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Simple Summary: Despite recent advancements in lung cancer treatment, individuals with lung
cancer have a dismal 5-year survival rate of only 15%. In patients with non-small cell lung cancer
(NSCLC), medical images have lately been employed as a valuable marker for predicting overall
survival. The primary goal of this study was to develop a risk score based on computed tomography
(CT) based radiomics feature signatures that may be used to predict survival in NSCLC patients.
After analyzing 577 NSCLC patients from two data sets, we discovered that the risk score model’s
prediction ability as a prognostic indicator was superior to other clinical indicators (age, stage, and
gender), and the possibility of patient risk stratification with survival was evaluated using a risk
score representation of 10 radiomics signatures. According to this study, the risk score generated
using CT-based radiomics signatures promises to predict overall survival in NSCLC patients.

Abstract: This study aimed to create a risk score generated from CT-based radiomics signatures
that could be used to predict overall survival in patients with non-small cell lung cancer (NSCLC).
We retrospectively enrolled three sets of NSCLC patients (including 336, 84, and 157 patients for
training, testing, and validation set, respectively). A total of 851 radiomics features for each patient
from CT images were extracted for further analyses. The most important features (strongly linked
with overall survival) were chosen by pairwise correlation analysis, Least Absolute Shrinkage and
Selection Operator (LASSO) regression model, and univariate Cox proportional hazard regression.
Multivariate Cox proportional hazard model survival analysis was used to create risk scores for each
patient, and Kaplan–Meier was used to separate patients into two groups: high-risk and low-risk,
respectively. ROC curve assessed the prediction ability of the risk score model for overall survival
compared to clinical parameters. The risk score, which developed from ten radiomics signatures
model, was found to be independent of age, gender, and stage for predicting overall survival in
NSCLC patients (HR, 2.99; 95% CI, 2.27–3.93; p < 0.001) and overall survival prediction ability was
0.696 (95% CI, 0.635–0.758), 0.705 (95% CI, 0.649–0.762), 0.657 (95% CI, 0.589–0.726) (AUC) for 1, 3,
and 5 years, respectively, in the training set. The risk score is more likely to have a better accuracy in
predicting survival at 1, 3, and 5 years than clinical parameters, such as age 0.57 (95% CI, 0.499–0.64),
0.552 (95% CI, 0.489–0.616), 0.621 (95% CI, 0.544–0.689) (AUC); gender 0.554, 0.546, 0.566 (AUC);
stage 0.527, 0.501, 0.459 (AUC), respectively, in 1, 3 and 5 years in the training set. In the training set,
the Kaplan–Meier curve revealed that NSCLC patients in the high-risk group had a lower overall
survival time than the low-risk group (p < 0.001). We also had similar results that were statistically
significant in the testing and validation set. In conclusion, risk scores developed from ten radiomics
signatures models have great potential to predict overall survival in NSCLC patients compared to
the clinical parameters. This model was able to stratify NSCLC patients into high-risk and low-risk
groups regarding the overall survival prediction.
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1. Introduction

Lung cancer is still the most common cause of death globally, as well as the second
most common cancer, according to Sung et al. [1], with mortality and occurrence rates
of 11.4% and 18%, respectively. Lung cancer incidence and mortality have increased
significantly globally in the last few years, both in absolute and relative terms. Two
hundred and twenty-eight thousand, eight hundred and twenty new lung cancer cases
and more than one hundred thousand deaths from lung cancer were expected to occur in
2020 [1]. Although recent advances in lung cancer treatment, lung cancer patients have a
disappointing 5-year survival rate of just 15% [1].

Non-small cell lung cancer (NSCLC) is the most common form of lung cancer, account-
ing for 85% of all cases [2]. The Tumor–Nodal–Metastasis (TNM) grading system is still
the primary method for predicting NSCLC patients’ survival time; in addition, age and
gender are also prognostic factors. While TNM is a commonly used method, it has some
drawbacks when the staging is the same, but the survival times are different [3]. Therefore,
it is necessary to develop additional tools to help predict and improve overall survival in
patients with NSCLC.

