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Abstract

Metabolites play a significant role in various complex human disease. The exploration of the

relationship between metabolites and diseases can help us to better understand the under-

lying pathogenesis. Several network-based methods have been used to predict the associa-

tion between metabolite and disease. However, some methods ignored hierarchical

differences in disease network and failed to work in the absence of known metabolite-dis-

ease associations. This paper presents a bi-random walks based method for disease-

related metabolites prediction, called MDBIRW. First of all, we reconstruct the disease simi-

larity network and metabolite functional similarity network by integrating Gaussian Interac-

tion Profile (GIP) kernel similarity of diseases and GIP kernel similarity of metabolites,

respectively. Then, the bi-random walks algorithm is executed on the reconstructed disease

similarity network and metabolite functional similarity network to predict potential disease-

metabolite associations. At last, MDBIRW achieves reliable performance in leave-one-out

cross validation (AUC of 0.910) and 5-fold cross validation (AUC of 0.924). The experimen-

tal results show that our method outperforms other existing methods for predicting disease-

related metabolites.

Introduction

Metabolites play an important role in the maintenance, growth and reproduction of organ-

isms, and are greatly helpful to illustrate the underlying molecular disease-causing mecha-

nisms [1]. There is abundant evidence that diseases are always accompanied with changes in

metabolite [2]. Hence, it is significant to identify abnormal metabolites for diagnosis and treat-

ment of diseases [3].

As the development of molecular technology, many researchers have revealed the associa-

tion between disease and other molecular products like gene, microRNA, circRNA, protein,

etc [4–6]. Luo et al. used BIRW to predict the potential association between drug and disease

[7]. Yan et al. developed the method DNRLMF-MDA by integrating disease similarity and

miRNA similarity to predict disease-related miRNA based on dynamic neighbourhood regu-

larized logistic matrix factorization [8]. In recent years, more and more researchers have been

attracted to metabolite. Czech et al. used the method of gas and liquid chromatography-tan-

dem mass spectrometry (GC-MS and LC-MS/MS) to analyze CSF samples in Alzheimer’s
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patients [9]. An integrated mass spectrometry approach was developed to research the new

cerebrospinal fluid biomarkers of multiple sclerosis [10]. The contents of metabolites in the

patients of Alzheimer’s brain were studied in [11]. In 2010, Erika et al. developed a method to

discover phenylbutyrate metabolites in patients with Huntington’s disease [12]. Susan et al.

integrated metabolomics and transcriptomes data to identify biomarkers for type 2 diabetes

[13]. Baumgartner et al. proposed a novel network-based approach to identifying dynamic

metabolic biomarkers in cardiovascular disease [14]. Previous research has shown that metab-

olites with similar functions are highly likely to be associated with the same or similar diseases

[3]. Shang et al. proposed a method named PROFANCY to predict metabolites associated with

disease based on metabolite functional similarity in metabolic pathways [15]. Hu et al. con-

structed a weighted metabolite association network for all the similarities of metabolite pairs,

the random walk was utilized to predict metabolic markers of diseases [16]. Although some

achievements has been made, there are still a lot of researches to do in the field of disease-

related metabolites prediction. Considering that traditional RWR cannot fully combine the

information of the metabolite network, disease network and disease-metabolite association

network, and cannot predict the disease-related metabolites without known relationships. We

apply bi-random walks algorithm to predict metabolite-disease associations by walking in dis-

ease network and metabolite network.

In this study, we utilize bi-random walks to identify disease-related metabolites. First, we

compute disease semantic similarity and metabolite functional similarity, as well as create the

Gaussian Interaction Profile kernel similarity for diseases and metabolites base on known

metabolite-disease associations. Then, we integrate disease semantic similarity and disease

GIP kernel similarity to construct disease similarity network. Similarly, metabolite functional

similarity and metabolite GIP kernel similarity are integrated to construct metabolite similar-

ity network. After that, Bi-random walks is used in two subnetworks to predict metabolite-dis-

ease associations. Finally, leave-one out cross validation, five-fold cross validation and case

studies are used to assess the performance of our method. The experimental results illustrate

that our method MDBIRW can effectively predict disease-related metabolites and show the

superior performance compared to other competing methods.

