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Abstract

Background

Health behaviours, important factors in cardiovascular disease, are increasingly a focus
of prevention. We appraised whether stroke risk can be accurately assessed using self-
reported information focused on health behaviours.

Methods

Behavioural, sociodemographic and other risk factors were assessed in a population-based
survey of 82 259 Ontarians who were followed for a median of 8.6 years (688 000 person-
years follow-up) starting in 2001. Predictive algorithms for 5-year incident stroke resulting in
hospitalization were created and then validated in a similar 2007 survey of 28 605 respon-
dents (median 4.2 years follow-up).

Results

We observed 3 236 incident stroke events (1 551 resulting in hospitalization; 1 685 in the
community setting without hospital admission). The final algorithms were discriminating (C-
stat: 0.85, men; 0.87, women) and well-calibrated (in 65 of 67 subgroups for men; 61 of 65
for women). An index was developed to summarize cumulative relative risk of incident
stroke from health behaviours and stress. For men, each point on the index corresponded
to a 12% relative risk increase (180% risk difference, lowest (0) to highest (9) scores). For
women, each point corresponded to a 14% relative risk increase (340% difference, lowest
(0) to highest (11) scores). Algorithms for secondary stroke outcomes (stroke resulting in
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death; classified as ischemic; excluding transient ischemic attack; and in the community
setting) had similar health behaviour risk hazards.

Conclusion

Incident stroke can be accurately predicted using self-reported information focused on
health behaviours. Risk assessment can be performed with population health surveys to
support population health planning or outside of clinical settings to support patient-focused
prevention.

Introduction

Stroke is the second leading cause of death worldwide.[1] The majority of people have multiple,
largely preventable risks such as smoking, physical inactivity, poor diet, hypertension, obesity,
and diabetes.[2] Discouragingly, risks such as physical inactivity and obesity are becoming
more prevalent and other risks, such as poor diet, are not improving.[2]

All industrialized countries have clinical guidelines for targeted and evidence-based preven-
tion of cardiovascular disease. These guidelines recommend assessment of cardiovascular risk
using multivariable risk algorithms.[3, 4] For the most part, predictive stroke risk algorithms
have focused on biophysical risks, such as hypertension, and disease risks, such as diabetes and
atrial fibrillation.[3, 4]

Risk algorithms have also begun to be developed for population health purposes that typi-
cally do not include physical measures.[5] The main purpose of population risk algorithms,
beyond describing the distribution of risk [6, 7], is to predict the number of people who will
develop a disease or condition and to estimate the population burden of risks and the impact
of health interventions. Population risk is calculated by applying the risk algorithm to current
population health surveys. For many diseases, including diabetes and cardiovascular disease,
the use of only self-reported risk exposures has been shown to have predictive accuracy
that is comparable to risk algorithms that are created with risk exposures from physical mea-
sures.[8, 9]

It may be that algorithms based on self-reported risks can be developed for dual purposes of
population and individual use. Increasingly, cardiovascular guidelines include recommenda-
tions for interventions that target unhealthy lifestyle and health behaviours, based on a
patient’s risk of disease.[10, 11] As well, there is a move towards care that is community-based
and patient centred. Patients are encouraged to participate in their own prevention, which may
begin prior to, or in conjunction with, clinical care. A wide range of health behaviour interven-
tions that effectively reduce the risk of stroke are available for both the pre-clinical and clinical
settings but are underused.[12, 13]

Clinicians appear to favour health behaviour interventions over medications for low- and
medium-risk patients [14], but existing cardiovascular risk algorithms seldom assess the role of
health behaviours beyond smoking. This means that clinicians have difficulty communicating
the degree to which health behaviours contribute to cardiovascular risk, as well as the potential
benefit from lifestyle improvement. For example, two patients may have the same level of car-
diovascular risk with considerably different behavioural risk factors. An older patient who is
physically active, a non-smoker, and has a favourable diet may confer small or no benefit from
turther lifestyle modification. Conversely, a younger patient with the same cardiovascular risk
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who is physically inactive and has a poor diet may be motivated knowing the absolute and/or
relative benefit of improving their lifestyle.[15]