Medical images have recently been used as a helpful marker. It is a commonly used
diagnostic tool that is convenient, highly reliable, and non-invasive. Radiomics is a non-
invasive diagnostic tool that uses quantitative features extracted from medical imaging data,
such as computed tomography (CT), to make diagnoses, which is a strong imaging marker
for prognosis in NSCLC patients [4]. Association between radiomics and overall survival
in NSCLC patients has been studied in recent studies [5–12]. Some authors developed
CT-based radiomics signatures for survival prediction in NSLCL patients [6–10,13–16].
Among these studies, Aerts et al. [13] found four feature signatures representing four main
groups of features: original, tumor intensity, first order, and wavelet, and used these four
features in turn to evaluate the effectiveness of predicting survival in NSCLC patients
in the training set. Most of the authors work towards finding sets of radiomics features
closely related to survival prediction, called sets of radiomics signatures, and used them
for survival prediction for cancer patients [5,6,9,10,12,14–16]. Similarly, some authors used
the expression of a group of signature genes to predict survival in cancer diseases; some
constructed risk scores to represent sets of signature genes to optimize survival prediction
in cancer patients [17–21]. It is also necessary to use a representative scale score similar
applied to radiomics field.

We want to study how effective one scale score that is representative of the feature
signatures found is for predicting survival in NSCLC patients and compare the effectiveness
of this score with clinical parameters. In our study, from the risk score created based on
the radiomics features signatures, we hypothesize that the risk score developed from the
radiomics signatures model can predict overall survival in NSCLC patients more accurately
and precisely than the clinical parameters. This study aims to develop and assess the overall
survival prediction ability of the risk score to contribute to improving predictive survival
of NSCLC patients compared to other clinical parameters, such as stage, gender, age.

2. Results
2.1. Patient’s Clinical Characteristics

We analyzed a total of 577 NSCLC patients from two data sets. The first data set is
Lung 1 (NSCLC-Radiomics); it consists of 420 NSCLC patients. The second dataset is Lung
2 (NSCLC Radiogenomics), which consists of 157 Non-Small Cell Lung Cancer (NSCLC)
patients. Evaluation of demographic characteristics between two datasets showed no
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difference in terms of age (p = 0.302), gender male (p = 0.967), but there was a difference in
the type of NSCLC, survival time, stage (p < 0.001) (Table 1).

Table 1. Baseline patient characteristics.

Lung 1 (NSCLC-Radiomics) Lung 2 (NSCLC Radiogenomics)

Training Set Testing Set Validation Set ** p-Value

Parameter (n = 336) (n = 84) * p-value Parameter (n = 157)
Age (mean SD) 67.67 (10.04) 69.36 (10.19) 0.183 Age (mean SD) 68.97 (9.52) 0.302

Gender Gender
Men (%) 229 (68.2) 60 (71.4) 0.654 Men (%) 109 (69.4) 0.967

Type of NSCLC (%) 0.545 Type of NSCLC (%) <0.001
Adenocarcinoma 40 (13.3) 11 (14.1) Adenocarcinoma 126 (80.3)

Large cell 95 (31.7) 19 (24.4) Squamous cell 28 (17.8)
Squamous cell 115 (38.3) 36 (46.2) Nos 3 (1.9)

Nos 50 (16.7) 12 (15.4) Stage (%) <0.001
Stage (%) 0.126 Tis 6 (3.8)

I 77 (23.0) 15 (17.9) I 86 (54.8)
II 30 (9.0) 10 (11.9) II 23 (14.6)

IIIa 95 (28.4) 16 (19.0) IIIa 15 (9.6)
IIIb 133 (39.7) 43 (51.2) IIIb 5 (3.2)
IV 0 0 IV 4 (2.5)

Survival time
(median(IQR))(days)

579.00
(286.25,
1510.25)

456.50
(229.00,
1038.50)

0.073 Survival time
(median (IQR))(days)

1315.00
(630.00, 1921.00) <0.001

* p-value determined demographic differences between the training set and the testing set; ** p-value determined demographic differences
between the Lung 1 (NSCLC-Radiomics) data set and the Lung 2 (NSCLC Radiogenomics) data set.

We randomly divided Lung 1 data set into two parts: 336 patients in the training set
group, 84 patients in the testing set group. The mean age was 67.67 ± 10.04 (standard
deviation) in the training set and 69.36 ± 10.19 (standard deviation) in the testing set.
The second data set included 157 patients for the external validation set group (mean age
68.97 ± 9.52 (standard deviation)). There was no difference between characteristics of age
(p = 0.183), gender male (p = 0.654), type of NSCLC (p = 0.545), stage (p = 0.126), and
survival time (p = 0.073) between the training set and testing set (Table 1). The training set
had a median of overall survival of 579.00 ((286.25, 1510.25) (IQR)), in testing set it was
456.50 ((229.00, 1038.50) (IQR)), and validation set was 1315.00 ((630.00, 1921.00) (IQR)). The
cell types that make up the majority of the training set were Squamous cell (115 (38.3%))
and Large cell (95 (31.7%)) and Squamous cell (36 (46.2%)) and Large cell (19 (24.4%))
in the testing set. Adenocarcinoma was the most frequent cell type in the validation set
(126 (80.3%)). The majority of patients were in stage IIIb in the training and testing set, and
stage I accounted for the majority in the validation set.

