
vv

26–347:1FOOT & ANKLE

Torsional deformities and overuse injuries: what does 
the literature tell us

Gherardo Pagliazzi1,2, Enrico De Pieri3,4, Michèle Kläusler1, Morgan Sangeux3,5,6 and Elke Viehweger1,3,4

1Department of Paediatric Orthopaedics, University of Basel Children’s Hospital, Basel, Switzerland
2Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
3Laboratory for Movement Analysis, University of Basel Children’s Hospital, Basel, Switzerland
4Department of Biomedical Engineering, University of Basel, Basel, Switzerland
5Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
6The University of Melbourne, Melbourne School of Engineering, Melbourne, Victoria, Australia

• Overuse injuries imply the occurrence of a repetitive or an increased load on a specific 
anatomical segment which is unable to recover from this redundant microtrauma, thus 
leading to an inflammatory process of tendons, physis, bursa, or bone. 

• Even if the aetiology is controversial, the most accepted is the traumatic one. 
• Limb malalignment has been cited as one of the major risk factors implicated in the 

development of overuse injuries. 
• Many authors investigated correlations between anatomical deviations and overuse injuries, 

but results appear mainly inconclusive. 
• Establishing a causal relationship between mechanical stimuli and symptoms will remain a 

challenge, but 3D motion analysis, musculoskeletal, and finite element modelling may help 
in clarifying which are the major risk factors for overuse injuries.

Introduction

Each year, an increasing number of children are injured 
in sport competitions and in high demanding physical 
activities (1, 2, 3). The spectrum of sports-related injuries 
varies from serious ligamentous tears or bone fractures to 
other pathological conditions, known as overuse injuries. 
This term indicates the occurrence of a repetitive or an 
increased load on a specific anatomical segment which is 
unable to recover from this redundant microtrauma, thus 
leading to an inflammatory process of tendons, physis, 
bursa, or bone (1, 4). The association of higher demanding 
sport activities and lower baseline fitness condition due 
to the sedentary lifestyle among children and adolescents 
leads to the perfect environment for the increase of such 
diseases (5).

In particular, sport activities which involve repetitive 
forefoot contact, such as running (6, 7, 8), jumping (9, 
10), or ballet (11, 12, 13), may also lead to overuse injuries, 
such as patellofemoral pain syndrome, patellar tendonitis, 
Achilles tendonitis, and forefoot injuries.

The spectrum of overuse injuries is wide. It ranges from 
traction apophysitis, such as Osgood−Schlatter disease 
(OSD) or Sever’s disease (SD), to patellofemoral pain 
syndrome (PFPS), to injuries of the musculotendinous 
unit, such as patellar or supraspinatus tendinitis (3, 14).

Traction apophysitis, also known as apophysitis, 
epyphysitis, or ostechondrosis are injuries located in the 
epiphyseal cartilage.

The aetiology of traction apophysitis is controversial. 
Genetic, vascular, traumatic, and endocrine causes are 
sometimes considered. However, the most accepted 
aetiology is the traumatic one; strenuous activities increase 
the loads at the tendinous-physeal junction, leading to 
excessive traction on the secondary ossification centres, 
thus resulting in biological alteration of the cartilage and 
initiation of the inflammatory process (1, 3, 4, 14).

From preclinical studies, it is well known that both 
chondrocytes and the matrix are influenced by mechanical 
loads which provoke a homeostatic response (15, 16). 
Many studies established the role that increased loads 
may have on the development of knee osteoarthritis (OA) 
(15, 17, 18, 19). For example, the effects of biomechanical 
changes induced by iatrogenic injuries, such as anterior 
cruciate ligament (ACL) transection and meniscal injuries, 
have been investigated in the animal model.

ACL injury is known to cause changes in both antero-
posterior translation and rotational kinematics, leading 
to altered loads and increased stresses which are thought 
to be the cause of cartilage progressive thinning (15, 20). 
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Following the same concept, meniscal tears have been 
shown to induce knee OA (20). The removal of meniscal 
tissue causes higher stress contact and damages to the 
underline cartilage. Roos et al. (21) demonstrated that at 
least half of the patients who underwent a meniscectomy 
during adulthood showed signs of knee OA 21 years 
later, compared to only 7% among patients without any 
meniscal injury. While the pathomechanics of these two 
types of knee-induced OA has long been established, little 
is known about the development of overuse and cartilage 
injuries in young populations.