We set out to examine whether stroke can be accurately predicted using self-reported infor-
mation that focuses on health behaviours (smoking, physical activity, diet, alcohol consump-
tion) and stress, independent of biophysical measurements (the Stroke Population Risk Tool
[SPoRT]). We foresee three potential applications for developing such an algorithm: first, to
facilitate decision-making for cardiovascular disease prevention through health behaviours;
second, to estimate stroke risk in pre-clinical settings; and third, to allow estimation of stroke
risk at the community level.

Methods

This study was approved by the Ottawa Health Science Network Research Ethics Board (for-
merly the Ottawa Hospital Research Ethics Board).

SPoRT derivation and validation cohorts

The derivation cohort consisted of 82 259 Ontario household respondents between the ages of
20 and 83 years from the combined 2001, 2003 and 2005 Canadian Community Health Surveys
(CCHS [cycles 1.1, 2.1, and 3.1]), conducted by Statistics Canada.[16] The validation cohort
consisted of respondents to the 2007/2008 CCHS survey (cycle 4.1).

These surveys, which used a multistage stratified cluster design that represented 98% of the
Canadian population over the age of 12 years, attained an average response rate of 80.5%. The
surveys were conducted through telephone and in-person interviews and all responses were
self-reported. The details of the survey methods have been previously published.[16]

Consenting CCHS respondents who did not self-report a prior history of stroke were fol-
lowed until incident stroke event, death, loss to follow-up (defined as loss of health care eligibil-
ity), or March 31, 2012. To ascertain stroke events, the CCHS respondents were individually
linked to three population-based databases: 1) hospitalization records from the Canadian Insti-
tute for Health Information Discharge Abstract Database, 2) vital statistics (for cause of death
—available only until Dec 31, 2009); and, 3) ambulatory physician records from the Ontario
Health Insurance Program. Stroke events were ascertained using validated diagnostics codes
and criteria. For hospitalized stroke, there was a 92% agreement between discharge diagnoses
of stroke and chart reviews.[17] For stroke diagnosed in the hospital or community, the sensi-
tivity was 68% and specificity 98.9%.[18] Diagnostic codes for stroke included TIA (unless oth-
erwise specified) and followed the Canadian Stroke Network definition (ICD-9 codes: 362, 430,
431, 434, 435, 436; and ICD-10 codes: G45, H340, H34.1, 160, 161, 163, 164 excluding 1608,
1636, and G454 for most-responsible hospital diagnosis or underlying cause of death).[19]
Stroke in the community setting were ascertained using similar ambulatory physician diagno-
ses (see Tu et al.[18] for details).

Across the three surveys, 99 929 Ontario CCHS respondents consented to health care fol-
low-up. Respondents were excluded if they did not provide a valid universal health insurance
program number (required for data linkage; n = 302), had suffered a stroke before the survey
(n =1 462), or were not aged between 20-83 years (n = 15 390). If a respondent was included
in more than one CCHS cycle (n = 516), only their earliest survey response was included. The
validation cohort consisted of 28 605 respondents after applying the same exclusion criteria
(health insurance number n = 107; previous stroke n = 580; age n = 4 822; previous CCHS
cycle n = 524).
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Risk factors for stroke

We selected and examined the association between incidence of stroke and each of the follow-
ing risk factors: age, sex, four health behaviours (smoking, alcohol consumption, diet, and
physical activity), stress, sociodemographic factors (ethnicity, immigration status, income
[individual and family], education [individual and highest family education], neighbourhood
deprivation), chronic conditions (self-report of physician-diagnosed diabetes, coronary heart
disease, and hypertension), and body mass index (calculated from self-reported height and
weight). See S1 Table for definitions of the risk factors considered.