Materials and methods

Human metabolite-disease association

We downloaded the metabolites data and diseases data from Human Metabolome Database

(HMDB) [17] and Human Disease Ontology (DO) [18], respectively (S1 File). 2262 metabo-

lites, 216 diseases and 4537 metabolite-disease associations can be obtained after removing

redundant associations. The set of metabolites are denoted by M ¼ fmig
m
i¼1

, wherem is the

number of metabolites. Similarly, the set of diseases is denoted by D ¼ fdjg
n
j¼1

, where n is the

number of diseases. And the adjacent matrix A indicates the metabolite-disease associations

network. If there is a known association between disease d(i) and metabolitem(j), A (i, j) is

equal to 1, otherwise 0.

Disease semantic similarity

In the MeSH database(https://meshb.nlm.nih.gov/) [19], every disease can be regarded as a

node in Directed Acyclic Graph (DAG). Each MeSH descriptor displays a hierarchical DAG

structure. For disease d which can be represented as DAG(d) = (d, T(d), E(d)), where T(d) is

an ancestral set of disease di and E(d) indicates the corresponding edges. The semantic score of
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disease d can be calculated as follows:

DdðtÞ ¼
1; if t ¼ d

maxfD � Ddðt0Þjt0 2 children of tg; if t 6¼ d
ð1Þ

(

where the disease t2T(d), Δ is semantic contribution decay factor and we set Δ = 0.5.

The semantic value DV(d) of disease d is defined as follows:

DVðdÞ ¼ St2TðdÞDdðtÞ ð2Þ

Then, the semantic similarity between di and dj can be calculated as follows:

S ðdi; djÞ ¼

P
t2TðdiÞ\TðdjÞ

ðDdi
ðtÞ þ Ddj

ðtÞÞ

DVðdiÞ þ DVðdjÞ
ð3Þ

where DV (di) and DV (dj) indicate the value of the disease t associated with disease di and dj.
Finally, we obtain the disease semantic similarity among all diseases, and symmetric matrix

Sdn�n indicates the disease semantic similarity network.

Metabolite functional similarity

Wang et al. proposed a method called MISIM [20]. In previous work, MISIM was used to cal-

culate the similarity of micro-RNAs based on the similarity of related diseases. We apply the

MISIM to compute the similarity of metabolites by using the related diseases semantic similar-

ity. Here, we define d as a specific disease and D = {d1,d2,� � �,dk} represent a disease group. The

similarity of disease d to group of diseases D can be calculated as follows:

S ðd;DÞ ¼ max1�i�kðd; diÞ ð4Þ

where k represents the number of D, S (d, D) represents the maximum similarity between one

disease and a group of diseases.

Afterwards, we can obtain the similarity of metabolites by the following formula:

Sm mi;mj

� �
¼

P
1�k�numi

Sðdik;DjÞ þ
P

1�k�numj
Sðdjk;DiÞ

numi þ numj
ð5Þ

where Di and Dj are two sets of diseases related to metabolitemi and mj, numi and numj repre-

sent the number of Di and Dj, respectively. The symmetric matrix Smm�m indicates the metabolic

functional similarity network.

Gaussian interaction profile kernel similarity for diseases and metabolites

Considering the assumption that the more common metabolites(diseases) of a disease(metab-

olite) pair has, the more similar they are. We utilize Gaussian Interaction Profile kernel simi-

larity to calculate metabolite similarity and disease similarity based on the topologic

information of known disease-metabolite associations.

In the disease-metabolite association network A, IP (mi) represents the interaction profile

for metabolitemi, which is a binary vector with size of n. If a disease is related tomi, the corre-

sponding value of IP (mi) is 1, otherwise 0. According to the interaction profiles, the Gaussian

interaction profile kernel similarity matrix for metabolite GSm can be calculated as follows:

GSmði; jÞ ¼ expð� ldkIPðmiÞ � IPðmjÞk
2
Þ ð6Þ
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ld ¼ l
0

d=
1

m

Xm

i¼1

kIPðmiÞk
2

 !

ð7Þ

wherem is the number of metabolites. λd indicates the normalized kernel bandwidth, and can

be updated by a new normalized bandwidth l
0

d. According to previous relevant research, we

set l
0

d ¼ 1 [21].

Similarly, we can compute the Gaussian interaction profile kernel similarity matrix for dis-

eases GSd as follows:

GSdði; jÞ ¼ expð� lmkIPðdiÞ � IPðdjÞk
2
Þ ð8Þ

lm ¼ l
0

m=
1

n

Xn

i¼1

kIPðdiÞk
2

 !