Some studies attempted to find a correlation between 
overuse injuries and anatomical malalignment (3, 22, 23) 
in young populations. The term ‘miserable misalignment’, 
first used by Stanley J. in 1979 to indicate a condition 
of excessive femoral neck anteversion (FNA), squinting 
patella, and excessive external tibial rotation, has been 
considered as a risk factor in the onset of overuse injuries, 
especially the PFPS (23). Studies combining 3D gait 
analysis and musculoskeletal modelling have shown that 
altered anatomy leads to altered kinematics (24, 25, 26, 
27, 28, 29) and changes, often increases, in lower limb 
joint loads (25, 30). However, to date, no investigation has 
clearly stated a link between malalignment and overuse 
diseases, as findings are often conflicting.

The purpose of this narrative review is to report 
the current knowledge on the link between anatomic 
deviations, altered loads, and development of overuse 
injuries (Fig. 1). The overuse injuries considered were SD, 
OSD, PFPS, and knee osteochondritis dissecans (OCD).

Sever’s disease

SD, also known as calcaneal apophysitis, is the most 
common cause of heel pain among paediatric patients 
(31). It affects the secondary ossification centre of the 
calcaneus, and symptoms can last for several months.

The increase in loads and higher peak plantar pressure 
beneath the heel, especially during physical activity, 

has always been considered as one of the main factors 
responsible for the development of SD (32). Becerro-
de-Bengoa-Vallejo et  al. compared the plantar pressure 
and plantar surface contact area between two groups 
of patients, one of the healthy patients and the other 
group of patients affected by SD (33). The authors used 
pedobarography to conduct the analysis, and the results 
showed that patients with SD had higher heel plantar 
pressures during both dynamic and static conditions. 
The authors also identified a higher bodyweight 
distribution over the affected limb, thus supporting the 
pathophysiological mechanism of an overuse injury. These 
results were consistent with other previous data published 
by the same group (34). On the other hand, D. Little et al. 
found no significant difference in peak vertical ground 
reaction forces (GRFs) over an adult population affected 
by unilateral plantar heel pain with respect to healthy 
contralateral side (35). The investigation was made by the 
means of a Kistler portable force plate system.

McSweeney et al. investigated the role of heel increased 
loads during treadmill walking and running (36). The 
study population was composed of 28 patients, where 
half of them suffered from calcaneal apophysitis. The 
authors were not able to find any statistically significant 
difference in terms of maximum pressure beneath the heel 
and vertical GRFs. Only a higher cadence while running 
was found in the apophysitis group.

Biomechanical misalignment of the rear foot has also 
been cited as one of the possible causes of SD. Some 
authors observed an increased pronation thus leading to 
a shortened and stiffened Achilles tendon, while, on the 
contrary, these findings were not reported in other studies 
(31, 32). Literature regarding rearfoot alignment and 
development of SD is inconclusive, and no studies reported 
well documented and reproducible measurement tools.

Osgood–Schlatter disease

OSD encompasses a strain injury of the tibial tubercle 
apophysis in its apophyseal stage during adolescence (37). 
Current pathogenic factors frequently associated with 
OSD are muscle tightness and inflexibility, especially of 
quadriceps muscle, lower leg malalignment, and increase 
loads on the immature tibial tubercle apophysis (37, 38).

Muscle tightness has been widely investigated. 
Recently, Nakase et al. conducted a prospective analysis 
on 150 male soccer players (300 knees) and found a 
significant correlation between OSD, quadriceps femoris 
muscle tightness, and strength during knee extension, 
with an associated reduced flexibility of the hamstring 
muscles (38).

The traction force applied by the patellar tendon to 
the tibial tubercle apophysis has never been measured 
experimentally. Itoh et al. were the first to estimate the 

Figure 1
Proposed pathogenetic path involved in the development of 
overuse injuries; the interplay between anatomic deviations and 
increased physical activity leading top altered musculoskeletal 
loads, which can determine the onset of overuse pathologies.
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force on the tibial tubercle through gait analysis and 
musculoskeletal modelling (39). The authors analyzed the 
knee extension moment in eight patients, during the two 
most common activities (soccer and basketball) considered 
as involved in the development of OSD. Movements with 
the largest knee extension moment were the single-leg 
landing after a jump and the cutting movement, which 
is a fast change of direction in the frontal plane while 
running at maximum speed.