Model development

The primary outcome was incident stroke, resulting in hospitalization (study end-date March
31, 2012). There were five secondary outcomes: i) death from stroke; ii) death or hospitaliza-
tion from stroke (study end-date for these two outcomes is December 31, 2009, reflecting the
most recently available cause-specific mortality data); iii) hospitalized ischemic stroke only; iv)
hospitalized stroke excluding TIA; and, v) stroke diagnosed in the community setting by a phy-
sician or resulting in a hospitalization. To increase statistical power, the secondary outcomes
were assessed by combining the derivation and validation cohorts.

We used a Cox proportional hazards model to test the significance of each potential risk fac-
tor on the hazard of incident stroke. A competing risk approach was used for all analyses: all-
cause death as a competing risk in the primary analyses and non-stroke death in the secondary
analyses.[20-22] Time to stroke was calculated as the number of days from survey administra-
tion to admission date for incident stroke hospitalization or stroke death. Each exposure vari-
able was centered on the cohort mean.

We created the models for males and females separately using a pre-specified stepwise
approach that began with age, followed by health behaviours, sociodemographic indices, inter-
mediate risk factors (such as body mass index) and proximal risks (such as self-reported diabe-
tes, hypertension, and heart disease). Variables were added considering their ability to improve
discrimination and calibration (as described below).

We included age with time interaction to address the proportional hazard assumption of
traditional Cox models and to allow risk estimation for different follow-up times. We assessed
age as a predictor using several different categorical and continuous forms, including spline
functions.

We created an index that summarized behavioural risk factors to reflect the study’s focus on
these factors. Typically, predictive risk indices are created after model development to facilitate
interpretation by the general user. We generated the index of behavioural risk factors—called
the SPoRT Behaviour Score—during model development to increase statistical and discrimi-
nating power when examining multiple behavioural risk factors and categories.[23] This
process also supported the creation of a model structure that lessened the potential for interme-
diate and proximal risk factors to reduce the association between behavioural risk factors and
stroke.[24-27] For example, we would expect a reduced effect size of diet and physical activity
if BMI and diabetes were simultaneously included in the model without considering that BMI
and diabetes are risk factors on the causal pathway between health behaviours and stroke.

The SPoRT Behaviour Score was created through the following steps. First, the hazards for
individual risk factors were examined using a reference group of respondents with the most
favourable behaviour for all risk factors. Age-adjusted hazards for each risk factor and exposure
category were rank-ordered and scores assigned based on the estimated hazard ratios. The
scores were then rounded to integer values while maintaining the initial rank order of hazards
to minimize the difference in observed versus predicted number of events—overall and in
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predefined subgroups (see Assessment of predictive accuracy)—while preserving the initial
rank-order of the respective risk factor scores.[23]

Next, we added intermediate and proximal risk factors to the model, assessing hazards and
improvement in predictive accuracy. We assessed interaction terms, focusing on age and beha-
vioural risks as well as interaction between behavioural risk factors. (see S2 Table for details).

The prevalence of missing values was less than 5% for any variable. In order to estimate a
SPoRT Behaviour Score for each subject, missing values for behavioural risk factors were
imputed based on mean values for the respondent’s age, sex and local health region.[28] Miss-
ing values for other risk factors were maintained as separate categories to allow future applica-
tion of the algorithm for other similar population health surveys.

Assessment of predictive accuracy

We sought to develop a predictive algorithm that was both well calibrated and discriminating,
with an emphasis on calibration for behavioural risks and use in the community setting.[29]

Calibration is the ability of an algorithm’s predictive estimates to closely approximate
observed risk or to correctly rank subjects' risk.[30] We compared predicted to observed risk
for the overall population, as well as across predefined subgroups (67 subgroups for males and
65 for females) identified as being important to clinicians and policy actors through a struc-
tured consultation process.[31] Calibration subcategories included: all behavioural risk catego-
ries, deciles of risk, age groups, health planning regions, sociodemographic groups, body mass
index, hypertension status, and diabetes status. We predefined an important difference in cali-
bration as a relative difference of greater than 20% between observed and predicted estimates
for those categories with more than 5% of total stoke cases.[31]