ð9Þ

where l
0

m is also set as 1, n is the number of diseases.

Reconstruction of disease similarity network and metabolite similarity

network

In this section, we reconstruct disease similarity and metabolite similarity. A disease similarity

network can be reconstructed based on the disease semantic similarities and gaussian interac-

tion profile kernel similarity of disease. We define the disease similarity network DS on the

basis of matrix Sd and GSd as follows:

DSði; jÞ ¼
GSdði; jÞ; if Sdði; jÞ ¼ 0

Sdði; jÞ þ GSdði; jÞ
2

; if Sdði; jÞ 6¼ 0
ð10Þ

8
<

:

where DS(i,j) is the final disease similarity value of disease i and disease j. When the disease

semantic similarity Sd(i,j) = 0, we replace Sd(i,j) with GSd(i,j). Otherwise, we hypothesize that

the disease semantic similarity is as important as the Gaussian Interaction Profile Kernel Simi-

larity of disease.

Similarly, metabolite similarity network MS can be reconstructed by Sm and GSm, the final

metabolite similarity network can be calculated as follows:

MSði; jÞ ¼
GSmði; jÞ; if Smði; jÞ ¼ 0

Smði; jÞ þ GSmði; jÞ
2

; if Smði; jÞ 6¼ 0
ð11Þ

8
<

:

whereMS(i,j) represents the similarity value between metabolite i and metabolite j.

Bi-Random walks on heterogeneous network

In this study, we propose a novel method to predict metabolite-disease associations. With dis-

ease similarity network, metabolite similarity network and known disease-metabolite network,

we create a Heterogeneous network, including two types of nodes and three types of edges

among them. Fig 1 is an example of the heterogeneous network. The upper sub-network is a

metabolite similarity network, and the lower sub-network is a disease similarity network. The

middle sub-network is a bipartite graph of metabolite-disease relationship. Supposingm1 and

m4 have a high similarity value, andm1 has a known association with d2. In order to predict
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the association betweenm4 and d2, we can takem4 as starting node for random walker, which

jump fromm4 tom1 and then to d2 through the edge that connect tom1 and d2. we also can

take d2 as starting node for random walker, which jump from d2 to d4 and the tom4. These

two ways both can obtain the associated probability betweenm4 and d2, the former firstly finds

out the most similar intermediate metabolites based on the similarity of metabolites, and then

calculates the associated probability between intermediate metabolites and corresponding dis-

eases based on intermediate metabolites. Using bi-random walks algorithm [22, 23] can

achieve forecast by walking in metabolite subnetwork and disease subnetwork. The associated

probability of arbitrarily metabolite-disease can be calculate by bi-random walk. Fig 2 shows

the workflow of MDBIRW for predicting disease-related metabolite.

Bi-random walks is utilized to evaluate potential metabolite-disease association, the associa-

tion probability of metabolite-disease pair without known association record would be com-

puted based on the steady state of the random walk process. During the random walk,

metabolite subnetwork and disease subnetwork have different walking steps. Different walking

steps can better obtain information of direct or undirect nodes in different networks. Hence,

we define l, r as the numbers of maximal iterations in the metabolite subnetwork and disease

subnetwork. The process of bi-random walks is described as follows:

RMt ¼ aMS � RMt� 1 þ ð1 � aÞA ð12Þ

Fig 1. An example of the heterogeneous network. The blue edges indicate the metabolite similarity between

metabolites, green edges indicate the disease similarity between diseases, and red edges between diseases and

metabolites, which indicate the known metabolite-disease associations, and the dashed edges between metabolites and

diseases indicate the novel association.

https://doi.org/10.1371/journal.pone.0225380.g001
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RDt ¼ a RDt� 1 � DSþ ð1 � aÞA ð13Þ

