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Abstract
Background: Gene expression analyses have led to a better understanding of growth control of prostate
cancer cells. We and others have identified the presence of several zinc finger transcription factors in the
neoplastic prostate, suggesting a potential role for these genes in the regulation of the prostate cancer
transcriptome. One of the transcription factors (TFs) identified in the prostate cancer epithelial cells was
the Wilms tumor gene (WT1). To rapidly identify coordinately expressed prostate cancer growth control
genes that may be regulated by WT1, we used an in silico approach.

Results: Evolutionary conserved transcription factor binding sites (TFBS) recognized by WT1, EGR1, SP1,
SP2, AP2 and GATA1 were identified in the promoters of 24 differentially expressed prostate cancer genes
from eight mammalian species. To test the relationship between sequence conservation and function,
chromatin of LNCaP prostate cancer and kidney 293 cells were tested for TF binding using chromatin
immunoprecipitation (ChIP). Multiple putative TFBS in gene promoters of placental mammals were found
to be shared with those in human gene promoters and some were conserved between genomes that
diverged about 170 million years ago (i.e., primates and marsupials), therefore implicating these sites as
candidate binding sites. Among those genes coordinately expressed with WT1 was the kallikrein-related
peptidase 3 (KLK3) gene commonly known as the prostate specific antigen (PSA) gene. This analysis located
several potential WT1 TFBS in the PSA gene promoter and led to the rapid identification of a novel putative
binding site confirmed in vivo by ChIP. Conversely for two prostate growth control genes, androgen
receptor (AR) and vascular endothelial growth factor (VEGF), known to be transcriptionally regulated by
WT1, regulatory sequence conservation was observed and TF binding in vivo was confirmed by ChIP.

Conclusion: Overall, this targeted approach rapidly identified important candidate WT1-binding
elements in genes coordinately expressed with WT1 in prostate cancer cells, thus enabling a more focused
functional analysis of the most likely target genes in prostate cancer progression. Identifying these genes
will help to better understand how gene regulation is altered in these tumor cells.
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Background
In the United States, prostate cancer is the most common
form of cancer in men and is the second most deadly can-
cer in men killing more than 27,000 annually [1]. Nearly
one in six men will develop prostate cancer at some point
in their life, with the majority of incidences occurring after
the age of 50. The major biomarker for prostate cancer
diagnosis is prostate specific antigen (PSA), however, the
sensitivity and specificity of the PSA assay is limited [2].
Improved biomarkers will result from a better under-
standing of molecular mechanisms that regulate this dis-
ease.

Global gene expression analyses have led to a better
understanding of growth control of prostate cancer cells
[3-5]. Ongoing studies identified more than 200 genes
predominantly expressed in prostate cancer epithelial
cells [6] and included genes likely to influence growth of
prostate cancer cells, such as growth factors, growth factor
receptors and TFs (as identified by Gene Ontology and
KEGG pathway analyses). Two of the TFs identified in the
prostate cancer epithelial cells were the Wilms tumor gene
(WT1) and the early growth response gene (EGR1), zinc
finger transcription factors that bind at G-rich promoters
of genes that regulate growth. In fact, the WT1 TF binds at
several G-rich sites (GNGNGGGNG), including the EGR1
consensus binding site GCGGGGGCG [7-9]. Both WT1
and EGR1 have been identified in prostate cancer cells,
although their function in prostate epithelium is
unknown [10-12]. WT1 has an essential role in the nor-
mal development of the urogenital system and has been
shown to suppress transcription of the promoters of many
important growth factors [13].