Discrimination is the ability to differentiate individuals at high risk from those at low risk.
[30] We assessed the C-statistic and 75:25 and 95:5 risk percentile ratios for survival data with
time-dependent covariates.[32] Further details of the methods are provided in S2 Table.[33]

Results

Baseline characteristics of the study cohorts are presented in S3 Table. The derivation cohort
had a median age of 48.2 for males and 49.4 for females and a median follow-up time of 8.6
years, representing 688 000 person years. Overall, 1 551 incident stroke hospitalizations were
observed (1.09% 5-year risk), of which 709 occurred in males (1.15% 5-year risk) and 842 in
females (1.04% 5-year risk). There were an additional 50 out-of-hospital deaths due to incident
stroke and an additional 1 685 strokes that occurred in the community setting (2.4% 5-year
risk 2.5% for males and 2.4% for females).

The sex-specific index of behavioural risk is shown in Table 1 (see S4 Table for the hazards
of individual risks). In the final model, each point on the SPoRT Behaviour Score corresponded
to a 12% increase in stroke for men (180% risk difference from lowest (0) to highest (9) scores)
and a 14% increase in stroke for women (340% difference from lowest (0) to highest (11)
scores) (Fig 1). Men had increases in stroke risk of 37% for previously diagnosed hypertension
(women, 39%), 36% for heart disease (women, 44%) and 29% for diabetes (women, 74%). Men
with all three chronic conditions and maximum scores for all behavioural risks had a 560%
increased risk of stroke compared to men with no risk factors present (no poor health behav-
iours and no chronic conditions) (1400% for women).

Table 2 presents the hazards and performance for SPoRT. The final model C-statistic,
assessing discrimination, was 0.85 (95% CI 0.83-0.86) for males and 0.87 (95% CI 0.85-0.88)
for females. Calibration/accuracy improved between the age-only and final models with a
less evident change in discrimination. Using age as the only predictor, 22 of 67 predefined
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Table 1. SPoRT index of health behaviour and stress.

Risk Factor*

Smoking
Heavy smoker
Light smoker
Former smoker
Non-smoker
Alcohol
Heavy drinker
Moderate drinker
Light drinker
Occasional drinker
Current non-drinker
Physical activity
Inactive
Moderately active
Active
Diet
Poor diet
Fair diet
Adequate diet
Stress
High stress
Low stress
Maximum score

Description

Daily current smoker (>1 pack/day)

Daily current smoker (<1 pack/day)

Former daily smoker

Former occasional smoker or never smoker

>21 (men) or >14 (women) drinks/week in previous month or weekly bingeing behaviour®
5 to 21 (men) or 3 to 14 (women) drinks/week

0 to 4 (men) or 0 to 2 (women) drinks/week

<1 drink/month

No alcohol consumption in the last 12 months

0 to <1.5 METs/day*
1.5 to <3 METs/day
>3 METs/day

<7 weekly fruit and vegetable serving
7 to <14 weekly fruit and vegetable serving
> 14 weekly fruit and vegetable serving

Self-perceived stress: ‘quite a bit’ or ‘extremely’
Self-perceived stress: ‘not at all’, ‘not very’, or ‘a bit’

Male index

S = N W

- O O © =

Female index

N = = O N S = W H

—_

Each point on the SPoRT Behaviour Score increases stroke risk by 12% for males or 14% for females (see full model on Table 2). The maximum score
for males equals a 180% (9 x 12%) risk difference compared to the lowest score; 340% (11 x 14%) for females.
*Reference group is in italics.

T Bingeing was defined as >5 drinks/day on any occasion.

