discrepancy measures with leave-one-out cross-validation. cross-validated 
labelling accuracy was high for both atlases (average regional Dice = 0.79–0.83). Worst-case boundary 
discrepancy instances ranged from 9.96–10.22 mm, which appeared to be driven by variability in 
anatomy for some cases. the M-cRiB-S atlas data and automatic pipeline allow extraction of neonatal 
cortical surfaces labelled according to the DK or DKt parcellation schemes.

The delineation of cortical areas on magnetic resonance images (MRI) are considered to be a prerequisite for 
beginning to understand the complexities of the human brain1. Accurate understanding of development of the 
brain is reliant on accurate parcellation of the cerebral cortex, from around the time of normal birth onwards.

FreeSurfer2–5 is a commonly used cortical extraction and parcellation software suite applicable to T1-weighted 
MRI scans of children and adults, and its available parcellation schemes include the Desikan-Killiany (DK)6 and 
Desikan-Killiany-Tourville (DKT)7 adult atlases. However, tools tuned for adult brains, such as the adult T1-based 
templates and atlases provided in FreeSurfer5,8, are not directly applicable to neonatal brain images. Tissue signal 
intensities are different in neonatal brains compared to those in adults9. Thus the optimal MRI sequences for the 
grey and white matter contrast required to identify cortical surfaces differ by age. While T1-weighting is optimal 
for adult brains, T2-weighted contrasts are optimal for neonatal brains. Consequently, specialized algorithms are 
required in order to contend with neonatal-specific tissue intensities10,11. Thus, brain atlases and image segmen-
tation and parcellation tools specific for infants are required.

Many methods for cortical parcellation of infant brain images have focused on warping standardized cortical 
atlases from adult brains6,7,12 onto infant brains13,14. However, labelling a neonatal brain image using adult-derived 
atlases is problematic, due to the inherent difference in anatomy and tissue composition between infant and adult 
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brains15. Recently, we introduced the Melbourne Children’s Regional Infant Brain (M-CRIB) atlases16,17, which 
are neonatal-specific, voxel-wise brain atlases. The cortical parcellations were constructed to be compliant with 
the DK6 and DKT7 adult cortical parcellation schemes. Each of the M-CRIB atlases are comprised of 10 neonatal 
brains that have been extensively manually parcellated to accurately reflect brain structures at this time-point. 
Parcellation of new data has been achieved using multi-atlas label fusion algorithms that probabilistically assign 
labels to each voxel after warping the set of parcellated atlases to a novel dataset18,19.

While accurate labelling can be achieved using voxel-based parcellation schemes16,18,20, surface-based reg-
istration methods lead to significantly improved alignment of cortical landmarks, including cortical folds, and 
therefore more accurate placement of areal boundaries21,22.

The Developing Human Connectome Project (dHCP) has recently provided a pipeline for segmentation and 
cortical extraction for T2-weighted images of neonatal brains20, along with an infant cortical surface-based atlas 
comprising the major lobes23. This process segments brain tissue into cerebral and cerebellar grey and white mat-
ter, and various subcortical grey matter structures, before extracting an inner and outer cortical surface which 
is automatically partitioned into lobes. These existing cortical surface extraction tools can be expanded upon by 
incorporating our M-CRIB brain atlases to provide accurate fine-grained cortical surface-based parcellations, 
avoiding projection of a non-surface parcellation or a static template. Thus, measures such as cortical thickness, 
surface area, and curvature for each cortical sub-division of the M-CRIB atlases can subsequently be derived for 
infant MRI scans.

In this study we aimed to provide neonatal average surface templates and surface-based cortical atlases based 
on the M-CRIB and M-CRIB 2.0 parcellation schemes, that are compatible with FreeSurfer and the dHCP pipe-
lines2,5,8. Additionally, we aimed to provide companion scripts to perform cortical surface extraction, surface 
registration and atlas-based cortical parcellation using novel neonatal T2-weighted brain images. Given the com-
patibility of the neonatal M-CRIB-S parcellation schemes with the adult DK and DKT schemes, the proposed 
tools can generate parcellated neonatal cortical regions that are comparable with those obtained using exist-
ing tools such as FreeSurfer at older time points, enabling longitudinal studies, beginning from the neonatal 
time-point. This will be valuable for investigating neurological development and disease progression from infancy 
to adulthood.