While identifying prostate growth control pathways
potentially regulated by WT1, we have focused our studies
on candidate genes belonging to known growth regula-
tory pathways. We have previously described WT1 regula-
tion of the androgen receptor (AR) and vascular
endothelial growth factor (VEGF) gene promoters
[14,15]. To go beyond the candidate genes approach and
identify novel gene targets coordinately expressed with
WT1 in tumor epithelial cells, a more systematic and
unbiased high-throughput computational approach was
used. These in silico analyses were based on 24 genes
expressed in prostate cancer epithelium that were likely to
influence growth of prostate cancer cells. Putative TFBS
were computationally predicted; however, the identifica-
tion of functional TFBS is a challenge and requires an
alternative approach. Availability of complete genomic
sequence from multiple species allows identification of
evolutionary conserved elements, e.g. cis-regulatory ele-
ments. Functionally important elements are likely to
experience purifying selection pressure [16-20], thus, we
can utilize the degree of evolutionary conservation to

identify TFBS that are likely to be functional. Our
approach was to identify regions (and TFBS) evolutionary
conserved across multiple mammalian genomes, includ-
ing those separated by 170 million years (human and
opossum) [21]. Overall, this targeted approach identified
important candidate binding elements in genes coordi-
nately expressed with WT1 in prostate cancer epithelial
cells. Identifying genes regulated by zinc finger TFs
expressed in prostate cancer cells will enhance under-
standing of the altered pathways in these tumor cells and
provide useful biomarkers for prostate cancer progression.

Results
Evolutionary conservation analysis: TFBS conserved in 
prostate cancer growth genes
Genomic sequences of proximal promoter regions of 24
genes expressed in prostate cancer epithelial cells (Addi-
tional file 1) were analyzed to determine the degree of
evolutionary conservation and to identify potentially
important regulatory regions. Binding sites for six TFs
(WT1, EGR1, SP1, SP2, AP2, and GATA1) were investi-
gated for evolutionary conservation over a range of eight
different mammalian species (human, chimpanzee,
macaque, cow, dog, mouse, rat and opossum) (Table 1).
Tables 2 and 3 highlight 11 of these genes whose pro-
moter sequences could be aligned in at least five mamma-
lian species (human, chimpanzee, macaque, rat and
mouse) and were found to have at least one evolutionary
conserved TFBS.

Among the TFBS investigated, WT1, EGR1 and SP1 sites
showed the highest frequency of evolutionary conserva-
tion in the gene promoters surveyed. For example, the
promoters of EGR1, GATA2 and WT1 were found to have
multiple WT1, EGR1 and SP1 candidate binding sites that
were conserved through multiple species (Table 3). In the
EGR1 promoter, 50% of WT1 sites are conserved between
human and primates. Additionally, in the GATA2 gene
promoter, 94% of WT1 sites, 70% of SP1 sites, and 100%
of EGR1 sites are conserved between human and other
primates (Table 3). Similarly, in the WT1 gene promoter
50% of SP1, 43% of WT1 and 100% of EGR1 sites are con-
served between human and other primates (Table 3).
WT1, EGR1, and SP1 TFBS within the promoters of
IGFBP2, KLK3, NPY, SOX4, SOX9, and TFAP2C are also
conserved between human and other primates (Table 3).

Importantly, for the WT1 and EGR1 gene promoters this
conservation extended into the marsupials (Table 4). The
EGR1 gene promoter is relatively conserved between
human and opossum with 20% of predicted EGR1, 12%
of predicted WT1 and 14% of predicted SP1 sites con-
served between human and opossum. Similarly, the WT1
gene promoter exhibited conservation between human
and opossum, with 33% of predicted SP1 and 14% of pre-
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dicted WT1 sites shared between human and opossum. In
the GATA2 promoter only 12% of predicted WT1 sites are
shared between human and opossum (Table 4). Overall,
TFBS for the three TF (WT1, EGR1, and SP1) were evolu-
tionary conserved between human and the distantly
related species, opossum, in seven different promoters
(WT1, EGR1, GATA2, IGFBP2, SOX4, SOX9, and
TFAP2C).

