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In recent years, the application of single cell RNA-seq (scRNA-seq) has become more
and more popular in fields such as biology and medical research. Analyzing scRNA-
seq data can discover complex cell populations and infer single-cell trajectories in cell
development. Clustering is one of the most important methods to analyze scRNA-
seq data. In this paper, we focus on improving scRNA-seq clustering through gene
selection, which also reduces the dimensionality of scRNA-seq data. Studies have
shown that gene selection for scRNA-seq data can improve clustering accuracy.
Therefore, it is important to select genes with cell type specificity. Gene selection not
only helps to reduce the dimensionality of scRNA-seq data, but also can improve cell
type identification in combination with clustering methods. Here, we proposed RFCell,
a supervised gene selection method, which is based on permutation and random forest
classification. We first use RFCell and three existing gene selection methods to select
gene sets on 10 scRNA-seq data sets. Then, three classical clustering algorithms are
used to cluster the cells obtained by these gene selection methods. We found that the
gene selection performance of RFCell was better than other gene selection methods.

Keywords: single-cell RNA sequencing, gene selection, permutation, random forest, clustering

INTRODUCTION

Single cell RNA-Seq (scRNA-Seq) provides unprecedented insight into biological concerns at the
level of individual cells (Hwang et al., 2018). Bulk RNA sequencing analysis, based on the average
expression of large populations of cells, is difficult to reveal the expression heterogeneity between
different cells. However, scRNA-Seq only studies the expression of single-cell level, so scRNA-
Seq improves cell resolution across global transcriptome profile (Pouyan and Kostka, 2018). In
recent years, scRNA-seq has been widely used in many aspects of biological and medical research
(Hedlund and Deng, 2018), for example, discovering the new cell states and tracing the origin
of its development (Trapnell, 2015), cell type identification (Xu and Su, 2015), heterogeneity of
cell responses (Pollen et al., 2014), understanding of cell-specific biological characteristics (Poirion
et al., 2016), building gene regulatory networks across the entire gene expression profiles (Zheng
et al., 2019), tracking of different cell lineage trajectories (Shao and Hofer, 2017), and cell fate
decisions (Goolam et al., 2016). In addition, scRNA-seq data is useful to study cellular immunity,
drug and antibiotic resistance (Patel et al., 2014).
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Genome-wide transcriptome analysis is usually used to study
the expression of tissue, disease and cell type-specific genes,
but generating expression profiles at single-cell resolution is
technically challenging. Therefore, researchers have proposed
many sequencing technologies, such as: a robust mRNA-Seq
protocol that is applicable to a single cell level; and a scalable
method to characterize many cell types and states under various
conditions and disturbances Drop-seq protocol for complex
organizations (Ramskold et al., 2012; Macosko et al., 2015)).
From the perspective of scRNA-Seq technology, the scRNA-seq
capture efficiency and dropout rate have limitations due to the
small amount of starting materials. At the same time, due to
the uncertainty of cell separation protocol, library preparation
methods, sequencing methods, reagent usage methods, and
various types of samples, batch effects may be introduced, which
leads to the high noise characteristics of scRNA-seq data (Chen
et al., 2019). From the perspective of gene expression, gene
expression in scRNA-Seq data is specific (Aevermann et al., 2018),
only a small part of the genes are biologically meaningful. So,
scRNA-Seq research is challenging due to its high noise, high
dimensionality and sparsity (Schnable et al., 2009). Considering
that scRNA-seq data play an important role in the effectiveness
and accuracy of downstream analysis, the most important goal
of scRNA-seq is to select highly variable genes in the single cell
transcriptome profiling.

scRNA-seq data usually has the problems of high noise,
high dimensionality and sparseness. Therefore, before
downstream analysis, researchers usually use certain feature
selection methods to extract scRNA-seq data. A common
gene selection strategy for high-dimensional gene expression
analysis is by projecting data points from a high-dimensional
gene expression space into a low-dimensional space. Single
cell expression data in low-dimensional space is expected
to be an important feature in high-dimensional space. In
recent years, there have been many methods to analyze and
study scRNA-seq data from the angles of reduce dimension.
Principal component analysis (PCA) (Lever et al., 2017) is a
method of converting scRNA-seq data into fewer features to
achieve data dimensionality reduction. By generating two-
dimensional embedding of high-dimensional data, t-distributed
stochastic neighborhood embedding (t-SNE) (Linderman and
Steinerberger, 2019) is an effective non-linear dimensionality
reduction technology that has attracted more and more scientific
attention. Recently, it has been widely popular in the field of
scRNA-seq data research.