Results
Surface-space versions of the M-CRIB 2.0 and M-CRIB parcellations were derived and named M-CRIB-S(DKT) 
and M-CRIB-S(DK), respectively. An automated pipeline to segment novel T2-weighted neonatal images, extract 
cortical surfaces, and perform cortical parcellation with the M-CRIB-S(DK) and M-CRIB-S(DKT) atlases, was 
delivered. Labelling accuracy of this pipeline was assessed utilizing a Leave-One-Out atlas generation and auto-
mated parcellation strategy for each of the labelled atlas training set (n = 10). Results of the Leave-One-Out analy-
sis of labelling accuracy, comparing automated labelling to manually-defined labels in the labelled dataset (n = 10) 
are shown in Figs. 1, 2 and 3.

Figure 1 shows the vertex-wise parcellation mismatch rates for both atlases in midline (i), lateral (ii), superior 
(iii), inferior (iv), frontal (v), and occipital (vi) aspects. Hemisphere-wide vertex-wise agreement rates were simi-
lar across parcellation schemes: the average for M-CRIB-S(DKT) was 0.84 [range 0.78–0.87], and the average for 
M-CRIB-S(DK) was 0.83 [range 0.77–0.87]. The rates of high mismatch are confined to region boundaries, indi-
cating that the bulk of the central portions always agreed with ground truth. Exceptionally high rates of mismatch 
can be seen for the frontal pole and temporal pole labels in the M-CRIB-S(DK).

Figure 2 displays regional Dice measures for M-CRIB-S(DKT) and M-CRIB-S(DK). Dice scores for both 
atlases were generally high (0.79–0.83). For the M-CRIB-S(DKT) parcellation scheme, per-region mean Dice 
measures were similar across hemispheres (left: mean = 0.82, SD = 0.05; right: mean = 0.83, SD = 0.05). In both 
hemispheres, the highest Dice scores were observed in the insula (left: 0.95; right: 0.94). The lowest Dice score 
observed in the left hemisphere was for the pars triangularis (0.75), and the lowest Dice score in the right hemi-
sphere was for the posterior cingulate (0.75). For the M-CRIB-S(DK) parcellation scheme, per-region mean Dice 
measures were similar to those listed above for the M-CRIB-S(DKT) parcellation, and were again similar between 
hemispheres (left: mean = 0.79, SD = 0.10; right: mean = 0.80, SD = 0.07). The highest Dices scores in each 
hemisphere were again seen in the insula (left: 0.95; right: 0.94). The lowest Dice scores were outliers observed in 
the frontal pole in the left hemisphere (0.50), and in the banks of the superior temporal sulcus region in the right 
hemisphere (0.55).

Figure 3 shows per-region Hausdorff distances, which measure worst-case boundary discrepancy between 
automatic and manual labels for M-CRIB-S parcellation schemes. For the M-CRIB-S(DKT) parcellation scheme, 
per-region mean Hausdorff distances were similar between hemispheres (left: mean: 10.22 mm, SD = 2.99 mm; 
right: mean: 10.13 mm, SD = 2.77 mm). The smallest Hausdorff distances for each hemisphere were both seen in 
the insula (left: 3.27 mm, right: 4.11 mm). The largest Hausdorff distance for the left hemisphere was observed 
in the inferior parietal region (16.18 mm), and the largest in the right hemisphere was for the superior parietal 
region (15.91 mm).

For the M-CRIB-S(DK) parcellation scheme, Hausdorff distances were similar to those for M-CRIB-S(DKT) 
and were again similar between hemispheres (left: mean = 10.3 mm, SD = 3.08 mm; right: mean = 9.96 mm, 
SD = 2.67 mm). The smallest Hausdorff distances observed in each hemisphere were again both in the insula (left: 
3.23 mm, right: 4.11 mm). The largest Hausdorff distance seen in the left hemisphere was for the inferior parietal 
region (16.39 mm), and in the right hemisphere was for the superior parietal region (15.96 mm).

Individual measurements of per-subject and per-label Hausdorff distances ranged from 1.9–25.6 mm in 
M-CRIB-S(DKT) and 2.4–25.3 mm in M-CRIB-S(DK). Figure 4(i) shows some examples of individual worst-case 
and (ii) best-case Hausdorff distances between ground truth and estimated labels.
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Figure 1. Vertex-wise parcellation mismatch rates for the M-CRIB-S(DKT) and M-CRIB-S(DK) atlases using 
the Leave-One-Out cross-validation method shown on the template inflated surfaces. Aspects shown are as 
follows: midline (i), lateral (ii), superior (iii), inferior (iv), frontal (v), and occipital (vi) for the left (LH) and 
right hemispheres (RH). Warmer colours indicate greater vertex-wise mismatch between automatic and manual 
labels.