Tables 3 and 4 show that there were fewer SP2, AP2 and
GATA1 than WT1, EGR1 and SP1 TFBS in the 11 gene pro-
moters analyzed. While evolutionary conservation
between primates was similar for all six TFBS, conserva-
tion between human and rodents diminished for SP2 and
AP2 TFBS. AP2 sites in the promoters of the GATA2, WT1,
and NPY genes showed 25% to 100% conservation
between human and other primates. Conservation of AP2
sites was the strongest in the NPY gene promoter as these
sites are also conserved between human and opossum
(Table 4). In addition to conservation of GC-rich TFBS,
the AT-rich GATA1 binding sites were shown to be highly
conserved in several gene promoters including SOX4,
EGR1, IGFBP2 and NPY (Table 3). All of the GATA1 sites
in these four promoters are conserved between human
and chimpanzee, and for the SOX4 gene promoter this
strong conservation extends to rodents as well.

The overall evolutionary conservation of predicted TFBS
of these 11 different genes expressed in prostate cancer

Table 1: Transcription factors potentially involved in coordinate 
gene expression in prostate cancer epithelial cells

Symbol Name Expression in prostate

WT1 Wilms tumor 1 [10,84]
EGR1 Early growth response 1 [11,12]
SP1 Specificity protein 1 [24,85]
SP2 Specificity protein 2 [86,87]
AP2 Transcription factor AP-2 [88,89]
GATA1 GATA binding protein 1 NRa

a None reported.

Table 2: Genes co-expressed with WT1 in prostate cancer epithelium a

Gene 
symbol

Gene name Synonyms Ensembl 
gene ID

Entrez 
gene ID

Summary of 
function b

Regulation 
c,d

Binding c,e Expression 
in prostate

ECAD cadherin 1, type 
1, E-cadherin 
(epithelial)

CDH1 ENSG000000
39068

999 signaling + [90]

EGR1 early growth 
response 1

TIS8, GOS30, 
AT225

ENSG000001
20738

1958 TF +, ++ + [11,12]

GATA2 GATA binding 
protein 2

NFE1B ENSG000001
79348

2624 TF +, ++ + [56]

IGFBP2 insulin-like 
growth factor 
binding protein-2

IBP2 ENSG000001
15457

3485 signaling + +, ++ [91-93]

KLK3 kallikrein 3, 
(prostate specific 
antigen)

PSA ENSG000001
42515

354 enzyme, 
signaling

++ [48,49,94]

NDRG1 N-myc 
downstream 
regulated gene 1

DRG1, RTP, 
TDD5, NDR1

ENSG000001
04419

10397 enzyme ++ [63,95,96]

NPY neuropeptide Y PYY4 ENSG000001
22585

4852 signaling + [97,98]

SOX4 SRY (sex 
determining 
region Y)-box-4

ENSG000001
24766

6659 TF +, ++ + [99,100]

SOX9 SRY (sex 
determining 
region Y)-box-9

CMD1, 
CMPD1, SRA1

ENSG000001
25398

6662 TF +, ++ + [101,102]

TFAP2C transcription 
factor AP-2 
gamma

ERF1, TFAP2G ENSG000000
87510

7022 TF +, ++ + [89]

WT1 Wilms tumor 1 WAGR, WIT-2, 
GUD

ENSG000001
84937

7490 TF +, ++ + [10,84]

a Genes expressed in prostate cancer epithelial cells [6] include those listed in additional file 1.
b Function as defined in the respective SwissProt annotation [103].
c Broad functional categories are based on Gene Ontology [104] functional annotation by DAVID [105].
d + designates GOTERM_BP_ALL:regulation of biological process, ++ designates GOTERM_BP_ALL:regulation of transcription, 
GOTERM_BP_ALL:regulation of metabolism.
e + designates GOTERM_MF_ALL:binding, ++ designates GOTERM_MF_ALL:protein binding.
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cells was analyzed. As would be expected, conservation of
TFBS decreased as species became more evolutionarily
divergent (Table 5). TFBS were found to be the most con-
served among primates, followed by rodents, and the least
amount of conservation was found between human and
opossum. Of the 47 predicted WT1 sites in the 11 genes
analyzed, primates had 68% of these sites conserved
between human and primate genomes, while rodent
genomes had only 15% of these sites being conserved,

and opossum only 6% of these sites conserved, clearly
showing a drastic drop in conservation as species diverge.
This same pattern was shown for the other TFBS that were
analyzed, including EGR1 and SP1. In particular, 85% of
the EGR1 sites were conserved between human and other
primates, 26% between human and rodents, and 19%
between human and opossum. Similarly, there were 50
predicted SP1 binding sites, of which 62%, 22% and 12%
were conserved between human and primates, rodents,