Andrews and Hemberg (2019) proposed a gene selection
method called M3Drop. Wang et al. (2019) proposed a new
marker selection strategy SCMarker to accurately delineate cell
types in scRNA-seq data by identifying genes that have bi/multi-
modally distributed expression levels and are co-or mutually-
exclusively expressed with some other genes. In addition, Expr
is also a gene selection method based on scRNA-Seq sequencing
data. This method only retains the genes with the highest average
expression (logarithmic normalized count) value in all cells.

We propose RFCell, a gene selection strategy based on
permutation and random forest, which uses supervised
classification in pattern recognition to determine the best subset

of genes for cell type recognition without referring to any known
transcriptome profile or cell related information. The central idea
of our method is that random forests based on ensemble method
can not only process scRNA-seq data with high-dimensional
features, but also evaluate the importance of each gene in gene
expression data through information gain. Our main goal is to
identify marker genes from scRNA-seq data that can not only
judge cell types but also have biological significance. After using
RFCell for gene selection on 10 scRNA-seq data sets, we found
that the accuracy of the average results is higher than that of
using conventional gene selection strategies.

MATERIALS AND METHODS

The pipeline of our proposed RFCell is depicted in Figure 1. In
the following section, we describe this pipeline in detail.

Method
Pouyan and Kostka (2018) proposed RAFSIL, a random forest-
based method that can learn the similarity between cells
from scRNA-seq data. RAFSIL consists of two steps: feature
construction based on scRNA-seq data and similarity learning.
RAFSIL has strong adaptability and scalability, and the similarity
can be used for typical exploratory scRNA-seq data research,
such as dimensionality reduction, visualization and clustering.
Considering that RAFSIL uses permutation to generate similarity,
we propose to use permutation to generate negative samples. We
develop RFCell, a supervised gene selection strategy based on
permutation and random forest. RFCell evaluates the importance
of each gene through random forest classification. RFCell works
in two steps: generation of negative samples and evaluation of
gene importance using Random Forest.

Generation of Negative Samples
It is well known that scRNA-seq data is complex and diverse, so it
is particularly important for scRNA-seq data gene selection. First,
to generate a random negative sample matrix of gene expression
data, we input the gene expression matrix X (X consists of m rows
and n columns) obtained after data preprocessing as a positive
sample. After that, the gene in each column of the positive
sample matrix X is randomly permutated to form a new gene
expression matrix Z (Z consists of m rows and n columns). We
define each row of cells in the new gene expression matrix Z as a
negative sample.

Next, we create the vector y. First, we define the label of the
positive sample matrix X as a vector p, and p are all 1, where the
number of 1 is the number of rows (m) of the positive sample
matrix X. Second, the label of the negative sample matrix Z is
defined as a vector q, and q is all 0, where the number of 0 is
the number of rows (m) of the negative sample matrix Z. Here,
we convert the p vector and q vector into data frame format
respectively. Third, the vector y (y consists of 2 × m rows and
one column) is generated by vertically merging the vector p and
the vector q.

Finally, the positive sample matrix X and the negative sample
matrix Z obtained from the above are merged vertically to obtain
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FIGURE 1 | The mechanism of RFCell (scRNA-seq gene selection based on permutation and Random Forest) algorithm. The input is a gene expression matrix. The
RFCell algorithm includes two steps: (A) Generation of negative samples; (B) Evaluation of gene importance using Random Forest.

a new gene expression matrix N (N contains 2 × m rows and
n columns).

Evaluation of Gene Importance Using Random Forest
We use the randomforest (Xin-Hai, 2013) package in R language
to evaluate gene importance. First, in order to generate the
random forest training data set, we horizontally merge the matrix
N and the vector y. Through merging, we get the random
forest training data set matrix M (M contains 2 × m rows and
n+1 columns). Then, we call the random forest R language
package. According to the usage of the randomforest package in
R language, we use the vector y obtained above as the formula
setting of the randomforest package, and use the matrix M as data
setting of randomforest package. The importance parameter is set
to True, and the remaining parameters are default values.