Figure 2. Per-region Dice coefficients for the Leave-One-Out cross-validation test for labelled datasets 
comparing (i) automated with manual M-CRIB-S(DKT) parcellations, and (ii) automated with manual 
M-CRIB-S(DK) parcellations. The banks of the superior temporal sulcus (BSTS), frontal pole (FP), and 
temporal pole (TP) regions are greyed out in (i) because they are not present in the DKT parcellation 
scheme. CAC: Caudal anterior cingulate, CMF: Caudal middle frontal, CUN: Cuneus, ENT: Entorhinal, FUS: 
Fusiform, INFP: Inferior parietal, INS: Insula, ISTC: Isthmus cingulate, IT: Inferior temporal, LIN: Lingual, 
LOCC: Lateral occipital, LORB: Lateral orbitofrontal, MORB: Medial orbitofrontal, MT: Middle temporal gyrus, 
PARH: Parahippocampal, PARC: Paracentral lobule, POPE: Pars opercularis, PORB: Pars orbitalis, PCING: 
Posterior cingulate, PCAL: Pericalcarine, POSTC: Posterior cingulate, PCUN: Precuneus, PREC: Precentral, 
PTRI: Pars triangularis, RAC: Rostral anterior cingulate, RMF: Rostral middle frontal, SF: Superior frontal, 
SMAR: Supramarginal gyrus, SP: Superior parietal, ST: Superior temporal gyrus, TT: Transverse temporal 
gyrus.
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Figure 5 shows a comparison of parcellation schemes (i), average curvature (ii) and sulcal depth maps (iii) for 
the M-CRIB-S, University of North Carolina (UNC)14, and dHCP23 atlases (right hemisphere smoothed white 
matter surfaces). The M-CRIB-S parcellation is the result of the automated parcellation method applied to the 

Figure 3. Per-region Hausdorff distances, in mm units, for the Leave-One-Out cross-validation test for labelled 
datasets comparing (i) automated with manual M-CRIB-S(DKT) parcellations and (ii) automated with manual 
M-CRIB-S(DK) parcellations. The banks of the superior temporal sulcus (BSTS), frontal pole (FP), and temporal 
pole (TP) regions are greyed out in (i) because they are not present in the DKT parcellation scheme. CAC: 
Caudal anterior cingulate, CMF: Caudal middle frontal, CUN: Cuneus, ENT: Entorhinal, FUS: Fusiform, INFP: 
Inferior parietal, INS: Insula, ISTC: Isthmus cingulate, IT: Inferior temporal, LIN: Lingual, LOCC: Lateral 
occipital, LORB: Lateral orbitofrontal, MORB: Medial orbitofrontal, MT: Middle temporal gyrus, PARH: 
Parahippocampal, PARC: Paracentral lobule, POPE: Pars opercularis, PORB: Pars orbitalis, PCING: Posterior 
cingulate, PCAL: Pericalcarine, POSTC: Posterior cingulate, PCUN: Precuneus, PREC: Precentral, PTRI: 
Pars triangularis, RAC: Rostral anterior cingulate, RMF: Rostral middle frontal, SF: Superior frontal, SMAR: 
Supramarginal gyrus, SP: Superior parietal, ST: Superior temporal gyrus, TT: Transverse temporal gyrus.

Figure 4. Worst-case (i) and best-case (ii) instances of boundary discrepancies, measured by Hausdorff 
distances, between estimated (green) and manual (red) label boundaries. The star markers and white paths 
depict the traversal between nearest neighbours. Other surface vertices are shaded according to curvature, with 
light and dark grey denoting gyri and sulci, respectively.
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average surfaces. The UNC and dHCP parcellation labels are those included in the released data packages availa-
ble for download. The 42-week versions of the UNC and dHCP atlases were chosen as the closest age to the mean 
of the M-CRIB-S cohort (41.7 weeks postmenstrual age (PMA)).