Here, α represents the decay factor with ranges from 0 to 1. RMt(i,j) and RDt(i,j) denote the

probability of walking on metabolite similarity network and disease similarity network, respec-

tively. MDBIRW can eliminate bias caused by topological and structural characteristics of the

different networks by adjusting the number of walking steps of metabolite subnetwork and

disease subnetwork. The pseudocode of MDBIRW algorithm is shown in Algorithm 1.
Algorithm 1. Algorithm for predicting the potential associations
between metabolites and diseases
Input: Disease set D, metabolite set M and metabolite-disease adja-
cency matrix A, parameter α, l and r
Output: predicted association matrix R
1: Calculate disease semantic similarity Sd and metabolite functional
similarity Sm;
2: Calculate disease GIP kernel similarity GSd and metabolite GIP ker-
nel similarity GSm;
3: Construct the disease similarity matrix DS and metabolite similar-
ity matrix MS;
4: Normalize DS and MS to DS’ and MS’, respectively;
5: R0 = A = A / sum(A);

Fig 2. The workflow of MDBIRW for predicting disease-related metabolite.

https://doi.org/10.1371/journal.pone.0225380.g002
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6: for t = 0 to max (l, r);
7: flagm = flagd = 1;
8: if t < = l
9: RM = α MS0�RMt−1+(1−α)A;
10: flagm = 1;
11: end if
12: if t < = r
13: RD = α RDt−1�DS0+(1−α)A;
14: flagd = 1;
15: end if
16: R = (flagm � RM + flagd � RD) / (flagm + flagd);
17:end for
18:return R

Results

Parameter analysis

Three parameters l, r, and α are probed in MDBIRW. The parameter α is decay factor, the

range of α is {0.3,0.5,0.7,0.9}. l and r control the iteration steps of two subnetwork, and choose

the two parameters from {1,2,3,4,5}. If l> rmeans the random walker prefer to walk in metab-

olite network, vice versa. The analysis results of parameters are shown as Table 1 and the bar

chart of α = 0.3 is shown in Fig 3.

Table 1. The analysis results of parameters.

α = 0.3 r = 1 r = 2 r = 3 r = 4 r = 5

l = 1 0.910 0.838 0.788 0.702 0.698

l = 2 0.906 0.919 0.855 0.782 0.717

l = 3 0.904 0.898 0.924 0.850 0.797

l = 4 0.902 0.901 0.900 0.920 0.845

l = 5 0.774 0.773 0.768 0.763 0.768

α = 0.5 r = 1 r = 2 r = 3 r = 4 r = 5

l = 1 0.911 0.861 0.838 0.778 0.719

l = 2 0.905 0.911 0.859 0.828 0.776

l = 3 0.896 0.898 0.909 0.859 0.819

l = 4 0.899 0.894 0.895 0.907 0.842

l = 5 0.786 0.775 0.768 0.765 0.761

α = 0.7 r = 1 r = 2 r = 3 r = 4 r = 5

l = 1 0.917 0.877 0.836 0.818 0.785

l = 2 0.889 0.906 0.857 0.833 0.806

l = 3 0.877 0.887 0.904 0.859 0.827

l = 4 0.871 0.867 0.873 0.904 0.847

l = 5 0.784 0.774 0.769 0.765 0.766

α = 0.9 r = 1 r = 2 r = 3 r = 4 r = 5

l = 1 0.917 0.867 0.840 0.835 0.808

l = 2 0.883 0.895 0.863 0.834 0.818

l = 3 0.851 0.858 0.892 0.834 0.819

l = 4 0.844 0.834 0.832 0.878 0.829

l = 5 0.778 0.776 0.776 0.772 0.759

The range of α is {0.3,0.5,0.7,0.9}. The range of l and r is {1,2,3,4,5}.

https://doi.org/10.1371/journal.pone.0225380.t001
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We explore the influences of l and r by using grid search method. From Table 1, we can

conclusion that the maximum iteration steps l and r should not exceed 4. The AUC values on

the diagonal is almost always higher than the rest values of its row and column. In other

words, the optimal AUC value will be obtained when the maximum iteration steps of metabo-

lite network and disease network are equal. Therefore, in our study, the optimal parameters

are set that α = 0.3,l = 3,r = 3.

Performance of MDBIRW

Leave one out cross-validation (LOOCV) only take one sample as test set and the remains are

used as training data. In our study, there are 2262 metabolites, coupled with 216 diseases and 4537

metabolite-disease associations. Therefore, we need to execute LOOCV program 4537 times. At

each round, one corresponding known metabolite-disease association should be converted to

unknown as test sample and the rest of known metabolite-disease association be used to as train-

ing samples. After execute bi-random walks with LOOCV, predicted results will be obtained.