2.2. Feature Selection

In the training set, 136 radiomics features were retained after excluding the redundant
features by Pearson’s correlation pairwise selection (Figure 1A). We built the LASSO model
to figure out the best features for predicting overall survival. In the LASSO regression
model, there were 13 features with non-zero coefficients and then 13 best features to
continue the process of finding radiomics features’ signatures (Figure 1B).
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Figure 1. Features’ selection. (A) Removing highly correlated features in the training set. (B) Thirteen top features selected
by LASSO in the training set.

2.3. Construction of Ten Radiomics Signatures Prognostic Model

Univariate Cox regression analysis was performed to establish the best model
for survival prediction in the training set. Ten features were significantly associated
with predicting overall survival in the training set (Table 2): original.shape.Elongation
(p = 0.04), original.gldm.DependenceVariance (p = 0.02), wavelet.LHL.firstorder.Skewn-
ess (p < 0.01), wavelet.LHH.gldm.LargeDependenceHighGrayLevelEmphasis (p < 0.001),
wavelet.LHH.firstorder.Mean (p = 0.02), wavelet.LLH.glcm.ClusterShade (p = 0.04),
wavelet.LLH.firstorder.Maximum (p < 0.01), wavelet.HLH.firstorder.Energy (p < 0.001),
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wavelet.HLH.firstorder.Skewness (p < 0.01), wavelet.HLL.glszm.GrayLevelNonUniformity-
Normalized (p < 0.01).

Table 2. Univariate Cox regression analysis to identifying the radiomics signatures in the training set.

Feature Hazard Ratio p-Value Concordance

original.shape.Elongation 0.49
(0.25–0.95) 0.04 * 0.54 (se = 0.019)

original.gldm.DependenceVariance 1.01
(1.00–1.02) 0.02 * 0.55 (se = 0.017)

wavelet.LHL.glcm.MCC 2.71
(0.75–9.88) 0.13 0.517 (se = 0.018)

wavelet.LHL.firstorder.Skewness 0.70
(0.56–0.90) <0.01 * 0.57 (se = 0.018)

wavelet.LHH.gldm.LargeDependenceHighGrayLevelEmphasis 1.00
(1.00–1.01) <0.001 * 0.57 (se = 0.017)

wavelet.LHH.gldm.LowGrayLevelEmphasis 18.82
(0.00–1662852) 0.61 0.48 (se = 0.017)

wavelet.LHH.firstorder.Mean 0.85
(0.74–0.98) 0.02 * 0.54 (se = 0.017)

wavelet.LLH.glcm.ClusterShade 1.0
(0.99–1.00) 0.04 * 0.54 (se = 0.018)

wavelet.LLH.firstorder.Maximum 1.00
(1.00–1.01) <0.01 * 0.57 (se = 0.018)

wavelet.HLH.firstorder.Energy 1.00
(1.00–1.01) <0.001 * 0.58 (se = 0.018)

wavelet.HLH.firstorder.Skewness 1.48
(1.10–1.99) <0.01 * 0.513 (se = 0.019)

wavelet.LHH.glcm.Correlation 0.02
(0.00–1.40) 0.07 0.54 (se = 0.017)

wavelet.HLL.glszm.GrayLevelNonUniformityNormalized 130.61
(3.30–5169) <0.01 * 0.53 (se = 0.018)

* Statistically significant (p < 0.05).

2.4. Risk Score Establishment for Overall Survival Prediction in the Training Set

To comprehensively explore the relationship between these ten identified radiomics
features and the survival prognosis in NSCLC patients, we developed a risk score generated
from ten radiomics signatures based on their Cox coefficients (Figure 2) (Table 3). We
measured the risk score for each patient and rated them based on it.