Discussion
The primary contribution of this work is the provision of atlases and tools that facilitate cortical surface extrac-
tion and parcellation of the neonatal cortex into 31 or 34 regions. Our pipeline is based on T2-weighted images 
of neonates around term equivalent age and uses a common adult-compatible parcellation scheme, with 
neonatal-specific training data. This work extends our previous M-CRIB and M-CRIB 2.0 voxel-based atlases to 
enable surface-based parcellation of the neonatal cortex.

We have applied this method to a cohort of healthy, term-born infants (mean age at scan = 42.4 weeks). The 
full age range of subjects suitable for processing under the proposed pipeline will depend on whether tissue inten-
sity contrast is adequate to reliably segment brain structures and extract cortical surfaces, and whether cortical 
folding complexity is enough to identify all macrostructural morphological features for surface-based template 
registration and region identification. Tissue segmentation and cortical surface extraction using DrawEM and 
Deformable are designed to be compatible with T2-weighted white/grey matter contrasts visible between 1–5 
months24 and have been demonstrated on data acquired between 28–45 weeks PMA20. From 5 to 8 months’ PMA 
the T2-weighted grey/white matter contrast is transitioning to become like that of an adult by about 9 months’ 
PMA via an isocontrast phase (6–8 months)24. As such, tissue segmentation using these protocols would only 
be expected to work optimally up to approximately 5 months of age, before the T2-weighted image becomes 
isointense.

Small-scale cortical folding occurs mostly late in gestation, with many sulci and gyri that define areal bounda-
ries within the M-CRIB-S(DK) and M-CRIB-S(DKT) atlases not being reliably detectable until approximately 40 
weeks PMA13. It is possible that a sulcus, for example, may not have formed a sufficiently deep groove to be sep-
arated from neighbouring gyri. Thus, careful inspection of parcellation results for subjects scanned at ages below 
40 weeks’ PMA is required to ensure that the morphological features that define areal boundaries are present. 
While full-term subjects were chosen for our atlases to avoid confounds introduced by the heterogeneous effects 
of preterm birth on brain morphology25, the lack of this heterogeneity in the training set may limit applicability to 
preterm or other populations at high risk for brain maldevelopment or malformation. Future work extending our 
atlases to represent broader ages or clinical groups would be valuable. Nonetheless, the parcellation component 
may be appropriate for subjects below 40 weeks and beyond 5 months of age, provided cortical surface data were 
obtained via other preprocessing methods.

Parcellation accuracy of the automated surface-based labelling methods using the M-CRIB-S atlases was 
quantified using Dice overlap measures and Hausdorff distances using Leave-One-Out cross-validation. Dice 
overlap scores were high on average and appeared similar in the left and right hemisphere. The per-vertex mis-
match rates (Fig. 1) were largely zero for the bulk of the internal portions of most regions. High rates of mismatch 
for the frontal pole, temporal pole and BSTS labels in the M-CRIB-S(DK) atlas were unsurprising since low label-
ling accuracy was reported for these regions in the original adult DK atlas26, and they were subsequently removed 
in the adult DKT atlas27. The inaccuracy is mainly due to the small size and somewhat arbitrary boundaries of 

Figure 5. (i) Indicative parcellations, (ii) curvature, and (iii) sulcal depth maps for the M-CRIB-S, University 
of North Carolina (UNC)14, and developing Human Connectome Project (dHCP)23 atlases displayed on right 
hemisphere smoothed white matter surfaces provided for each respective atlas. The M-CRIB-S and UNC 
parcellations in (i) are based on the DK parcellation scheme. See Bozek et al.23 for a description of the dHCP 
parcellation scheme. In (ii) and (iii) vertices are coloured according to whether they reside in a gyrus (green) or 
a sulcus (red).
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these regions. As such, this is an inherent limitation of the M-CRIB-S(DK) atlas. When compared to accuracy 
measures presented for the adult DKT atlas, Klein and Tourville7 presented Leave-One-Out Dice measures of 
overlap between FreeSurfer parcellations and manual parcellations, which ranged from 0.72–0.98. These val-
ues are similar to our Dice overlap results, suggesting that the presented pipeline provides a labelling accuracy 
consistent with adult parcellation tools. However, it should be noted that the Dice metrics provided in the DKT 
paper7 were not calculated via surface vertices, rather, the parcellations are rasterized into the grey matter ribbon 
voxels, from which per-label Dice coefficients are computed. While the surface and volumetric Dice measures 
come from different sources, by construction the labels of the rasterized version correspond to the labels on the 
surfaces and thus the two are closely related.