Table 3: TFBS in promoters of genes expressed in prostate cancer are conserved between Human and Primates or Rodents

Gene WT1 EGR1 SP1 SP2 AP2 GATA1

Conserved 
betweena

#Cons. 
sitesb

Total#c #Cons. 
sitesb

Total# c #Cons. 
sitesb

Total#c #Cons. 
sitesb

Total#c #Cons. 
sitesb

Total#c #Cons. 
sitesb

Total#c

ECAD H-Pr 1/PA 2 1/0 1 3/0 4 1/0 2 1/PA 1 NP/NP NP
H-Ro 0/0 PA/PA 0/0 0/0 0/0 NP/NP

EGR1 H-Pr 4/4 8 7/8 10 3/4 7 1/0 1 1/1 1 3/1 3
H-Ro 2/2 3/4 2/2 0/0 0/0 1/0

GATA2 H-Pr 7/8 8 1/1 1 3/4 5 3/2 3 2/3 3 NP/NP NP
H-Ro 1/2 PA/PA 1/0 0/0 0/0 NP/NP

IGFBP2 H-Pr 3/2 3 6/6 6 6/3 7 1/1 1 NP/NP NP 3/1 3
H-Ro 0/0 3/1 1/1 0/0 NP/NP 0/0

KLK3 H-Pr 2/2 3 1/1 1 1/1 2 1/0 1 NP/NP NP 1/1 2
H-Ro NSA/

NSA
NSA/
NSA

NSA/
NSA

NSA/
NSA

NSA/
NSA

NSA/
NSA

NDRG1 H-Pr 1/1 1 NP/NP NP NP/NP NP NP/NP NP 0/1 1 1/1 1
H-Ro 0/0 NP/NP NP/NP NP/NP 0/0 0/0

NPY H-Pr 9/7 9 2/1 2 4/4 4 2/2 2 4/2 5 2/2 2
H-Ro 1/1 0/0 1/1 1/0 0/0 0/0

SOX4 H-Pr 2/1 2 2/2 2 3/3 3 1/1 1 NP/NP NP 2/2 2
H-Ro 1/1 0/0 2/2 0/0 NP/NP 2/2

SOX9 H-Pr 3/2 4 1/1 1 4/4 4 NP/NP NP NP/NP NP NP/NP NP
H-Ro 0/1 0/PA 1/NA NP/NP NP/NP NP/NP

TFAP2C H-Pr NP/NP NP 4/4 4 5/4 8 NP/NP NP 1/1 1 NP/NP NP
H-Ro NP/NP 3/3 2/2 NP/NP 1/1 NP/NP

WT1 H-Pr 4/2 7 3/3 3 3/3 6 1/1 1 2/1 4 1/0 5
H-Ro 1/1 0/0 2/2 0/0 1/0 0/0

a H-Pr = TFBS conserved between human and other primates (chimpanzee/macaque), H-Ro = TFBS conserved between human and rodents (mouse/rat).
b Number of conserved sites: PA = only partial alignment of promoters as constructed by MultiPipMaker [79], NP = no TFBS in human promoters as predicted by the 
MatIspector [75], 0 = TFBS not conserved, and NSA = no orthologous sequence is available in Ensembl.
c Total number of predicted sites is based on TFBS in human promoters.