Risk score = (−9.936 × 10−1 × original.shape.Elongation) + (5.230 × 10−3 × orig-
inal.gldm.DependenceVariance) + (−1.693 × 10−1 × wavelet.LHL.firstorder.Skewness)
+ (4.764 × 10−6 × wavelet.LHH.gldm.LargeDependenceHighGrayLevelEmphasis) + (−1.489
× 10−1 × wavelet.LHH.firstorder.Mean) + (−6.460 × 10−6 ×wavelet.LLH.glcm.ClusterShade)
+ (1.074× 10−4 ×wavelet.LLH.firstorder.Maximum) + (8.738× 10−9 ×wavelet.HLH.firstord-
er.Energy) + (3.567 × 10−1 × wavelet.HLH.firstorder.Skewness) + (2.988 × wavelet.HLL.gls-
zm.GrayLevelNonUniformityNormalized).

The results of the investigation into the correlation between the proposed radiomic risk
score showed the ten radiomics signature features with tumor volume were low (r < 0.75)
(Figure 3). The means of the ten radiomics signatures and the risk score were consistent
and signified independent predictability for overall survival prediction in this study.

Patients were classified into high- and low-risk groups based on a cutoff of the me-
dian of the risk score, which has different expression patterns to the radiomics features’
signatures. We investigated the difference between the two groups and overall survival in
NSCLC patients after dividing them into high- and low-risk groups. The high-risk score
patients group had a lower survival time than the low-risk patient’s group, according to
the Kaplan–Meier curve (log-rank test, p < 0.001) (Figure 4A).
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Figure 2. Risk score distribution and ten features radiomics signatures expression by Multivariate COX regression in the
training set. (A) Risk score distribution. (B) Scatter plot divide patients into two groups: low-risk group (steel blue color)
and high-risk group (tomato red color). (C) Expression heat map of 10 radiomics signatures in the training set.

Table 3. Multivariate Cox regression analysis of ten radiomics signatures in the training set.

Feature β Coefficient Hazard Ratio p-Value

original.shape.Elongation −9.936 × 10−1 0.37
(0.18–0.75) 0.006

original.gldm.DependenceVariance 5.230 × 10−3 1.01
(0.99–1.02) 0.349

wavelet.LHL.firstorder.Skewness −1.693 × 10−1 0.84
(0.66–1.08) 0.184

wavelet.LHH.gldm.LargeDependenceHighGrayLevelEmphasis 4.764 × 10−6 1.00
(1.00–1.00) 0.627

wavelet.LHH.firstorder.Mean −1.489 × 10−1 0.86
(0.73–1.01) 0.073

wavelet.LLH.glcm.ClusterShade −6.460 × 10−6 1.00
(1.00–1.00) 0.654

wavelet.LLH.firstorder.Maximum 1.074 × 10−4 1.00
(1.00–1.00) 0.734

wavelet.HLH.firstorder.Energy 8.738 × 10−9 1.00
(1.00–1.00) <0.001

wavelet.HLH.firstorder.Skewness 3.567 × 10−1 1.43
(1.06–1.93) 0.02

wavelet.HLL.glszm.GrayLevelNonUniformityNormalized 2.988 19.85
(0.36–1108.62) 0.145
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Figure 3. Correlation between ten radiomics signature features, Risk score, and tumor volume in the training set.

Figure 4. Survival prediction of risk score generated from CT-based radiomics signatures in training set. (A) Kaplan–Meier
curves stratified patients into two groups: high and low-risk group by risk score in the training set. (B) ROC curves
illustrated the prediction ability of risk score for overall survival prediction in 1, 3, 5 years in the training set.

The prediction ability of the risk score was 0.696 (95% CI, 0.635–0.758), 0.705 (95% CI,
0.649–0.762), 0.657 (95% CI, 0.589–0.726) (AUC) for 1, 3, and 5 years in the training set group
(Figure 4B). After constructing a ten radiomics model, a multivariate Cox proportional
hazard model was also conducted to confirm the model’s capacity to predict prognosis
independently. The findings revealed that the risk score model could predict overall
survival in NSCLC patients regardless of stage, gender, and stage (HR, 2.99; 95% CI,
2.27–3.93; p < 0.001) in the training set. The hazard ratio value of the risk score was more
than one and greater than the hazard ratio values for age, gender, and stage, implying that
NSCLC patients who have a high-risk score would have a poor prognosis (Figure 5A).
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Figure 5. Risk score is an independent prognostic factor for survival prediction compared to clinical features in the training
set. (A) Multivariate Cox regression showed that risk score was an independent prognostic factor for survival prediction
compared to clinical features. (B) ROC curves compare risk score and clinical parameters (age, gender, stage) for survival
prediction in 1 year, 3 years, and 5 years in the training set.