After calling the randomforest package, we use the importance
function to calculate the importance of each gene, and obtain
the importance of each gene through the mean decrease accuracy
(MDA). MDA represents the degree of reduction in the accuracy
of random forest prediction after one gene is permutated. The
larger the value, the greater the importance of the gene. In our
study, genes with MDA>0 are selected as genes that can identify
cell types.

ScRNA-Seq Datasets
We tested 10 published scRNA-seq datasets and obtained results
using gene selection methods. All these data sets have been used
for performance research by several latest algorithms. For each
data set, we use the expression unit provided by the author.

Darmanis dataset (Darmanis et al., 2015): In order to
capture the cellular complexity of adult and fetal human brains
at the entire transcriptome level, the authors performed
single-cell RNA sequencing on 466 cells. This data set
consists of oligodendrocytes, astrocytes, microglia, neuronal
cells, endothelial cells, neural progenitor cells, quiescent
newborn neurons, and two types of cells containing more
than one different cell type Cells with characteristic genes are
composed together.

Deng dataset (Deng et al., 2014): The authors used the Smart-
seq or Smart-seq2 platform to perform RNA-Seq sequencing
on Mus musculus cells from zygotic to late blastocysts of a
single cell from the adult liver. The cells in this data set
are separated from mouse embryonic oocytes to blastocyst
stage, including four 1- cells (zygotes), eight early 2- cells, 12
metaphase 2- cells, 10 late 2- cells, and 14 4- cells, 28 8- cells,
50 16- cells, 43 early blast cells, 60 mid blast cells, and 30
late blast cells.

Engel dataset (Engel et al., 2016): The authors analyzed
purified populations of thymic natural killer T cells (NKT cells) at
the transcriptome level and epigenome level, as well as by single-
cell RNA sequencing. The data consists of NKT1 cells, NKT2
cells, and NKT17 cells.

Grover dataset (Grover et al., 2016): Using single-cell RNA-
seq technology, the authors systematically compared single
hematopoietic stem cells (HSC) from young mice and old
mice that were transgenic from Vwf-EGFP bacterial artificial
chromosomes (BAC). By analyzing HSC transcriptome and HSC
function at the single cell level, the authors found that molecular
platelet priming and increased functional platelet bias are the
main age-dependent changes in HSCs.

Pollen dataset (Pollen et al., 2014): Using microfluidic
technology, the authors captured 301 single cells from 11
populations and analyzed the single-cell transcriptome within
the down-sampling sequencing depth range. They proved that
for unbiased cell type classification and biomarker identification,
shallow scRNA-seq is indeed sufficient.

Sasagawa dataset (Sasagawa et al., 2013): The authors
proposed a novel scRNA-seq method named Quartz-Seq. They
applied this method to ES cells in different three cell-cycle phases
(G1, S, and G2/M).

Ting dataset (Ting et al., 2014): The authors applied a
microfluidic device to isolate Circulating tumor cells (CTCs)
based on the model from a pancreatic cancer mouse to
determine the heterogeneity of pancreatic CTCs. Then these
CTCs were sequenced and compared to matched primary
tumors, cell line controls.
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Trapnell dataset (Trapnell et al., 2010): The author sequenced
and analyzed more than 430 million paired 75 bp RNA-Seq reads
from mouse myoblast cell lines on differentiation time series.

Treutlein dataset (Treutlein et al., 2014): The authors analyzed
198 single-cell transcriptomes from mouse lung epithelium in
total. For time point E18.5, three individual experiments were
performed using three different pregnant mices (3 biological
replicates): 20 single cell transcriptomes yielded from pooled
sibling lungs, 34 single cell transcriptomes yielded from one
single embryonic lung, 26 single cell transcriptomes yielded from
pooled sibling lungs. The authors used an unbiased genome-wide
approach and classified these 80 cells into five populations: Clara
(Scgblal), ciliate (Foxjl), AT1 (Pdpn, Ager), AT2 (Sftpc, Sftpb),
and alveolar bipotential progenitor (BP) cells.