Little is also known about the effect of lower limb 
malalignment on the onset of OSD. Watanabe et al. found 
an increase of the medial longitudinal arch measurement 
with respect to the development of OSD, among 37 male 
soccer players (40). The authors also investigated the lower 
leg Q-angle, but no significant correlations were reported. 
Seyfettinoğlu et al. conducted a prospective observational 
case–control study over two groups of adolescents, one 
with a diagnosis of OSD and one without it (41). The 
Q-angle was found to be statistically significant between 
the groups, but the authors concluded that patellofemoral 
alignment did not influence the onset of OSD, as the 2° 
difference was considered not clinically relevant.

Patellofemoral pain syndrome

PFPS is one of the most common cause of anterior knee 
pain (AKP) among adolescents, with higher incidence in 
females (42). It has always been considered as an overuse 
injury, but the aetiology remains unclear (42, 43).

A widely accepted hypothesis involves an increased 
stress in the patellofemoral joint (PFJ), where malalignment 
is thought to have a crucial role (23, 42). Patellofemoral 
malalignment is thought to be strictly influenced by 
lower limb torsional defects, such as increased femoral 
anteversion, external tibial torsion, and abnormal 
pronation. These torsional deviations could affect both 
static and dynamic PFJ kinematics, thus leading to higher 
joint contact pressures (25), with subsequent articular 
cartilage damage and insult to the subchondral bone. 
Nevertheless, the literature is not able to show a clear 
consensus on this topic (22, 23).

Ficat and Hungerdorf (44) described a phenomenon 
called the ‘law of valgus’, where a lateral directed force acts 
on the patella due to the increased valgus (Q-angle) of the 
lower limb. Although correlation between malalignment 
and PFPS has been largely supported (23, 45, 46), other 
authors question the strength and significance of such 
correlation (45). A clear causal relationship between 
anatomic deviations and PFPS is difficult to establish, 
as altered patellar alignment can also be present in 
asymptomatic individuals, as reported by some authors 
who observed laterally-directed patellar alignment 
in asymptomatic knees with the aid of radiographic 
measurement or MRI (22, 43, 47).

Although femoral anteversion and foot pronation 
have been the focus of attention in many studies, the 
conclusions have been elusive here also. Increased FNA 
has been considered responsible for the increased femoral 
internal rotation, thus leading to an augmented Q-angle 
which causes patellar maltracking. Many authors found 
a positive correlation between FNA and incidence of 
PFPS thus supporting this theory (23, 48, 49, 50). On 
the contrary, Fairbank et al. did not find any statistically 
significant correlation between joint mobility, Q-angle, 
genu valgum, and FNA over a population of 446 ‘pupils’, 
where 136 of them suffered from PFPS, when compared 
with a cohort of 52 hospital outpatients with knee pain 
(51). Likewise, other published papers supported this lack 
of correlation (23, 48, 52).

Erkocak et al. (45), reported CT-based measurements 
over 3 samples: 35 symptomatic knees, 35 asymptomatic 
contralateral knees in the same patients, and 40 healthy 
knees of control patients. The authors found higher 
Q-angle values, increased FNA, and an augmented 
external tibial torsion in patients with AKP compared to the 
healthy control group; however, no significant differences 
were revealed comparing symptomatic knees and the 
contralateral asymptomatic knee in the same patient. This 
led the authors to state that malalignment may not be 
the only factor in the development of patellofemoral (PF) 
symptoms.

As PF symptoms occur mainly under weight-bearing 
conditions, the greatest limitation in the current literature 
is that very few papers investigated this disease from 
a dynamic point of view (22). In vivo, non-invasive 
evaluation of PF kinematics is challenging (53, 54, 55), 
and few investigations with confusing results have  
been made.

Koh et  al. were the first to compare the patellar 
kinematics between 10 healthy subjects and 9 patients 
affected by PFPS in vivo and non-invasively (56). The 
analysis was conducted thanks to a custom-made patellar 
clamp, infrared markers, and an optoelectronic motion 
capture system. The study demonstrated a higher lateral 
patellar translation and lateral patellar spin in the group 
of subjects who suffered from PFPS, thus supporting the 
theory of an inadequate patellar balance during weight-
bearing- and dynamic activities.