Boundary discrepancies between manual and automated labels were measured using Hausdorff dis-
tance. The Hausdorff distance is the maximal distance travelled between any two nearest neighbours of man-
ual and automatic label boundary contours. Most regions had Hausdorff distances between 5–8 mm for both 
M-CRIB-S(DKT) and M-CRIB-S(DK) atlases. Figure 4(i) shows individual instances of worst-case boundary 
discrepancies in the middle temporal gyrus and inferior parietal labels. The subjects shown, subjects 7 and 8, 
appeared to exhibit sulcation that varied more than for other subjects in the temporal and parietal cortices and, 
as a result, the boundaries of these regions were shifted with respect to other training set subjects. An additional 
confound in manual labelling was that in some instances, label boundaries in the protocols relied on landmarks 
that were abstract or subject to large individual variability in presence or in morphology. In contrast, the best-case 
boundary discrepancies (Fig. 4(ii)) feature the insula and pericalcarine regions. The high accuracy of the esti-
mated insula boundary is likely due its particularly well-defined boundaries in the original parcellation protocols, 
relatively easily identifiable in images and consistent across subjects. Other literature has reported cross-validated 
boundary discrepancy measures between manual and automated segmentations of the adult DK atlas dataset6. 
Rather than using Hausdorff distances, discrepancies were calculated as average per-vertex distances between 
manual and automated label boundaries across subjects. Graphical depictions of these average distances appeared 
to show a maximum discrepancy of 1 mm. Average boundary mismatch is incompatible with the worst-case dis-
crepancy used in this paper and, thus, cannot be directly compared.

The dHCP set of tools are currently available for cortical surface extraction and lobar parcellation. 
Makropoulos et al.20 recently highlighted the potential value of incorporating M-CRIB parcellation in these 
tools20, as its compatibility with the DK6 adult parcellation may facilitate comparisons of cortical measures 
between the perinatal and adult time points. Here, we provide a publicly available, surfaced based cortical parcel-
lation that can accomplish this objective.

The value of this surface-based atlas and the associated processing scripts is automated parcellation of 
the neonatal cortex that is straightforward to employ in longitudinal studies. The processing scripts and the 
M-CRIB-S(DK) and M-CRIB-S(DKT) atlases were constructed to be used with FreeSurfer, to produce compatible 
output and give a direct correspondence between region-based statistics such as cortical thickness, surface area, 
and curvature measures at neonatal, childhood and adult timepoints.

conclusion
This paper presented the M-CRIB-S(DKT) and M-CBRIB-S(DK) atlases: surface-based versions of the volu-
metric M-CRIB and M-CRIB 2.0 atlases. It also presented an automated pipeline that involves segmentation 
of novel T2-weighted neonatal images, extraction of cortical surfaces, followed by cortical parcellation with the 
M-CRIB-S(DK) and M-CRIB-S(DKT) atlases, which are neonatal versions of the adult DK and DKT atlases. The 
curvature template registration targets, average surfaces, labelling training data, and pipeline execution scripts 
are available. Additionally, for interoperability with the dHCP atlas we have provided a registered version of the 
spherical template surfaces to be in correspondence to the dHCP template.

Methods
participants. A total of 58 term-born (≥37 weeks’ gestation), healthy neonates (40.2–44.9 weeks post-men-
strual age (PMA) at scan, M = 42.4, SD = 1.2, 26 female) were scanned as control subjects as part of preterm birth 
studies28,29. Criteria for a subject being healthy were no admissions to a neonatal intensive care or special care unit, 
resuscitation at birth not required, birthweight more than 2.5 kg and no evidence of congenital conditions known 
to affect development and growth. Ethical approval for the studies was obtained from the Human Research Ethics 
Committees of the Royal Women’s Hospital and the Royal Children’s Hospital, Melbourne and the research studies 
complied with the standards of the Declaration of Helsinki. Written informed consent was obtained from parents. 
Data that exhibited excessive movement or other corrupting artefacts were excluded. This cohort was subdivided 
into the following two subsets: labelled and unlabelled subsets. The labelled set comprised the ten subjects (40.3–
43.0 weeks’ PMA at scan, M = 41.7, SD = 1.3, 4 female) of the M-CRIB atlas that had been previously selected from 
this cohort on the basis of minimal motion or other artifact on the T2-weighted images16,17. The unlabelled subset 
consisted of the remaining 48 subjects (40.2–44.9 weeks’ PMA at scan, M = 42.6, SD = 1.3, 22 female).