When comparing the prediction ability of the risk score with clinical parameters, such
as age, gender, and stage, in the training set, the risk score was more likely to have better
accuracy in predicting survival at 1, 3, and 5 years than clinical factors. In training set,
risk score AUC was 0.696 (95% CI, 0.635–0.758), 0.705 (95% CI, 0.649–0.762), 0.657 (95% CI,
0.589–0.726) for 1, 3, and 5 years compared with clinical factors, such as age 0.57 (95% CI,
0.499–0.64), 0.552 (95% CI, 0.489–0.616), 0.621 (95% CI, 0.544–0.689); gender 0.554, 0.546,
0.566; stage 0.527, 0.501, 0.459, respectively, in 1, 3 and 5 years (Figure 5B).

2.5. Testing and Validation of the Risk Score Model for Overall Survival Prediction

With the best signature model found in the training set, we applied it in the testing
and validation set to evaluate its performance. Each patient in the testing and validation
set also had one risk score generated from ten radiomics signatures, and then patients were
divided into two groups: high-risk and low-risk. In the testing set, NSCLC patients with
a high-risk score had a lower survival time than the low-risk patient’s group, according
to the Kaplan–Meier analysis (p = 0.003) (Figure 6A), and the prediction ability of the
risk score was 0.758 (95% CI, 0.657–0.859), 0.764 (95% CI, 0.641–0.888), 0.719 (95% CI,
0.521–0.916) (AUC) for 1, 3, and 5 years (Figure 6B). In the validation set, the Kaplan–Meier
curve separated patients into high-risk, and low-risk groups (p = 0.0033) (Figure 7A), and
the prediction ability of the risk score was 0.676 (95% CI, 0.534–0.821), 0.629 (95% CI,
0.519–0.741), 0.709 (95% CI, 0.607–0.811) (AUC) for 1, 3, and 5 years (Figure 7B).
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Figure 6. Survival prediction of risk score generated from CT-based radiomics signatures in the testing set. (A) Kaplan–
Meier curves stratified patients into two groups: high and low-risk group by risk score in the testing set. (B) ROC curves
illustrate the prediction ability of risk score for overall survival prediction in 1, 3, 5 years in the testing set.

Figure 7. Survival prediction of risk score generated from CT-based radiomics signatures in the validation set. (A) Kaplan–
Meier curves stratified patients into two groups: high and low-risk group by risk score in the validation set. (B) ROC curves
illustrate the prediction ability of risk score for overall survival prediction in 1, 3, 5 years in the validation set.

3. Discussion

Many studies have been performed by many authors developing CT-based radiomics
signatures for survival prediction [6–10,13–16]. In our study, we aimed to see if a single
scaled score representing the feature signatures discovered can be used to predict survival
in NSCLC patients. The main goal was to create a risk score based on radiomics features’
signatures, which had an essential role in predicting survival in patients with non-small
cell lung cancer.

Aerts et al. [13] used the same dataset (Lung 1 NSCLC-Radiomics) as their training set.
They divided four main feature groups and conducted robust feature selection analysis
on each group, four feature signatures representing four main groups: original, tumor
intensity, first order, and wavelet, and used these four features in turn to evaluate the
effectiveness of NSCLC patients in the training set. The advantage of this approach is
that it can find four candidates representing four groups of radiomics; however, robust
features exist randomly in four feature groups that will lead to missing out robust features
if we choose only one representative feature for one group. To avoid this situation, we
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chose the layer-by-layer data preprocessing approach like most other authors; all the
radiomics were included in the selection model initially, ensuring that robust radiomics
features were chosen regardless of which group they belonged to. Because we had high-
dimensional data and an enormous amount of radiomics features used as predictors in
the model, and the Cox proportional hazard model often produces overfitting [22]. To
avoid overfitting, we applied pairwise Pearson’s correlation feature selection method [15].
Pearson’s feature selection approach is a method that can reduce overfitting by eliminating
redundant feature interactions while remaining computationally efficient [15,23]. Then the
LASSO regression model helped to preserve radiomics features that were most strongly
linked to overall survival [9,24]; this method was also used by another author for features
selection [8,25]. One hundred and thirty-six candidate features after Pearson’s feature
selection were reduced to thirteen potential radiomics features using the LASSO. All
these thirteen potential radiomics features were taken into account in the univariate Cox
regression model for selecting ten radiomics feature signatures based on p-value (<0.05).
Our results showed that most of the signature features we found that strongly related to
survival prediction were wavelet features. Yang, L et al. [9] analyzed the same data set
(Lung 1 NSCLC-Radiomics) and showed similar results, and this finding is in line with
what has been found in earlier research [26,27].