Table 4: TFBS in promoters of genes expressed in prostate cancer are conserved between Human and Opossum

Gene WT1 EGR1 SP1 AP2

Conserved betweena #Cons. sitesb Total#c #Cons. sitesb Total#c #Cons. sitesb Total#c #Cons. sitesb Total#c

EGR1 H-Op 1 8 2 10 1 7 PA 1
GATA2 H-Op 1 8 0 1 PA 5 0 3
IGFBP2 H-Op 0 3 1 6 1 7 NP NP

NPY H-Op 0 9 0 2 0 4 1 5
SOX4 H-Op 0 2 2 2 0 3 NP NP

TFAP2C H-Op NP NP 1 4 2 8 PA 1
WT1 H-Op 1 7 0 3 2 6 PA 4

a H-Op = Conservation between human and opossum.
b Number of conserved sites: PA = only partial alignment of promoters as constructed by MultiPipMaker [79], NP = no TFBS in human promoters 
as predicted by the MatIspector [75], and 0 = TFBS not conserved.
c Total number of predicted sites is based on sites in human promoters.
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and opossum genomes, respectively, therefore, exhibiting
decreasing conservation of these sites with evolutionary
divergence. Thus, with this approach of identifying evolu-
tionary conserved sequences we were able to pinpoint
specific candidate binding sites that could be tested for
functional relevance.

Conservation of overlapping WT1, EGR1, and SP1 TFBS
Several of the genes investigated have multiple overlap-
ping WT1, EGR1, and SP1 binding sites in their proximal
promoter regions. For example, the promoter of the
human EGR1 gene has evolutionary conserved overlap-
ping WT1/SP1 binding sites (one of which is shown in
Figure 1A). Both the overlapping WT1 (human 565–581)
and SP1 (human 563–577) sites are conserved between
seven of eight species compared, and the SP1 site is also
conserved between human and opossum. A second WT1
site (human 614–630) located 33 bp downstream over-
laps an EGR1 site (human 608–624) and both sites are
conserved among all eight species, including opossum
(Figure 1A). The promoter of the GATA2 gene also con-
tained overlapping SP1 and WT1 TFBS (located in human
positions 1125–1139 and 1127–1145, respectively) that
are conserved among several mammalian genomes (Fig-
ure 1B). The WT1 gene promoter also has overlapping
WT1/SP1 binding sites and when aligned with multiple
species, one 3' WT1 site (human 1444–1468) was con-
served between all primates, rodents, and opossum, thus,
depicting millions of years of conservation of this particu-

lar site (Figure 1C). The SP1 site (human 1420–1434) is
conserved between all primates and rodents tested, and
overlaps with a WT1 site (human 1409–1425) that is con-
served between human and chimpanzee (Figure 1C).
Interestingly, the sequence similarity is so great between
human and chimpanzee for this WT1 promoter region
that no insertions or deletions were observed in either
genomic sequence; thus, these TFBS were located in
exactly the same positions relative to the start ATG codon.

Identification of overlapping TFBS in the gene promoters
indicated that WT1 and EGR1 may compete for binding.
Analyses of the promoter regions of 11 genes expressed in
prostate cancer epithelial cells showed that WT1 TFBS
overlapped SP1 and EGR1 TFBS, either separately or
together. Overall, it was found that there were 25 overlap-
ping sites in the promoter regions of these genes. There
were 12 WT1/SP1, seven SP1/EGR1, three WT1/EGR1,
and three WT1/SP1/EGR1 overlapping sites (Table 6).
These overlapping sites were found in 10 of the 11 gene
promoters analyzed. Seven overlapping sites were identi-
fied in the promoter region of the EGR1 gene, and three of
these seven overlapping sites are conserved between
human and other species. Three other gene promoters,
GATA2, IGFBP2, and TFAP2C, have three overlapping
sites each, with one SP1/EGR1 site conserved between
human and opossum for both the TFAP2C and IGFBP2
promoters. The WT1 and KLK3 promoters have overlap-
ping WT1/SP1 and SP1/EGR1 sites, respectively. All of

Table 5: Summary of evolutionary conserved sites shared between genomes of human and other species

WT1 EGR1 SP1 SP2 AP2 GATA1

Total # of TFBSa 47 31 50 12 16 18

Primates
Chimpanzee 36 (77%) 28 (90%) 35 (70%) 11 (92%) 11 (69%) 13 (72%)
Macaque 28 (60%) 25 (81%) 27 (54%) 6 (50%) 9 (56%) 8 (44%)