MRi acquisition. All neonate subjects were scanned at the Royal Children’s Hospital, Melbourne, Australia, 
on a 3 T Siemens Magnetom Trio scanner during unsedated sleep. T2-weighted images were acquired with a turbo 
spin echo sequence with the following parameters: 1 mm axial slices, flip angle = 120°, repetition time = 8910 ms, 
echo time = 152 ms, field of view = 192 × 192 mm, in-plane resolution = 1 mm2 (zero-filled interpolated to 
0.5 × 0.5 × 1 mm in image reconstruction), matrix size = 384 × 384. All T2-weighted images were resliced to 
voxel-volume-preserving size of 0.63 × 0.63 × 0.63 mm16,30.

processing pipeline. The proposed processing pipeline and M-CRIB-S training data is graphically described 
in Fig. 6.
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image segmentation. Each image in the unlabelled dataset (Fig. 6(i)) was segmented into cerebral white 
and grey matter (including lobar sub-divisions), cerebellum and various subcortical grey matter structures auto-
matically using the DrawEM software package11,31. Briefly, this technique non-linearly registered the non-labelled 
T2-weighted images to multiple pre-labelled images. The non-labelled image was then segmented using label 
fusion. The proposed pipeline utilized the wrapper script neonatal-pipeline-v1.1.sh included in DrawEM for 
execution. Figure 6(ii) shows an example voxel-based DrawEM segmentation output.

The labelled M-CRIB atlas images were already segmented appropriately for DrawEM compatibility. Each 
M-CRIB segmented image comprised manually traced cerebral white and grey matter, cerebellum, basal ganglia 
and thalamus, cortical, ventricular and other subcortical labels. Tracing protocols for the cortical16,17 and subcor-
tical30 segmentations have been previously described. Figure 6(b) shows an example M-CRIB-S segmented image.

Surface extraction. DrawEM compatible segmentations containing hemispheric white matter and grey 
matter, cerebellar, ventricular, brainstem and subcortical grey matter labels were used as input for the Deformable 
module20,32 of MIRTK (https://github.com/BioMedIA/MIRTK). Deformable used to extract the inner and outer 
boundaries of each hemisphere of the cerebral cortices for both labelled and unlabelled datasets. Figure 6(iii) 
shows inner and outer surfaces overlaid onto the original T2-weighted image (top), and lateral aspects of the inner 
(middle) and outer (bottom) surfaces in 3D, respectively.

Surface inflation and spherical mapping. The proposed pipeline used the FreeSurfer tools mris_
inflate and mris_sphere8 to construct inflated and spherical versions of the white matter surfaces, respectively. 
Figure 6(iv) shows exemplary inflated and spherical surface outputs. Default FreeSurfer 6.0.0 options were used 
for both tools with the following exception: the negative triangle removal option “-remove_negative 1” was added 
to mris_sphere. The inflated surfaces exhibited the same gross shape features as those seen when FreeSurfer is 
executed on adult brain images. Specifically, an overall elliptical appearance, a dimple in the vicinity of the insula, 
and the smooth protrusion of the temporal and occipital poles.

curvature template generation. Surface templates, comprised of all labelled and unlabelled subjects, 
were constructed using the curvature-based spherical mapping, alignment and averaging method as previously 
described2,8. Briefly, spherical registration involves linear (rotation) and non-linear displacement of vertices in 
spherical space. The registration algorithm aims to optimise agreement of white and inflated sulcal depth maps of 
a subject’s surfaces to a template. The use of local curvatures and sulcal depth to drive registration means that cor-
responding sulci and gyri are aligned. An iterative procedure of aligning spherical surfaces from both the labelled 
and unlabelled datasets to the current template, followed by creation of a new template, was performed. The final 
template curvature and sulcal depth maps were created by averaging all aligned maps (see Fig. 6(a)).