*METSs are Metabolic Equivalent of Task (kcal/kg/day). For example, the “inactive” physical activity is equal to walking for exercise less than 30 min per

day (3 METS/hr).

doi:10.1371/journal.pone.0143342.t001

subgroups for males showed greater than 20% difference between the predicted and observed
stroke events, which reduced to 2 subgroups in the final model (4 of 65 groups for the female
model). Figs 2 and 3 show predicted and observed risk by deciles and details of calibration for
the behavioural risk factors. Table 2 shows the overall observed and predicted risk, including
a summary for calibration by subgroup. S1 and S2 Figs summarize risk as nomograms.

We have also created an individual stroke risk calculator which is available online at www.

projectbiglife.ca.

The validation cohort showed similar discrimination and calibration compared to the devel-
opment data (see Fig 2 for predictive and observed risk for the validation cohort by decile). The
C-statistic in the validation cohort was 0.85 (95% CI 0.81-0.88) for males and 0.85 (95% CI
0.81-0.89) for females. The overall predicted risk for the follow up period in the validation
cohort was 0.799% for males compared to 0.798% observed risk (relative difference is almost
null). For females, the relative difference was 6.8% (0.78% versus 0.73%).

SPoRT for secondary stroke outcomes had similar risk hazards with a trend toward higher
risk hazards for health behaviours in more severe (hospitalized stroke without TIA) or discrete

(ischemic stroke only) outcomes (Fig 4 and S5 Table).
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Fig 1. Predicted 5-year risk of stroke by age group and SPoRT behavioural index value.

doi:10.1371/journal.pone.0143342.g001

Discussion

This study demonstrated that stroke risk can be accurately predicted solely using self-responses
from population health surveys that focus on health behaviours. A study strength was develop-
ment and validation of the algorithms using a large population-based cohort. We were able to
include a large number of predictive risks and subgroups while minimizing the risk of over-fit-
ting, thereby maintaining generalizability.

SPoRT accurately predicted risk for over 130 risk groups: including people exposed and not
exposed to unhealthy behaviours, other more proximal risks, and risks that were not included
in the final model (e.g., BMI). SPoRT had equally high predictive accuracy for risk deciles in an
external validation cohort and similar performance for a range of outcomes, including stroke
diagnosed in the hospital or community. The relative importance of behavioural risks and their
level of effect, as described in the SPoRT Behaviour Score, were similar to epidemiology stud-
ies.[25]

Implications for public health, community and clinical prevention

The SPoRT algorithm complements other approaches to stroke risk assessment by informing
public health planners, patients and clinicians about the contribution of health behaviours.
Clinical guidelines from the World Health Organization and most countries recommend a
graded approach to cardiovascular disease prevention that includes interventions with low
individual cost targeting the entire population combined with individual therapy tailored to
risk levels.[34, 35] A graded prevention approach is best accompanied by a graded assessment
of cardiovascular risk, which starts with simple and accessible assessment of as wide a

target population as possible, followed by progressively more intensive risk assessment to

PLOS ONE | DOI:10.1371/journal.pone.0143342 December 4, 2015 7/16



@'PLOS ‘ ONE

SPoRT: Predicting Stroke Based on Health Behaviours

Table 2. Stroke Population Risk Tool (SPoRT)-Model.
Hazard Ratio (95% Cl)

Male Model* Female Model*
Age 1.11 (1.09-1.13) 1.11 (1.09-1.12)
Age spline (65 years) 0.97 (0.95-0.99)
Age time (per year) 0.997 (0.995-0.9999) 0.996(0.993-0.997)

SPoRT Behaviour Score** (per unit)

Hypertension

1.12 (1.07-1.17)

1.15 (1.11-1.19)