Zhou dataset (Zhou et al., 2016): The author used effective
surface markers to capture the newborn pre-HSC with high
purity, and then applied single-cell RNA sequencing to analyze
endothelial cells, CD45- and CD45+ pre-HSC in the aorta-
gonad-mesonephrine region, and fetus HSC of the liver.

The summary description of the scRNA-seq datasets we used
is shown in Table 1.

Performance Evaluation
In order to compare the clustering results of RFCell and other
gene selection methods, we used two commonly used clustering
algorithm evaluation indicators: normalized mutual information
(NMI) (Kiselev et al., 2017) and adjusted rand index (ARI)
(Rand, 1971).

Mutual information (MI) measures the correlation between
two sets of events. In information theory, a useful measure
of information can be seen as the amount of information
contained in a random variable about another random variable,
or the uncertainty reduced by knowing another random variable.
Formally, the MI of two discrete random variables X and Y can
be defined as:

I(X : Y) =
∑
y∈Y

∑
x∈X

p(x, y) log(
p(x, y)

p(x)p(y)
) (1)

where p(x, y) is the joint probability distribution function of X
and Y , and p(x) and p(y) are the marginal probability distribution
functions of X and Y . NMI is to place MI between [0, 1] through

TABLE 1 | Summary description of the ten scRNA-seq datasets.

Datasets #Samples #Genes #Classes Unit

Darmanis (Darmanis et al., 2015) 466 22,088 9 CPM

Deng (Deng et al., 2014) 259 22,958 10 RPKM

Engel (Engel et al., 2016) 203 23,342 4 RPKM

Grover (Grover et al., 2016) 135 15,181 2 CPM

Pollen (Pollen et al., 2014) 249 14,805 11 TPM

Sasagawa (Sasagawa et al., 2013) 23 36,807 3 FPKM

Ting (Ting et al., 2014) 149 29,018 7 CPM

Trapnell (Trapnell et al., 2010) 372 47,192 4 FPKM

Treutlein (Treutlein et al., 2014) 80 23,271 5 FPKM

Zhou (Zhou et al., 2016) 181 23,624 8 FPKM

information entropy, and its purpose is to evaluate the quality of
the algorithm. For a random variable X, its information entropy
can be calculated as:

H(X) =

n∑
i=1

p(xi)I(xi) =

n∑
i=1

p(xi) log
1

p(xi)
(2)

The value of the random variable X = {x1 , x2, ... xn} and
p(xi) represent the probability of event occurring, on the other
hand, the value of random variable Y =

{
y1, y2 , ... yn

}
and p(yi)

represents the probability of event occurring. NMI can be defined
as:

U(X, Y) = 2
I(X;Y)

H(X)+H(Y)
(3)

NMI is used to evaluate the consistency between the clustering
results obtained and the true cell markers.

Rand Index (RI) is a measure of the similarity between
clustering results and real categories. Mathematically, the RI is
associated with accuracy. Given a set of S with n elements, then
compare the two partitions M, N of S. The RI is calculated as
follows:

RI =
a+ b

a+ b+ c+ d
=

a+ b
C2

n
=

a+ b
n(n− 1)/2

(4)

where a is the number of pairs of elements in S that are in the
same subset in M and in the same subset in N; b is the number
of pairs of elements in S that are in different subsets in M and in
different subsets in N; c is the number of pairs of elements in S
that are in the same subset in M and in different subsets in N; d is
the number of pairs of elements in S that are in different subsets
in M and in the same subset in N.

The RI is between [0, 1]. The greater the RI value, the more
consistent the clustering result of the algorithm is with the known
label, the higher the accuracy of the clustering effect, and the
higher the purity in each category. The problem with the RI is
that, when comparing multiple clustering results, RI values are
usually high, resulting in a poor evaluation of the superiority

TABLE 2 | Comparison of SIMLR performance of gene sets obtained by four gene
selection methods in terms of NMI.