Primate % conservedb 68% 85% 62% 71% 63% 58%

Rodents
Mouse 6 (13%) 9 (29%) 12 (24%) 1 (8%) 2 (13%) 3 (17%)
Rat 8 (17%) 8 (26%) 10 (20%) 0 (0%) 1 (6%) 2 (11%)

Rodent % conservedc 15% 26% 22% 4% 9% 14%

Marsupials
Opossum 3 6 6 0 1 0
% conserved 6% 19% 12% 0% 6% 0%

a Total # of TFBS = The total number of TFBS predicted by MatIspector [75] based on TFBS in human promoters of 11 genes. Numbers of 
evolutionary conserved TFBS shared between human and each species are shown below (percent of sites conserved shown in parenthesis).
b Primate % conserved = Average number of chimpanzee and macaque evolutionary conserved TFBS divided by the total number of TFBS predicted 
for that particular TF.
c Rodent % conserved = Average number of mouse and rat evolutionary conserved TFBS divided by the total number of TFBS for that particular TF.
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these overlapping TFBS are excellent candidates for func-
tional testing to determine whether competition for TF
binding at these sites results in activation or suppression
of the genes they are regulating.

Sequence conservation of TFBS indicates a potentially 
functional WT1 binding site in the KLK3 (PSA) promoter
One of the 24 genes differentially expressed in prostate
cancer epithelial cells was KLK3 (PSA), an important diag-
nostic marker. Sequence alignment of the KLK3 promoter
revealed three WT1 sites and two SP1 sites, with two-
thirds of the WT1 and one-half of the SP1 sites conserved
between human and other primates (Table 3). Given the
premise that evolutionary conserved sites are more likely
to be functionally relevant, we tested these conserved sites
for their ability to bind TF in vivo. PCR primers were

designed to flank the region where adjacent conserved
WT1 (human 1332–1352) and the SP1 sites (human
1404–1418) were identified (Figure 2A). Both of these
binding sites in the PSA promoter were tested by chroma-
tin immunoprecipitation (ChIP) in hormone responsive
LNCaP prostate cancer cells (Figure 2B). Since LNCaP cells
express little WT1 [22], they were transfected with a green
fluorescent protein (GFP)-tagged WT1 expression con-
struct 48 hours prior to the ChIP assay. After crosslinking,
the chromatin and TF complexes were immunoprecipi-
tated by both WT1 and SP1antibodies, as demonstrated
by PCR amplification of the promoter region. WT1 and
SP1 may bind at adjacent sites within the PSA promoter or
at overlapping sites, since the SP1 site overlaps the EGR1
site, to which WT1 may also bind [7-9]. The importance

Alignment of TFBS in EGR1, GATA2, and WT1 promoters reveals overlapping SP1, EGR1 and WT1 sitesFigure 1
Alignment of TFBS in EGR1, GATA2, and WT1 promoters reveals overlapping SP1, EGR1 and WT1 sites. Dots 
indicate nucleotides identical to human, while gaps are shown with dashes. Predicted TFBS are based on human sequences and 
are marked by boxes: EGR1, dashed; SP1, dash-dotted; WT1, solid. (A) Two separate WT1 sites in the EGR1 promoter are 
conserved between multiple species and both overlap an EGR1 site, and one also overlaps an SP1 site. WT1 site (human 614–
630) overlaps EGR1 site (human 608–624) and both sites are conserved between all eight species surveyed. The WT1 site 
(human 565–581) overlaps both an EGR1 site (human 563–575) and an SP1 site (human 563–577). The SP1 site is conserved 
between all eight species, the WT1 site is conserved between all but opossum and the EGR1 site is conserved between pri-
mates. Negative numbers in the chimpanzee EGR1 promoter sequence indicate that the orthologous region was located 1,668 
base pairs from the ATG site (further upstream than 1.5 kb analyzed for other species). (B) Two overlapping WT1 sites 
(human 1127–1143 and human 1129–1145) overlap an SP1 site (human 1125–1139) in the GATA2 gene promoter region. The 
WT1 sites are conserved between human, chimpanzee, and macaque, while the SP1 site is conserved between human, chim-
panzee, macaque, and cow. (C) Two WT1 and an SP1 TFBS in the WT1 promoter are conserved. The WT1 site (human 1444–
1468) is conserved between human, chimpanzee, macaque, mouse, rat, and opossum. The WT1 site (human 1409–1425) that 
overlaps an SP1 site is conserved between human and chimpanzee only, while the SP1 site (human 1420–1434) is conserved 
between human, chimpanzee, macaque, mouse, and rat.
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of these WT1 and SP1 TFBS as candidate binding sites was
confirmed by the in vivo ChIP assay.