Figure 6. Exemplary surface extraction pipeline output for one labelled subject. Panels show: (i) the original 
T2-weighted image; (ii) segmentations according to the DrawEM techniques; (iii) Deformable-extracted cortical 
surfaces, where the top panel shows inner (yellow) and outer (red) cortical surfaces overlaid onto the original 
image, and the middle and bottom panels show lateral aspects of the left hemisphere inner and outer surfaces 
in 3D; (iv) “inflated” and spherical versions of the white surface; (v) spherical surface registered to the template 
surface (a); (vi) automatic parcellation using the M-CRIB-S(DKT) scheme shown on the subject inflated surface 
for lateral (left) and medial (right) aspects. The label training data are depicted in volume format (b), and in 3D 
on the average inflated surface for lateral (c), and medial (d) aspects. Surface vertices in (iii), (iv) and (v) are 
coloured according to local mean curvature.
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The spherical mapping of each white matter surface onto a common spherical space (Fig. 6(v)) meant that any 
given point in template space could be mapped to a point on each subject’s white matter surface, and those points 
were in correspondence across subjects. This enabled average white, pial and inflated surfaces to be constructed 
using the FreeSurfer tool mris_make_average_surface, by resampling surfaces onto the 6th order common icosa-
hedron. The 6th order icosahedron was chosen due to having minimal density while still upsampling the original 
surfaces.

Surface labelling. For the 10 cases in the labelled dataset, the volumetric M-CRIB and M-CRIB 2.0 labels 
were projected to the corresponding white matter surface vertices using nearest labelled neighbour projection 
(See Fig. 6(vi) for parcellation using the M-CRIB-S(DKT) scheme). Label data were individually checked for 
anatomical accuracy of label placement by one author (B.A.). For both atlases, label placement was considered 
highly accurate. In a few instances, very minor mislabelling was identified and manually corrected on the relevant 
surface and corrected volumetrically in some cases for M-CRIB 2.0 data.

Figure 7 depicts the projection of the M-CRIB and M-CRIB 2.0 labels projected onto the white matter sur-
face generated by Deformable for a single labelled subject. These surface-space versions of the M-CRIB 2.0 and 
M-CRIB parcellations are called M-CRIB-S(DKT) and M-CRIB-S(DK), respectively. While similar, the high-
lighted regions demonstrate some differences including label boundary changes (for example, in lateral orb-
itofrontal and pars orbitalis) and region removal (banks of the superior temporal sulcus). A comprehensive 
description of the differences in regions and region boundaries between the M-CRIB and M-CRIB 2.0 parcella-
tions is available in previous publications16,17.

parcellation training set construction. Parcellation training sets were constructed using the labelled set 
for each M-CRIB-S(DKT) and M-CRIB(DK) cortical label, using the method of Fischl et al.5. Briefly, for each 
template, spatial prior distributions for each cortical label were constructed on the surface using the tool mris_ca_
train. The M-CRIB-S(DKT) parcellation of the average white surface is shown in Fig. 6(c,d).

template surface construction. Using both labelled and unlabelled datasets, we derived group-averaged 
white (Fig. 8(i)), pial (ii), and inflated surfaces (iii) along with curvature (iv) and sulcal depth maps in a com-
mon spherical space. For interoperability with the dHCP and UNC atlases14,23, we also provide versions of the 
M-CRIB-S spherical template surfaces registered to the dHCP 42-week and UNC 42-week spherical template 
surfaces. M-CRIB-S(DKT) and M-CRIB-S(DK) parcellation maps in each labelled subject were transferred to 
the spherical template and used as the training set for the FreeSurfer tool mris_ca_label. We applied this label-
ling to the average white matter surface using the M-CRIB-S(DKT) to illustrate our cortical labelling approach 