DataSet NMI

Expr M3Drop SCMarker RFCell

Darmanis 0.720 0.687 0.727 0.724

Deng 0.676 0.682 0.650 0.682

Engel 0.528 0.609 0.768 0.670

Grover 0.004 0.043 0.002 0.084

Pollen 0.868 0.944 0.908 0.938

Sasagawa 0.592 0.621 NA 0.595

Ting 0.781 0.706 0.767 0.829

Trapnell 0.102 0.127 0.066 0.222

Treutlein 0.425 0.411 0.433 0.531

Zhou 0.631 0.619 0.590 0.663

NA:The number of genes selected by SCMarker is 0, so no results are obtained.
The bold values mean the highest or equally-highest value among different
methods.
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TABLE 3 | Comparison of SIMLR performance of gene sets obtained by four gene
selection methods in terms of ARI.

DataSet ARI

Expr M3Drop SCMarker RFCell

armanis 0.549 0.537 0.530 0.537

Deng 0.343 0.412 0.367 0.412

Engel 0.390 0.509 0.710 0.622

Grover 0.007 0.044 0.001 0.109

Pollen 0.798 0.937 0.832 0.917

Sasagawa 0.561 0.516 NA 0.555

Ting 0.540 0.532 0.491 0.668

Trapnell 0.010 0.062 0.010 0.168

Treutlein 0.237 0.239 0.285 0.349

Zhou 0.415 0.410 0.363 0.483

NA:The number of genes selected by SCMarker is 0, so no results are obtained.
The bold values mean the highest or equally-highest value among different
methods.

of the clustering algorithm. Therefore, ARI presented has better
differentiation degree than RI. The range of ARI is (−1, 1). ARI
can be defined as:

ARI =
RI − E(RI)

max(RI)− E(RI)
(5)

where E(RI) and max(RI) can be defined as:

E(RI) = E(
∑

i,j

(
ni,j
2 )) = [

∑
i

(
ni
2 )
∑

j

(
nj
2 )]/(n

2) (6)

max(RI) =
1
2
[

∑
i

(
ni
2 )+

∑
j

(
nj
2 )] (7)

where ni,j are values from the contingency table, ni is the sum
of the i-th row of the contingency table, nj is the sum of the j-th
column of the contingency table.

Adjusted rand index is commonly used to assess the
consistency between predicted clusters and true categories.

RESULTS

Comparison of RFCell With Benchmark
Gene Selection Methods
To show the performance of RFCell over other gene selection
methods, we used three classical clustering algorithms: Clustering
method for single-cell interpretation through multikernel
learning (SIMLR) (Wang et al., 2017), Single-cell consensus
clustering (Wilkerson and Hayes, 2010) merges clustering results
of multiple cells by consensus method (SC3) (Kiselev et al., 2017)
and k-means (Kim et al., 2019). SIMLR is a software that learns
the similarity measure between cells from the input single cell
data, for SIMLR, we use the SIMLR package and igraph package
in R language and apply their default parameters to get a good
clustering effect. SC3 is a user-friendly tool for unsupervised
clustering, which methods include gene filtering, similarity
calculation, Transformations, k-means, consensus clustering, and
finally hierarchical clustering of the results obtained by consensus
clustering. We usually use SC3, SingleCellExperiment and scater
package in R language to perform SC3 clustering. For hierarchical
clustering, we use the hclust (Xu et al., 2019) function with default
parameters in R to perform hierarchical clustering analysis on
the similarity matrix of gene expression data to obtain the final
clustering results. The parameter k of three methods was set to
the true number of clusters. In addition to these three algorithms,
gene selection based on scRNA-seq data can apply the RFCell

FIGURE 2 | SC3 clustering results based on RFCell and three gene selection methods including Expr, M3Drop, and SCMarker in terms of NMI (A) and ARI (B).
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FIGURE 3 | k-means clustering results based on RFCell and three gene selection methods including Expr, M3Drop, and SCMarker in terms of NMI (A) and ARI (B).

FIGURE 4 | On the published pollen data of the scRNA-seq data set, the gene sets obtained by the three gene selection methods (Expr, M3Drop, and SCMarker)
and the gene sets obtained by the RFCell gene selection method were compared. The visualization diagrams respectively show the gene sets obtained by the four
gene selection methods: (A) Visualization of the results of Expr gene selection; (B) Visualization of the results of M3Drop gene selection; (C) Visualization of the
results of SCMarker gene selection; (D) Visualization of the results of RFCell gene selection.
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feature selection results to any clustering method. In fact, the final
gene selected by RFCell can be used not only for any clustering
algorithms, but also for similarity calculation and building a
cell network. The three feature selection methods specifically for
scRNA-seq data are: Andrews and Hemberg (2019) proposed
M3Drop, Wang et al. (2019) proposed SCMarker. The last
method of selecting genes is to select the gene with the highest
average expression value (Expr). For each scRNA-seq data, we
first run RFCell 10 times, and then calculate the average of the
NMI and ARI as the final result.