We used the risk score as an independent predicting indicator of overall survival in
NSCLC patients. The predictive performance of clinical parameters in some studies shows
results not relatively high compared to other parameters [12,28]. In our study, the ROC
curve showed that the risk score model’s predictive performance as a prognostic indicator
was superior to other clinical parameters (age, stage, and gender). In this study, the forest
plot (Figure 5A) shows that the risk score could predict overall survival in NSCLC patients
compared with stage, gender, and stage. Our results are similar to Hailin Li et al. [14],
which showed that the signatures’ score of the radiomic features demonstrated better
prognostic efficacy to the clinical characteristics (gender, age, and smoking status), and the
combined model (radiomic features combined with clinical parameter).

The Kaplan–Meier curve was used to evaluate the effectiveness of patient stratifica-
tion into two high-risk and low-risk groups in comparing the survival time of NSCLC
patients [6–10,13–16]. We created a risk score representation of ten radiomics signatures for
evaluating the possibility of patient risk stratification with survival and outcome results
were statistically significant. Hailin Li et al. [14] also gave similar results with the radiomics
signatures score representing three feature signatures to help stratify patients into two
groups: high signature value and low signature value.

After having the best model, we conducted testing and validation sets. The Kaplan–
Meier survival curve demonstrated a difference in overall survival between high-risk
and low-risk patients (p < 0.05). Moreover, the risk score’s ability to predict survival at
1, 3, and 5-year survival showed similar results. When the risk score’s ability to predict
survival at 1, 3, and 5-year was compared between the three data sets, training, testing,
and validation, show the risk score had AUC 0.696 (95% CI, 0.635–0.758), 0.705 (95% CI,
0.649–0.762), 0.657 (95% CI, 0.589–0.726) in the training set, 0.758 (95% CI, 0.657–0.859),
0.764 (95% CI, 0.641–0.888), 0.719 (95% CI, 0.521–0.916) in the testing set and in the valida-
tion set, 0.676 (95% CI, 0.534–0.821), 0.629 (95% CI, 0.519–0.741), 0.709 (95% CI, 0.607–0.811).

Despite these promising results, there are still some limitations that can open further
research. First, we only compared the effect of the risk score model and clinical param-
eters on survival prediction ability. Although the risk score survival prediction ability
potential in NSCLC patients was higher than the clinical parameter, it was not high. We
are considering integrating the radiomics model and clinical parameters in future studies.
Second, according to some research, radiomics extracted using Deep Learning would be
more efficient than radiomics extracted using conventional methods [11,29,30]. Based on
these findings, in our following study, the prediction of overall survival could use the
radiomics extract by using Deep Learning to assess the capacity to assess survival through
risk score building. Third, in this study, the data came from two different institutions
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(Lung 1-Radiomics and Lung 2 Radiogenomics) so that there was a difference in CT image
characteristics, initial image processing, segmentation, etc. The data set used for train-
ing and testing included radiomics features extracted from CT images using the manual
segmentation method. In contrast, the data set used for validation was automatically
segmented from CT images and checked by the experts with final approval by the thoracic
radiologist. We did not perform CT images segmentation processing ourselves, which
hampers the radiomics model analysis in our study. However, the data sets we used in this
study are published online and have been processed of the CT data and segmentation by
the author; based on these data, we used 3D Slicer software and the Pyradiomics module
in Python for features extraction partially guarantee the results of the study. However,
these methods do not fully guarantee the harmonization of the radiomics features extracted
from these two data sets. To avoid this problem and ensure consistency, consistent data
preprocessing methods should be implemented across the study, and the processing of the
CT data and segmentation data should be considered before extracting radiomics features
(e.g., interpolation, re-segmentation, normalization, binning, etc.), which could give more
reliable and reproducible results in the following studies.

Recent studies applied low-dose CT scan images in cancer screening based on ra-
diomics signature features [31,32]. For further research, we will consider using risk scores
extracted from radiomics signatures from low-dose CT images to assess lung cancer pa-
tients’ treatment efficacy and progression. The follow-up process after treatment of lung
cancer patients requires performing repeat imaging modalities (CT scan, PET/CT, etc.), so
a low-dose CT scan brings many benefits to patients.