Functional WT1 and SP1 binding sites in the VEGF 
promoter are conserved between human and other 
primates
Having tested the significance of identified evolutionary
conserved sites, we then asked whether TFBS known to
mediate transcriptional regulation would also be con-
served. Two genes that regulate prostate cancer progres-
sion by enhancing growth and blood supply, AR and
VEGF, have multiple WT1 and SP1 binding sites in their
proximal promoter regions [14,15,23-25]. We have previ-
ously identified an EGR1 site in the VEGF promoter that
binds both WT1 and SP1 protein in vitro [15], and here
demonstrate by ChIP assay that this promoter region
binds WT1 and SP1 in vivo (Figure 3). Chromatin from
both embryonic kidney 293 cells and LNCaP cells express-
ing a GFP-tagged WT1 expression construct was immuno-
precipitated by WT1 and SP1 antibodies and amplified by
PCR. Using primers specific for the VEGF proximal pro-
moter region, products ~140 bp in size were amplified
from chromatin of both 293 and LNCaP cells (Figure 3A
and 3B). These ChIP assays also demonstrated selective
WT1 binding, since an adjacent site 190 nucleotides
downstream failed to bind WT1 in the same assay (data
not shown). These sites were validated as being transcrip-
tionally regulated in several different assays, including
luciferase reporter assays [15], so we asked whether they
were evolutionary conserved in different species. In silico

analyses predicted that an overlapping EGR1 (human
1717–1733) and SP1 (human 1721–1735) site and a
WT1 site (human 1755–1771) were conserved between
primates and dogs, but not in rodents (Figure 3C). Fur-
thermore, as seen with the PSA promoter region, WT1 and
SP1 may bind at adjacent sites or potentially at overlap-
ping sites since WT1 also binds at EGR1 sites [7-9]. Both
PSA and VEGF promoter regions contain evolutionary
conserved WT1 sites adjacent to overlapping EGR1/SP1
TFBS, to which WT1 is also likely to bind, thus facilitating
either cooperation or competition between TFs.

Similarly, WT1 binding sites previously identified in the
AR proximal promoter region by EMSA analysis and veri-
fied to mediate transcriptional regulation in luciferase
reporter assays [14,23] were confirmed by ChIP using PCR
primers flanking the WT1 and SP1 TFBS (Figure 4A). Since
these binding sites were tested in vivo, evidence of
sequence conservation was sought, as described. As
shown in Figure 4B, both a WT1 site (human 1434–1450)
and an EGR1 site (human 1524–1537) were identified
within the region amplified by ChIP. This less common
pyrimidine-rich EGR1 TFBS, consisting of TCC repeats,
has been shown to bind both WT1 and SP1 [7,14,26],
thus all three zinc finger TFs could compete for binding at
this site. Evidence for evolutionary conservation between
human and other primates was limited by the lack of
genomic sequence information available for chimpanzee
(and lack of conservation between human and macaque).