No 1.0 [Reference] 1.0 [Reference]
Yes 1.37(1.16-1.60) 1.39 (1.20-1.61)
Missing 0.80 (0.11-5.88) 1.53 (0.24-9.84)
Heart Disease
No 1.0 [Reference] 1.0 [Reference]
Yes 1.36 (1.14-1.63) 1.44 (1.22—-1.71)
Diabetes
No 1.0 [Reference] 1.0 [Reference]
Yes 1.29 (1.06-1.57) 1.74 (1.45-2.09)
Missing =
Survey cycle
3.1 (2005) 1.0 [Reference] 1.0 [Reference]
2.1 (2003) 1.03 (0.85-1.26) 1.05 (0.87—1.26)
1.1 (2001) 1.26 (1.04—1.53) 1.18 (0.99-1.42)

Model Assessment
Discrimination

C-stat (95% Cl) 0.85 (0.83-0.86) 0.87 (0.85-0.88)

Ratio of 75 to 25 risk percentile (5-year risk range) 13.3 (0.11 to 1.40) 14.0 (0.08 to 1.07)

Ratio of 95 to 5 risk percentile 149.7 (0.03 to 4.79) 179.2 (0.026 to 4.70)
Calibration

Subgroup differences No. (%) 2 (3.0)f 4(5.7)%

*The full model was calibrated to survey cycle year

**0-9 for males, 0-11 for females

T Observed versus predicted estimates were compared for 67 subgroups—selected based on meeting the
criteria of having more than 5% of total observed stroke events (i.e., more than 22 events). We report the
number of subgroups where there was a clinically important difference (predefined as > 20% difference) in
observed versus predicted number of events. The 67 subgroups were: deciles of predicted risk (4), local
health networks (9), age (7), body mass index (4), physical activity (3), alcohol consumption (6), smoking
(4), diet (3), self perceived stress (4), ethnicity (1), family income (7), family education (4), high blood
pressure (2), diabetes (2), heart disease (2) SPoRT Behaviour Score (5)

* Observed versus predicted estimates were compared for 65 subgroups—selected based on meeting the
criteria of having more than 5% of total observed stroke events (i.e., more than 23 events). We report the
number of subgroups where there was a clinically important difference (predefined as > 20% difference) in
observed versus predicted number of events. The 65 subgroups examined were: deciles (4), local health
networks (8), age (6), body mass index (5), physical activity (3), alcohol consumption (5), smoking (4), diet
(), self perceived stress (4), ethnicity (1), family income (7), family education (3), high blood pressure (2),
diabetes (2), heart disease (2), SPoRT Behaviour Score (6).

doi:10.1371/journal.pone.0143342.t002
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Fig 2. Observed versus predicted risk of 5-year incident stoke by risk decile—derivation and
validation cohorts. Panel A = males; Panel B = females. *Statistically significant difference between
observed and predicted risk.

doi:10.1371/journal.pone.0143342.9002

discriminate among individuals with progressively less prevalent (but clinically important) risk
factors. Ideally, each stage of risk assessment supports corresponding interventions for that
setting.

In the public health setting, where risk assessment involves use of population health surveys
to ascertain risk exposure and population diffusion of risk, multivariable risk algorithms have
been shown to be the most discriminating approach.[5] Our study suggests that risk of stroke
can be discriminately assessed using population health surveys and multivariable risk algo-
rithm; and, that stroke risk is concentrated in the elderly and in groups with multiple risk
factors.

In the general population, risk assessment is performed by individuals in the community
and focuses on health behaviours and other risk factors that are common, contribute to a
large burden of disease, and are modifiable in the community setting. That is not to say that
SPoRT should replace other clinical algorithms that include measurement of blood pressure
and lipids. Rather, we suggest a graded approach to risk assessment that begins in the commu-
nity setting and focuses on health behaviours. In the primary care setting, risk stratification
includes blood pressure, lipids and other more detailed risk information, which potentially
improves risk stratification and supports decision-making about medication. In the speciality
setting, progressively more intensive risk assessment corresponds to more intensive treatment
options.
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Fig 3. Observed versus predicted risk of 5-year incident stoke by health behaviour, BMI, and stress.
Panel A = males; Panel B = females.