4. Materials and Methods

Figure 8 illustrates the workflow of our study. All the steps are described at the
following sections.

Figure 8. Flow chart of identified radiomics signatures and build the Risk score for survival prediction of the study.
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4.1. Patients Cohort

We retrospectively collected data from two published data sets from The Cancer
Imaging Archive (TCIA). The first data set was Lung 1 (NSCLC-Radiomics), which consists
of 422 NSCLC patients, which was published on The Cancer Imaging Archive (TCIA)
Public Access on 2 July 2014 (https://wiki.cancerimagingarchive.net/display/Public/
NSCLC-Radiomics). This data set contained a manual delineation of the 3D volume of the
primary gross tumor volume and selected anatomical structures by a radiation oncologist.
CT data: a spiral CT, slice thickness of 3 mm and an X-ray tube current of 40–553 mA (mean
80 mA) at median peak tube voltage and 8 currents at 120 kVp (range of 120–140 kVp), with
or without intravenous contrast was performed covering the complete thoracic region [13].
Due to missing radiomics features extraction information, we selected 420 cases included
in this study. This data was divided randomly into 80% (336 patients) for training and 20%
(84 patients) for testing, respectively (Table 1).

The second dataset was Lung 2 (NSCLC Radiogenomics), which consists of 211 Non-
Small Cell Lung Cancer (NSCLC) patients in Public Access on 22 December 2015 (https:
//wiki.cancerimagingarchive.net/display/Public/NSCLC+Radiogenomics); CT data: slice
thickness of 0.625–3 mm and an X-ray tube current of 124–699 mA (mean 220 mA) at
80–140 kVp (mean 120 kVp). Initial segmentations were obtained using an unpublished
automatic segmentation algorithm from an axial CT image series. These segmentations
were reviewed and edited using ePAD by a thoracic radiologist with more than five
years of experience. An additional thoracic radiologist reviewed the final segmentations;
disagreements in tumor boundaries were discussed and edited appropriately, with final
approval by the thoracic radiologist. All segmentations are stored as DICOM Segmentation
Objects [33]. We chose 157 patients to include in this study due to missing radiomics
features extraction information. We used this data set for validation.

Both data sets have clinical information, including survival outcomes (overall sur-
vival), which are the times in days from CT scan to the day of death, or the date of last
known alive (i.e., censored). Baseline patient characteristics are provided in Table 1.

4.2. Radiomics Features Extraction

We took advantage of 3D Slicer software (version 4.10.2; released on 10 October 2012;
last updated on 17 May 2019), which was used for medical image extraction and visu-
alization, to extract the features from each single CT image assay, via seven extensions
(e.g., DCMQI, PETDICOMExtension, Quantitative Reporting, SlicerDevelopmentToolbox,
SlicerRadiomics, SlicerRT), and the Pyradiomics [34] module in Python (version 3.8). Most
radiomics features complied with the IBSI standards by using the Pyradiomics module in
Python for features extraction. Initially, the CT records were imported into the software
in an orderly manner for extraction. The eight hundred and fifty-one features could be
categorized into four main groups: tumor intensity, shape, texture, and wavelet filters. The
features were classified into nine subcategories, e.g., original, wavelet HHH, wavelet HHL,
wavelet HLH, wavelet HLL, wavelet LHH, wavelet LHL, wavelet LLH, and wavelet LLL.
Each category comprised 6 subcategories, namely first-order, Gray Level Co-occurrence
Matrix (GLCM), Gray Level Size Zone (GLSZM), Gray Level Run Length Matrix (GLRLM),
Neighboring Gray Tone Difference Matrix (NGTDM), Gray Level Dependence Matrix
(GLDM), except for the original radiomics category with one sub-categorize (Shape) more
than the others. The information about the radiomics classes was concretely described by
Zwanenburg et al. [35]. We have also provided the radiomics features for training, testing,
and validation sets in Supplementary Tables S1–S3, respectively.