Based on SIMLR, Table 2 clearly shows that, compared
with other gene selection methods, RFCell can achieve better
gene selection performance in more data in terms of NMI.
For example, the average NMI of the data set clustering after
RFCell gene selection is 0.593, the average NMI of the data
set clustering after the Expr gene selection is 0.532, the average
NMI of the data set clustering after the M3Drop gene selection
is 0.544, and the average NMI of the data set clustering after
SCMarker gene selection is 0.545. In more than half of all data
sets, RFCell gene selection results are the best. Table 3 also

shows that, compared to other feature selection methods, in
terms of ARI, RFCell achieve better gene selection performance
in more datasets. For example, the average ARI of the data set
clustering after RFCell gene selection is 0.482, the average ARI
of the data set clustering after the Expr gene selection is 0.385,
the average ARI of the data set clustering after the M3Drop
gene selection is 0.419, and the average ARI of the data set
clustering after SCMarker gene selection is 0.398. Considering
both NMI and ARI, our method does perform better than
other methods on a few datasets such as the Darmanis and
Engel datasets, possibly because the characteristics of the genes
that can distinguish cell types for these datasets could not be
captured by RFCell.

As shown in Figure 2, we found that RFCell basically showed
good results in SC3 clustering. The picture shows that compared
with other gene selection methods, the scRNA-seq data set
obtained by our proposed RFCell recognizes cell types more
clearly. For Darmanis dataset, Deng dataset, pollen dataset,
Trapnell dataset, Treutlein dataset and Zhou dataset, compared
with other gene selection methods, the gene set obtained by

FIGURE 5 | The heat map of the result is derived from the spearman similarity measure of the gene set obtained after the gene selection of pollen data by four gene
selection methods. The cells in the matrix are sorted by their true labels so that cells of the same type are adjacent. Cell clusters are clearly indicated by colored bars.
(A) Heat map of the gene set obtained by the Expr gene selection; (B) Heat map of the gene set obtained by the M3Drop gene selection; (C) Heat map of the gene
set obtained by the SCMarker gene selection; (D) Heat map of the gene set obtained by the RFCell gene selection.
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RFCell has obvious advantages in distinguishing cell types. Both
NMI and ARI have achieved the best gene selection performance,
which shows that the gene set obtained with RFCell has biological
significance. For Engle dataset, Grover dataset, Sasagawa dataset
and Ting dataset, we found that through different gene selection
methods to obtain different gene sets have their own advantages
and disadvantages in distinguishing cell types. These results
indicate that scRNA-Seq data is complex and diverse, and the
gene set related to cell type recognition may have some unknown
factors, which require further research.

As shown in Figure 3, we found that RFCell basically showed
good results in k-means. The picture shows that compared
with other gene selection methods, the scRNA-seq data set
obtained by our proposed RFCell can significantly improve the
clustering accuracy. For Deng dataset, pollen dataset, Sasagawa
dataset and Treutlein dataset, compared with other gene selection
methods, our proposed RFCell achieves satisfactory clustering
performance, and more importantly, it can also provide potential
biological explanations for clustering. This also shows that RFCell
can identify the gene sets that contribute the most to the clusters.

Application of RFCell to Single Cell
RNA-seq Data
We use the single-cell transcriptome data of 249 cells captured
in 11 populations obtained using microfluidic technology as our
original data, and visualize the different gene sets corresponding
to the original data. Data visualization results show that RFCell
separates cells more clearly. It is better than the results obtained
by Expr, M3Drop and SCMarker (Figures 4, 5).