Figure 7. Illustrative surface projections of the manual parcellation for one subject from the labelled set 
using the M-CRIB-S(DKT) and M-CRIB-S(DK) labels for left (LH) and right (RH) hemispheres. The ellipses 
highlight some differences between M-CRIB-S(DKT) and M-CRIB-S(DK). The white ellipses highlight location 
disagreements of the lateral orbitofrontal (LORB) and pars orbitalis (PORB) regions between atlases. The black 
ellipses encompass the banks of the superior temporal sulcus region, which is not present in the DKT. BSTS: 
Banks of the superior temporal sulcus, CAC: Caudal anterior cingulate, CMF: Caudal middle frontal, CUN: 
Cuneus, ENT: Entorhinal, FP: Frontal pole, FUS: Fusiform, INFP: Inferior parietal, INS: Insula, ISTC: Isthmus 
cingulate, IT: Inferior temporal, LIN: Lingual, LOCC: Lateral occipital, LORB: Lateral orbitofrontal, MORB: 
Medial orbitofrontal, MT: Middle temporal gyrus, PARH: Parahippocampal, PARC: Paracentral lobule, POPE: 
Pars opercularis, PORB: Pars orbitalis, PCING: Posterior cingulate, PCAL: Pericalcarine, POSTC: Posterior 
cingulate, PCUN: Precuneus, PREC: Precentral, PTRI: Pars triangularis, RAC: Rostral anterior cingulate, RMF: 
Rostral middle frontal, SF: Superior frontal, SMAR: Supramarginal gyrus, SP: Superior parietal, ST: Superior 
temporal gyrus, TP: Temporal pole, TT: Transverse temporal gyrus.
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(Fig. 8(i–iii)). For comparison, the M-CRIB-S(DK) labelling is also shown (Fig. 8(v)). These group-average label 
images may be used for display of statistical analysis results using the M-CRIB-S(DKT) or M-CRIB-S(DK) atlases.

parcellation of a novel image. Novel T2-weighted images can be parcellated using the M-CRIB-S atlas 
data using the following sequence of processing steps (see Fig. 6): (1) Apply DrawEM and Deformable to extract 
white and pial surfaces, (2) Perform surface inflation, spherical projection and registration to the M-CRIB-S 
surface template using FreeSurfer tools, and (3) Use neonatal specific cortical label priors and the automatic 
labelling tool mris_ca_label to parcellate the surfaces. A collection of scripts are provided to execute the pipe-
line, which can be found along with the M-CRIB-S data on the GitHub page (https://www.github.com/
DevelopmentalImagingMCRI/MCRIBS). This pipeline was used to perform cortical parcellation on all unlabelled 
images for validation.

parcellation accuracy tests. Parcellation accuracy of the proposed automatic labelling pipeline against 
manual M-CRIB parcellations was quantified within a Leave-One-Out cross-validation framework. For each of 
the 10 subjects, curvature templates were constructed using the remaining nine labelled subjects and all unlabelled 
subjects. Parcellation training data was constructed from the remaining nine labelled subjects. The left-out subject 
was then segmented and parcellated using the pipeline. Per-region label accuracy was assessed using Dice meas-
ures, a metric of overlap, and Hausdorff Distances, a metric of boundary error. The Hausdorff distance between 
the automatic and manual labelling of a region in one subject is the greatest of all shortest distances between two 
closed contours. Visualisations of these maximal boundary mismatches are provided.

Data availability
The data that support the findings of this study are openly available at https://www.github.com/
DevelopmentalImagingMCRI/MCRIBS.
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Figure 8. Average white (i), pial (ii), and inflated (iii) left (LH) and right hemisphere (RH) surfaces for all 
subjects with the vertices coloured according to M-CRIB-S(DKT) labels. The average white matter curvature 
map is shown on the inflated surfaces in (iv). The lateral view of the M-CRIB-S(DK) atlas is shown in (v). The 
annotations in panel (iii) and (v) highlight selected differences between the atlases. The white ellipses focus on 
the lateral orbitofrontal and pars orbitalis regions. The black ellipses centre on the bank of the superior temporal 
sulcus (BSTS), which is absent in the M-CRIB-S(DKT) atlas. BSTS: Banks of the superior temporal sulcus, CAC: 
Caudal anterior cingulate, CMF: Caudal middle frontal, CUN: Cuneus, ENT: Entorhinal, FP: Frontal pole, FUS: 
Fusiform, INFP: Inferior parietal, INS: Insula, ISTC: Isthmus cingulate, IT: Inferior temporal, LIN: Lingual, 
LOCC: Lateral occipital, LORB: Lateral orbitofrontal, MORB: Medial orbitofrontal, MT: Middle temporal 
gyrus, PARH: Parahippocampal, PARC: Paracentral lobule, POPE: Pars opercularis, PORB: Pars orbitalis, 
PCING: Posterior cingulate, PCAL: Pericalcarine, POSTC: Posterior cingulate, PCUN: Precuneus, PREC: 
Precentral, PTRI: Pars triangularis, RAC: Rostral anterior cingulate, RMF: Rostral middle frontal, SF: Superior 
frontal, SMAR: Supramarginal gyrus, SP: Superior parietal, ST: Superior temporal gyrus, TP: Temporal pole, 
TT: Transverse temporal gyrus.
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