Five-fold cross-validation (FFCV) is also utilized to evaluate the performance of our

method. In FFCV, 4537 metabolite-disease associations were randomly divided into 5 groups.

For each execution, one group is used as test set while 4 groups are used as training sets [24].

Receiver Operating Characteristic (ROC) curve is also called sensitivity curve, which using

false positive rate and true positive rate as horizontal axis and vertical axis, respectively. The

area of under the ROC curve is AUC value. The higher AUC value is, the better performance

will be. In our study, the number of negative samples is more than the number of positive

Fig 3. Description of transition probability α = 0.3. Fix the α is 0.3, values of l and r is {1,2,3,4,5}. When l and r is

equal to 3, obtain the maximum AUC value of 0.924.

https://doi.org/10.1371/journal.pone.0225380.g003
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samples. Hence, we randomly select as many negative samples as positive samples. We arrange

the final predicted values in descending order and calculate false positive rate and true positive

rate by setting thresholds. Finally, the true positive rate (TPR) and false positive rate (FPR) for

each threshold can be computed as follows:

TPR ¼
TP

TP þ FN
ð14Þ

FPR ¼
FP

FP þ TN
ð15Þ

where TP and TN represent the number of positive samples and negative samples that can be

correctly identified, and FP and FN are the number of the positive samples and negative sam-

ples that cannot be correctly identified, respectively.

Precision-Recall (PR) curve utilizes recall and precision as horizontal axis and vertical axis

of PR curve. The area under precision-recall curve (AUPR) is to evaluate the performance of

our method by considering the precision and recall. Different precision-recall pairs will be

obtained by setting different thresholds. Precision and recall can be calculated as follows:

Precision ¼
TP

TP þ FP
ð16Þ

Recall ¼
TP

TPþ FN
ð17Þ

where TP indicates the number of real identified positive samples. FP and FN respectively rep-

resent the number of negative samples that are incorrectly labelled as positive samples and the

number of positive samples that are incorrectly labelled as negative samples.

According to our predicted result, the result of LOOCV is 0.903 and FFCV is 0.924, which

confirms the superior performance of our method. Fig 4 shows the comparison result of

LOOCV. MERWMDA [25] applied the maximum entropy theory to the random walk and

revealed potential disease-miRNA associations on the heterogeneous network. RWR [26], the

traditional random walk with restart algorithm, starting from any node and it have two choices

in each step: randomly moving to neighbor nodes with (1−α) or returning to start node with

probability α. MERWMDA and RWR are utilized as comparison methods to verify the perfor-

mance of our method. Fig 5 shows the comparison result of MDBIRW, MERWMDA and

RWR in FFCV. ROC and PR curves are plotted to evaluate the performance of our method.

We use same number of positive and negative samples, the trend of these two curves is similar.

Fig 6 shows PR curve of MDBIRW in LOOCV and FFCV.

Case studies

We chose obesity, colorectal cancer and Alzheimer’s disease as case studies. For each disease,

we removed all known metabolite-disease associations and performed MDBIRW to obtain

predicted scores. According the experimental prediction score (from high to low), we obtain

the top 10 metabolites related to disease. Next, we mined biomedical literature from the

National Center for Biotechnology information (NCBI, https://www.ncbi.nlm.nih.gov/) data-

base and manually checked these metabolites. As a result, 8 out of 10, 9 out of 10 and 10 out of

10 predicted obesity, colorectal cancer and Alzheimer’s disease be validated, respectively.

Obesity has become a major public health problem around the world, the prevalence rate of

which is rising in almost all countries. There is growing evidence that obesity is linked to

metabolite. As shown in Table 2, by executing bi-random walks to identify underlying
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metabolites with obesity, nine of top 10 identified metabolites have been validated. The change

of L-Phenylalanine in obese men suggested the early changes in obesity in young men [27].

The levels of Cholesterol is relatively high in obese young men has been already verified [27].

Zhao et al. has discovered that the levels of glycine have significant weight at baseline during

five years [28]. L-Tryptophan and L-Tyrosine are abnormally expressed in obese children [28].

The changes of L-Arginine and L-Histidine were positively with obese parameter [29]. Central

adiposity is associated with creatine changes, which has been found by Kaur et al [30].

5-Hydroxyindole acetic acid and L-Alanine have not been confirmed link to obesity in human.