4.3. Feature Selection and Construction of the Best Model for Survival Prediction
4.3.1. Removing Highly Correlated Features in the Training Set

In order to prevent over-fitting or bias when performing analysis, we applied pairwise
correlations between the radiomics features variables in the training set to exclude the
redundant variables because many radiomics variables are often correlated with each

https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics
https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics
https://wiki.cancerimagingarchive.net/display/Public/NSCLC+Radiogenomics
https://wiki.cancerimagingarchive.net/display/Public/NSCLC+Radiogenomics
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other. We evaluate every pair of variables calculated by Pearson’s correlation analysis to
identify the redundant features for all radiomics features in the training set [14,36], with a
threshold of 0.75. If the coefficient correlation between two variables was more than 0.75,
it indicated a strong correlation. Only one variable stayed in the model, so consideration
was given to which had a higher correlation coefficient with the target variable (survival
outcome variable), the variable with the higher correlation coefficient stayed and the
others were excluded. Then, using the glmnet package in the R language [25,37], all of the
radiomics features were fed into the LASSO regression model [15]. We applied a 10-fold
cross-validation in the training set to find optimal λ to avoiding model simplification
and overfitting.

4.3.2. Identifying the Best Performing Model and Construction of Risk Score for
Survival Prediction

From the radiomics features identified by LASSO in the training set, we developed and
compared univariate Cox proportional hazard models to identify the radiomics signatures
associated with overall survival time in the training set using the survival package of the
R language (statistical significance was determined when the p-value was less than 0.05).
With this prognostic radiomics signatures model, we generated risk score by the formula,
previously described in [15,38–41]:

Risk Score = ∑n
i=1(β × radiomic signature value), the number n stands for the number

of radiomics signatures features, β stands for regression coefficient of each radiomics
signature obtained from the multivariate Cox proportional hazard model (Table 3). We
derived the risk score by a multivariate Cox proportional hazard model by using the Est.PH
function in survC1 package of the R language. Based on this package, each patient’s risk
score was determined.

To ensure consistency and independent predictability of radiomics signatures features,
which aids in the maximization of their predictive potential, we conducted correlation and
tumor volume dependence analysis, as some recommend and authors research [42–45]. A
high correlation between radiomics signature features and tumor volume indicated that
they were proxy for tumor volume and were not valuable for overall survival prediction.
In contrast, if their correlation was low, they can signify independent predictability for
survival prediction. Shafiq-ul-Hassan et al. [44] showed that correlation values of r > 0.9
defined high correlation. Fave et al., chose a threshold r > 0.95 [43]. In our study, we
chose a threshold of 0.75, and we evaluated each pair of variables calculated by Pearson’s
correlation analysis (Aerts et al. [42]) to identify the correlation between 10 radiomics
signatures features, risk score, and tumor volume.

Finally, in the testing and validation sets, we locked and independently assessed the
risk score created by the best radiomics signatures model for overall survival prediction.

4.4. Statistical Analysis

We used a Wilcoxon rank-sum test for continuous variables and a χ2 test for categorical
variables to determine demographic differences between the training set and the testing
set. All radiomics features were transformed by z-score transformation before building
the model. With the best model radiomics signatures, we calculated a risk score for each
patient. Then patients were separated into high- and low-risk groups based on the median
of the risk score. We used the risk score generated from the multivariate Cox proportional
hazard model to evaluate survival ability estimation. In the training set, the Kaplan–Meier
curve dichotomized groups into high and low-risk groups by the median of the risk score.
The time-independent receiver operating characteristic curve (ROC) was used to evaluate
the risk prediction ability of the risk score model for overall survival (R package, survival-
ROC function, version 1.0.3) compared to clinical parameters and evaluate the prediction
ability of the risk score model in 1, 3, and 5-year survival in the training set. We locked
and independently assessed the risk score that was built from the signatures model in the
testing set and validation set. R (version 3.3.0) and Python (version 3.8) were used to do all
of the analyses (statistical significance was defined as a p-value of less than 0.05).
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5. Conclusions

In this study, the risk score developed from the CT-based radiomics signatures has
great potential to predict overall survival in NSCLC patients. Furthermore, because the
risk score model may differentiate patients into high-risk and low-risk groups, patients in
the high-risk group have a worse overall survival rate than patients in the low-risk group.
It has the potential to improve prognostic prediction accuracy as compared to clinical
parameters. More research is required to confirm the models’ generalizability on external
validation datasets.

Supplementary Materials: The radiomics features and target variables are available online at https:
//www.mdpi.com/article/10.3390/cancers13143616/s1. Table S1. Training-set-LUNG1-Radiomics.
Table S2. Testing-set-LUNG1-Radiomics. Table S3. Validation-set-LUNG2-Radiogenomics.
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