Powers et  al. utilized kinematic MRI to observe knee 
extension from 45° to 0° in six females with PF pain and 
lateral patellar subluxation (57). The authors analyzed 
the patients both non-weight-bearing and weight-
bearing (unilateral squat), and results showed a higher 
lateral patellar displacement under non-weight-bearing 
knee extension with respect to the same weight-bearing 
condition.

In light of this contradictory evidence, it appears 
increasingly necessary to evaluate PFPS from a dynamic 
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point of view with the aim of the more modern gait 
analysis and musculoskeletal modelling protocols.

Knee Osteochondritis Dissecans

OCD is typical in children and adolescents. OCD affects 
primarily the subchondral bone and then the overlying 
cartilage (58). The most common location in the knee 
is the inner part of the medial femoral condyle, and the 
aetiology remains unknown (59). In addition to genetic, 
trauma, and vascular insult, a mechanical malalignment 
origin has also been investigated.

The first biomechanical evaluation reported were those 
of Bandi and Kolp in 1982 (60, 61). Bandi stated that lesion 
of the osteochondral unit was caused by a compressive 
deformation of the femur intercondylar fossa under the 
mechanical forces of both patella and tibial plateau. In the 
same year, Kolp et al. published a photoelastic study in 
support of this theory, showing a high compressive force 
especially at 45° of knee flexion.

Perren et al. in 1991 (62), hypothesized the aetiology 
of OCD results from femoral condyles’ deformation under 
dynamic loads. The authors conducted the analysis by 
means of a finite element model derived from CT images 
of an adult femur, which was subjected to progressive 
knee flexion (30, 60, and 90°). Results demonstrated that 
the greatest deformation occurred at 60° of flexion, with 
larger values in the posterior portion of the medial condyle 
compared to the lateral one.

More recently, some investigations attempted to 
find a correlation between lower leg axis deviation 
and OCD. Jacobi et  al. (63) performed a radiographic 
analysis on 103 knees (adolescent and adult patients), 
finding a correlation between medial OCD and varus 
alignment, and between lateral OCD and valgus 
deviation. Gonzalez-Herranz et  al. reported similar 
findings over a case series of 53 patients, 43 of them 
with open physis (64). The authors stated that poor 
outcome and higher incidence of unstable lesions 
occurred when lower limb mechanical axis deviation 
and lesion location converged. The association between 
OCD lesion location and mechanical axis deviation was 
also found by Bugbee et al., even when no correlation 
between mechanical axis deviation and size lesion  
was found (65).

The role of external tibial torsion has also been 
investigated. Tuner et  al. in 1981 (66), used a clinical 
method to measure tibial torsion over 836 adult patients, 
finding a higher external tibia rotation in those patients 
affected by knee OCD. Later, Bramer et al. (67) conducted 
a retrospective CT-based study confirming a higher 
average external tibia torsion in the OCD group than in 
controls, and that extreme grades of torsion correlate with 
the persisting of symptoms.

Discussion

The present study aimed to report the current knowledge 
about the development of the most common overuse 
injuries in children and adolescents. We focused our 
attention on the potential role of abnormal anatomy 
of the lower limb in the transverse and frontal 
planes as well as their mechanical effects during  
dynamic activities.

Abnormal limb alignments have been cited as one of 
the major risk factors implicated in the development of 
overuse injuries (22, 23, 43). These anatomical deviations 
included FNA, genu valgum, abnormal tibial torsion, pes 
planus, and PF maltracking.

Many authors investigated correlations between 
anatomical deviations and overuse injuries, but the 
results appear mainly inconclusive. There is an increasing 
interest in clarifying the role of joint loads as missing 
links between anatomical deviations and over overuse 
injuries.

Unfortunately, the majority of the published papers 
put the attention on static parameters, instead of 
focusing on the dynamic behavior of the entire ‘altered’ 
lower limb. Furthermore, the methods used to assess 
the malalignment were not systematic and always  
reproducible.

Although the effect of torsional deformities and 
anatomical deviations on the gait pattern has been 
widely investigated in children with cerebral palsy 
(CP) (68), only a few studies have been published in 
idiopathic, otherwise healthy populations. It is well 
known that static measurements poorly correlate with 
kinematics and kinetics of the lower limb during gait. 
This knowledge originates from studies regarding the 
surgical indication of femoral derotational osteotomy in 
patients with idiopathic increased femoral anteversion. 
Radler et al. (27) found a poor correlation between FNA 
measured in CT scans and internal hip rotation during 
gait, while, MacWilliams et  al. (69) demonstrated a 
high rate of surgical overcorrection of the increased FNA 
when only static measurements are considered during 
surgical planning.