doi:10.1371/journal.pone.0143342.9003

Opportunities in public health and international settings

Assessing population risk is useful for planning purposes, including predicting future disease
incidence and assessing the effectiveness of community-wide prevention strategies.[5] Few
jurisdictions have population data that contains the clinical and biophysical measures required
for application of clinic CVD risk algorithms. However, many jurisdictions have self-reported
health surveys that could be used to estimate risk using SPoRT or similar risk algorithms. Fur-
thermore, SPoRT’s population-based focus enables several approaches for validation, recalibra-
tion and application that are not typically available to clinical risk algorithms.[5] For example,
population health surveys from other countries can be used to recalibrate SPoRT based on the
population-specific prevalence and distribution of risk factors. SPoRT risk estimates can be fur-
ther calibrated by adjusting predicted population estimates against observed population stroke
incidence.[36]

Current study in perspective

To our knowledge, SPoRT is the only cardiovascular risk algorithm that can be applied to pop-
ulation health surveys. As well, we are aware of only one other cardiovascular algorithm that
includes all major behavioural risks.[9] History of hypertension, diabetes, and heart disease are
included in SPoRT but only as self-reported measures rather than clinical measures or con-
firmed diagnosis. Despite this constraint, SPoRT has predictive accuracy as high, if not higher,
than risk algorithms that rely on clinical measures.[4]
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doi:10.1371/journal.pone.0143342.9004

We purposefully emphasized the role of health behaviours over proximal risks, such as
hypertension and diabetes, to facilitate prevention. By first including behavioural risks and
summarizing these risks as the SPoORT Behaviour Score we created a simple hierarchical struc-
ture that preserves the contribution of behaviours to stroke risk. If our sole purpose was pre-
dicting stroke, rather than predicting stroke based on health behaviours, we would likely
have found that behavioural risks have little additional prognostic ability over a smaller selec-
tion of traditionally included proximal risks (e.g., measured blood pressure). Furthermore, our
emphasis on calibration informs how well SPoRT performs in assessing stroke risk based on
behaviours.

There are other cardiovascular indices that summarize preventable risks, such as the index
of Ideal Cardiovascular Health (ICH) developed by the American Health Association.[35]
Uniquely, SPoRT can express individual health behaviours as either a relative or absolute
stroke risk versus a categorical scale (see S6 Table for a comparison of SPoRT and ICH).
Despite stroke being a leading cause of morbidity, many people in community setting will likely
interpret large relative differences in stroke risk (over 500% relative difference in stroke risk
across people of the same age) differently knowing that the baseline risk of stroke is low (1.09%
5-year risk in our Ontario population, 5 to 95% range 0.03 to 4.62%).

Limitations

The chief limitation of this study is potential misclassification error resulting from the exclusive
use of self-reported risks and routinely-collected stroke data. While more accurate risk factor
ascertainment could improve discrimination and calibration, SPoRT already has a high
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discrimination and favourable calibration. Other studies have also found that chronic diseases
can accurately be assessed using self-reports. Gaziano et al. and Qiao et al. showed there are
only modest classification differences when CVD risk assessment is performed with and with-
out clinical and laboratory measures.[37, 38] As well, there are many diabetes risk algorithms
developed to ascertain risk outside the clinic setting using only self-reported measures.[39]
Furthermore, the most influential risk factors in SPoRT are extensively used and validated
world-wide: there have been favourable studies for self-reported smoking status validated
against urine cotinine levels, and heart disease, hypertension and diabetes validated against
physician diagnoses.[40, 41] Thus, using physician-diagnosed disease or urine test for smoking
would not improve stroke risk discrimination or accuracy. Similarly, self-reported height and
weight were used to estimate BMI. Validation studies for the CCHS have confirmed a modest
misclassification of self-reported BMI compare to measured BMI and correction factors are
available.[42] We did not use those correction factors for two reasons: first, modest reclassifica-
tion of BMI will have a small influence on predictive risk, given the BMI risk occurred only at
high BMI levels (BMI 35+). Second, the main indented use of SPoRT is for population health
surveys without measured BMI and self-reported use in the community setting. This means
that our use of self-reported BMI is consistent in both development, validation and application,
thus ensuring appropriate calibration. Regardless, it will be important to assess SPoRT in other
external populations—particularly since our external validation population was similar to the
derivation population.