The incidence of colorectal cancer (CRC) is second only to gastric cancer, esophageal can-

cer and primary liver cancer [31]. In recent years, the incidence of colorectal cancer in adoles-

cents and young adults is higher. Endogenous metabolites have verified it have great potential

in the early diagnosis and personalized treatment of CRC [32]. Using our method to predict

metabolites with CRC, and sorting the score of results in descending order. 9 out of 10 metabo-

lites are confirmed, which is described in Table 3.

Fig 4. The comparison result of MDBIRW, MERWMDA and RWR in LOOCV.

https://doi.org/10.1371/journal.pone.0225380.g004
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Alzheimer’s disease (AD), the most common cause of dementia, is a health problem that

attracts increasing global attention and has a huge impact on human health [33]. Researchers

developed various methods to identify AD related metabolites, for instance, using capillary

electrophoresis-mass spectrometry to identify 9 metabolites are disease progression biomark-

ers [34]. Abnormal phospholipid metabolism is likely to lead to AD, and abnormal levels of

metabolism is utilized to study AD by combining metabolomic-profiling approach [35]. 10 out

of 10 predicted AD related metabolite were confirmed, as shown in Table 4.

Conclusions

There is increasing evidence that metabolites play an important role in the prediction, diagno-

sis and treatment of many complex diseases. In this paper, MDBIRW be used to predict the

latent associations between metabolite and disease. The experimental results and case studies

Fig 5. The comparison result of MDBIRW, MERWMDA and RWR in FFCV.

https://doi.org/10.1371/journal.pone.0225380.g005
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illustrate that the performance of MDBIRW is superior to that of other methods. The effective

performance of MDBIRW mainly due to following factors. Firstly, the semantic disease simi-

larity, metabolite functional similarity and Gaussian interaction profile kernel similarity were

Fig 6. The PR curve of MDBIRW. (A) PR curve in LOOCV with AUPR = 0.904. (B)PR curves of MDBIRW, MERWMDA and

RWR in FFCV.

https://doi.org/10.1371/journal.pone.0225380.g006

Table 2. Top 10 metabolites of obesity identified by bi-random walks method.

Metabolite Names HMDB ID Evidences

L-Phenylalanine HMDB0000159 PMID: 21890434

Cholesterol HMDB0000067 PMID: 25725317

Glycine HMDB0000123 PMID: 27708848

L-Tryptophan HMDB0000929 Simone et al.,2013

L-Histidine HMDB0000177 PMID:25700627

L-Tyrosine HMDB0000158 Simone et al.,2013

L-Alanine HMDB0000161 Unconfirmed

L-Arginine HMDB0000517 PMID:25700627

5-Hydroxyindole acetic acid HMDB0000763 Unconfirmed

Creatine HMDB0000562 PMID:28144886

https://doi.org/10.1371/journal.pone.0225380.t002

Table 3. Top 10 metabolites of colorectal cancer identified by bi-random walks method.

Metabolite Names HMDB ID Evidences

1-Methyladenosine HMDB0003331 PMID:7482520

N-Acetyl-D-glucosamine HMDB0000215 PMID:27156840

Deoxyguanosine HMDB0000085 PMID:27585556

Gentisic acid HMDB0000152 PMID:25037050

N-Acetylgalactosamine HMDB0000212 PMID:29507546

Saccharopine HMDB0000279 Unconfirmed

L-Tyrosine HMDB0000158 PMID:27275383

L-Glutamic acid HMDB0000148 PMID:23940645

L-Histidine HMDB0000177 PMID:20156336

Hypoxanthine HMDB0000157 PMID: 28640361

https://doi.org/10.1371/journal.pone.0225380.t003
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integrated. Secondly, by controlling the number of iterative steps in metabolite network and

disease network, MDBIRW can make better use of the hierarchical information of the nodes

in two subnetworks to achieve a higher prediction accuracy.

This method still has some limitations needing to be improved in future research. First,

gaussian interaction profile kernel similarity of diseases and metabolites Overreliance on

known metabolite-disease association, resulting in biased similarity calculations. For this prob-

lem, different data can be used to compute the similarities of diseases and metabolites such as

GO data. In addition, we only used single data source, disease and metabolic data. Complex

diseases are commonly caused by the interaction of multi-omics, thus, we will combine other

omics data to improve prediction performance in the following study.
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