Schranz et al. (70) investigated the correlation between 
dynamic hip internal rotation during gait and FNA in 30 
adolescents affected by recurrent patella instability, with 
the aid of 3D gait analysis (52). The authors’ hypothesis 
was confirmed, although static measurements of femoral 
anteversion (in this case carried out with MRI) poorly 
correlated with dynamic hip rotation.

These contradictory findings highlight that 3D gait 
analysis may play a role in understanding functional 
impairments at the root of common overuse injuries.

Studies investigating the role of altered joint loads 
on the onset and the worsening of cartilage defects 
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or osteoarthritis have been informative. However, 
similar studies investigating the effect of sustained 
musculoskeletal loads on the onset of overuse injuries 
are still lacking and appear to be needed. Computational 
methods such as musculoskeletal modelling and finite 
element analysis that combine patient-specific anatomy, 
kinematics, and kinetics can estimate the mechanical 
stimulus experienced in the regions of interest, such as 
cartilage stresses and contact pressures (71, 72, 73, 74); 
ligament forces, strains and elongation patterns (75, 76); 
strains and stresses on the bone (77, 78, 79); as well as 
on specific sub-regions of the bone, such as the proximal 
femur growth plate (80, 81, 82). The computational 
nature of these methods enables a thorough evaluation 
of the musculoskeletal loads occurring during various 
activities of daily living, demanding occupational tasks, 
sport activities, and strengthening programs across 
large samples of the population (83, 84, 85, 86, 87). 
Motion analysis of specific tasks and activities could 
help identifying some of the overuse and traumatic 
injury mechanisms and risk factors (2, 88, 89, 90, 91), 
especially through the use of wearable technologies 
(92, 93). Establishing causal relationship between 
mechanical stimuli and symptoms will remain a 
challenge, but 3D motion analysis, musculoskeletal, and 
finite element modelling may help in clarifying which are 
the major risk factors for overuse injuries. Figures 2 and 
3 report on two examples from our clinical practice in 
which gait analysis and musculoskeletal modelling are 
routinely used for the assessment of adolescent patients 
with orthopaedic conditions. A more systematic use of 
these technologies in a clinical setting would provide 
clinicians, physiotherapists, sports coaches, and families 
with quantitative information for a more evidence-based 

decision making in the management of injuries and 
return to sports in children and adolescents.

Conclusions

The aim of this narrative review is to present the current 
knowledge on the link between anatomic deviations, 
altered loads and development of overuse injuries. Even 
if this field has been widely investigated, establishing 
a causal relationship between alteration of mechanical 
stimuli caused by anatomical deviations and symptoms 
still remains a challenge. The major concern of the 
current literature is that the majority of the published 
papers put the attention on static parameters. In this 
light, 3D motion analysis and musculoskeletal modelling 
may help in clarifying which are the major risk factors 
implicated in the development overuse injuries.
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Figure 2
Medial and lateral condyle knee compressive forces during gait 
computed by means of musculoskeletal modelling (AnyBody 
Technology A/S, Aalborg, Denmark). Knee compressive forces 
are normalized by body weight (BW) and reported over the gait 
cycle for left (red solid line) and right (blue dashed line) leg. The 
example refers to the clinical gait analysis of one adolescent 
patient with knee pain. The patient presented CT-confirmed 
femoral retroversion on both sides, as well as dynamic genu 
valgum and foot external rotation during gait. The analysis of 
joint loads indicates an altered load distribution, with an 
overload of the lateral compartment during gait, more 
pronounced on the left knee.

Figure 3
Forces transmitted from the quadriceps to the patella during 
gait, computed by means of musculoskeletal modelling 
(AnyBody Technology A/S, Aalborg, Denmark). Muscle forces 
are normalized by body weight (BW) and reported over the gait 
cycle for left (red solid line) and right (blue dashed line) leg. The 
example refers to the clinical gait analysis of one adolescent 
patient with bilateral Osgood–Schlatter disease. The patient is 
habitual toe-walker, and his gait pattern is associated with larger 
forces produced by the knee extensors. Repetitive high loads on 
the patella might lead to an overload of the patellar ligament 
and the onset of Osgood–Schlatter disease.
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