There is a greater degree of misclassification error for alcohol consumption, physical activity
and diet; however, it is reassuring that we found the measures used in our study are discrimi-
nating and have a similar association with stroke as seen in other studies. For alcohol, there are
concerns that self-reports considerably underreport consumption. That stated, there is consis-
tent evidence of a “J” shape relationship of hazards that was replicated in our study.[43] Physi-
cal activity has modest self-reported ascertainment accuracy compared to accelerometer
measures, with about half of the respondent of self-reported surveys accurately reporting their
activity and others equally over- and under-reporting activity up to 30 minutes per day.[44]

Diet, likely the most challenging CVD risk to ascertain using brief self-reports, is important
to consider in risk assessment for at least three reasons: there is a clear and important relation-
ship between diet and CVD; a high proportion of people in many countries have poor diet
quality; and, diet is potentially modifiable with corresponding improvement in CVD risk.[45,
46] Increasingly, there is emphasis to ascertain overall diet quality rather than specific food
types or nutrients. General population health surveys, such as the one used for our study
cohort, use fruit and vegetable consumption as a proxy for overall diet quality. While there is
modest over-report of fruit and vegetable consumption compared to repeated 24-hour food
recall, there is good rank-order correlation between those that have high or low consumption
of fruit and vegetables and overall diet quality.[46] Similar to previous studies examining all-
cause mortality and all-cause hospitalization, we found that high potato and fruit juice con-
sumption were hazardous for stroke risk and accordingly modified a brief dietary quality
index.[47, 48] There is the potential for brief diet quality indices to have poor generalizability
across jurisdictions. However, given the favourable predictive accuracy and a hazard that corre-
sponds with the diet/CVD relationship seen in other studies, we believe that our study demon-
strates the utility of brief self-reported diet questions for CVD risk assessment. Future studies
should validate our (and other) brief diet quality measure for risk prediction.

The large study cohort and use of routinely-collected data meant that it was not feasible to
individually verify the stroke events. However, we used identification approaches that have
been shown to accurately ascertain stroke events.[17, 18] Moreover, we examined five different
stroke outcomes using three different databases, with SPoRT showing equal predictive
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accuracy regardless of stroke endpoint. As expected, there was a small trend toward a lower
hazard for the SPoRT Behaviour Score with a stroke definition that was broader and more
heterogeneous.

Finally, our approach to create a hierarchical structure for the predictive algorithm, through
the creation of the behavioural index, has limitations due to the early examination of the haz-
ards of each behavioural risk. Current recommendations for prognostic algorithms recom-
mend a more rigorous pre-specified approach that minimizes examination of outcome
relationships when making decisions about predictor selection and form. In general, we had a
high adherence to recommended algorithm development (see S2 Table) but allowed ourselves
to deviate from recommendations, recognizing that development of algorithms for the popula-
tion setting differs from the more common development in the clinical setting.[5, 49] For
example, the large sample size and power of our study should reduce the risk of type 1 error
compared to most clinical algorithms that use a much smaller sample of respondents. That
said, in the future we plan to disaggregate the task of prognosis from etiognosis by developing a
purely prognostic algorithm (ignoring causal pathways) and then separately perform analyses
to estimate a hazard of risks from a causal perspective.[50]

Conclusion

Stroke risk can be accurately predicted solely using information on health behaviours and
other self-reported risks. SPoRT does not require clinical or laboratory data, making it well-
suited for application using population health surveys as well as easy to implement for general
population use in the community setting. The focus on health behaviours further facilitates
patient-centred and population approaches for stroke and cardiovascular disease prevention.
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