As shown in Figure 4, the visualization results of the gene set
selected by the Expr method show that only five cell types can
be clearly distinguished, and the other cell types are scattered
in confusion. The visualization results of the gene set selected
by the M3Drop method also show that although there are eight
cell types that can be effectively identified, the other three cell
types (cell type 4, cell type 5, and cell type 6) are scattered
and difficult to identify. The visualization results of the gene set
selected by the SCMarker method are also difficult to effectively
distinguish cell types. On the one hand, cell type 4 and cell type
5 are too widely dispersed; on the other hand, there is multiple
cell types (cell type 3, cell type 4, cell type 5, and cell type
6) has a crossover, which makes the identification of cell type
confused. The result of the visualization of the gene set obtained
after gene selection by our proposed RFCell shows that all cell
types can be clearly identified, and there is no crossover between
cell types. This also shows that RFCell has superiority in cell
type recognition. The heat map in Figure 5 is derived from the
spearman similarity measure of the gene set obtained after gene
selection of pollen data by four gene selection methods. RFCell
also showed better performance.

DISCUSSION AND CONCLUSION

In recent years, scRNA-seq technology has become a powerful
tool for studying cell heterogeneity in tissues, advances in

sequencing technology have enabled scientists to perform large-
scale transcriptome profiling at single cell resolution in a
high-throughput manner, clustering algorithms have passed
unsupervised learning has become the main way to identify
and characterize new cell types and gene expression patterns,
however, on the one hand, differences in scRNA-seq technology
can cause noise in scRNA-seq data, especially because it is
impossible to repeat measurements on the same cell (Severson
et al., 2018; Zhang et al., 2020). On the other hand, scRNA-
seq data is noisier and more complex than traditional RNA-
Seq data, and the high variability of the data also brings
challenges to scRNA-seq data analysis (Chen et al., 2019). In
order to analyze scRNA-seq data, feature selection methods
can greatly reduce the dimensionality of the data and improve
the results of cell type recognition. For analyzing specific
data, especially gene expression data, many studies have shown
that certain gene sets with correlation and functional synergy
play an important role in analyzing scRNA-seq data and
identifying specific cell types (Eisen, 1998; Young et al., 2010;
Buettner et al., 2017).

In this study, we proposed a new feature selection method,
RFCell, for gene selection of scRNA-seq data. Through feature
selection based on permutation and random forest for each gene
expression data. RFCell uses classic machine learning methods
to perform supervised classification of scRNA-seq data to show
its superiority compared with other feature selection methods.
RFCell is characterized by a series of noteworthy functions.
First, the negative samples are obtained by using scRNA-seq
data permutation. Secondly, RFCell obtains the training data
of the random forest by combining the original scRNA-seq
and negative samples. Third, considering that the information
contained in each genome and the ability to recognize cell
types is different, we estimate the importance of each genome
by calculating the importance function. Finally, RFCell selects
genes with MDA>0 as the gene set that can identify cell
types. This is done to make the results of RFCell robust to
gene set mutations.

RFCell does have some limitations. First of all, the negative
samples obtained from the original gene expression data
using permutation are uncertain, so this means that for each
data set, there may be some genes that can identify cell
types are disrupted to the wrong cells. Therefore, in this
process, some genes that are essential for classification are
likely to be discarded, resulting in failure to obtain the best
classification results. With this in mind, we have conducted
many experiments to make RFCell stable to the results of
gene selection. Experiments include visual analysis of gene sets
obtained through different gene selection methods. The details
are as follows. We use the single-cell transcriptome data of 249
cells captured in 11 populations obtained using microfluidic
technology as our original data, use four gene selection methods
to select the gene sets of the original data to obtain different
gene sets, and visualize these sets of genes. In addition,
we also do heat map analysis on gene sets. Corresponding
experimental results show that RFCell shows superiority in the
visualization map, but RFCell needs to be improved in the
heat map analysis.
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It is expected that biological information (such as labeled gene
sets) will be used in the future to select genes related to cell
types in scRNA-seq for further study. Incorporating information
from different views may be helpful in improving gene selection
(Liu et al., 2020a; Liu et al., 2020b; Lan et al., 2020). There are
some differences among the results for scRNA-seq data based
on different gene selection methods. Analyzing the preference
performance of different gene selection methods for scRNA-
seq data could improve the accuracy of cell type identification.
Therefore, we believe that integrating different gene selection
methods may benefit gene selection.
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