Table 6: Conservation of overlapping TFBS between human and other mammalsa

Gene WT1/EGR1 SP1/EGR1 WT1/SP1 WT1/SP1/EGR1

ECAD 0 0 1233–1249: C 0
EGR1 608–630: Pr, Ro, Op 703–727: Pr 1340–1360: M 563–581: Pr

1029–1047: C 1466–1486: M 1466–1490: M
GATA2 0 0 282–300: M 0

892–910: Pr
1125–1145: Pr

IGFBP2 0 1327–1359: Pr, Ro, Op 716–744: C 0
1445–1463: C

KLK3 0 1400–1418: Pr 0 0
NDRG1 0 0 0 0
NPY 512–530: Pr 0 260–278: Pr 0
SOX4 0 1344–1362: C 0 0
SOX9 0 0 908–932: Pr 908–932: Pr
TFAP2C 0 1127–1145: Pr, Ro 0 0

1160–1179: Pr
1384–1403: Pr, Ro, Op

WT1 0 0 1089–1108: C 0
1409–1434: C

a Position numbers are based on predicted TFBS in the human sequences. Pr = Both primates (chimpanzee and macaque), C = chimpanzee, M = 
macaque, Ro = Both rodents (mouse and rat), Op = opossum. 0 = No overlapping WT1/EGR1, SP1/EGR1, WT1/SP1, or WT1/SP1/EGR1 TFBS for 
that particular gene.
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Discussion
Identification of evolutionary conserved sequences
derived from comparisons of multiple genomes (so-called
"phylogenetic footprints") has been successful in identify-
ing functionally important regions, including those
regions that regulate gene expression [19,27-34]. How-
ever, some regulatory genomic sequences do not appear
to be conserved or the level of evolutionary conservation
varies between different genomic comparisons [35,36].
Importantly, some functional regions have been reported
to experience a relatively fast rate of turnover, where the
functional significance of the element is retained despite
changes at the nucleotide sequence level (e.g., transcrip-
tion start sites, [37]). Thus, it is likely that gene expression
in mammalian genomes is controlled by both types of

regulatory elements, i.e., those elements that exhibit evo-
lutionary and functional conservation and those that
exhibit functional conservation only. Moreover, while
numerous algorithms are available to computationally
predict potential regulatory elements, it is often challeng-
ing to narrow down the list of those that are likely to be
functional, particularly for relatively short elements such
as TFBS. One of the approaches that utilizes evolutionary
conservation as a predictor of TFBS functionality is the
rVISTA tool that uses pairwise sequence alignments to
identify the most highly conserved TFBS between the pair
of genomic sequences [38]. Another set of tools, the
Mulan, takes advantage of evolutionary conservation
information obtained from multi-sequence alignments of
several genomes [39]. However, the latter requires the

ChIP verification of WT1 and SP1 binding to endogenous VEGF promoter and sequence conservationFigure 3
ChIP verification of WT1 and SP1 binding to endog-
enous VEGF promoter and sequence conservation. 
Functional WT1 and SP1 TFBS in the VEGF promoter region 
were previously identified by EMSA and luciferase reporter 
assays [15]. (A) ChIP analysis of chromatin from WT1 trans-
fected 293 kidney cells verified that these TFBS were func-
tional. Lanes 1 and 7 show the 1 Kb ladder, lane 2 shows the 
No DNA PCR control, and lane 3 shows PCR amplified input 
DNA. Lanes 4, 5, and 6 show PCR amplified DNA immuno-
precipitated by IgG (no antibody control), WT1 or SP1 anti-
bodies, respectively. (B) ChIP analysis of chromatin from 
WT1 transfected LNCaP cells verified these TFBS were func-
tional in prostate cancer cells as well. Lanes as described in 
section (A). (C) Predicted TFBS are based on human 
sequences and marked by boxes as described in Figure 1. 
These functional WT1 (human 1755–1771), EGR1 (human 
1717–1733) and SP1 (human 1721–1735) sites were con-
served between primates (human, chimpanzee, and macaque) 
and dogs, but not in rodents; and the SP1 site overlapped 
with the EGR1 site.

Conservation of the KLK3 (PSA) promoter and ChIP verifica-tion of WT1 and SP1 bindingFigure 2
Conservation of the KLK3 (PSA) promoter and ChIP 
verification of WT1 and SP1 binding. (A) Alignment of 
predicted TFBS (based on human sequences) in the KLK3 
gene promoter of multiple genomes shows the conservation 
of two overlapping WT1 binding sites (solid box), an EGR1 
site (dashed box), an SP1 site (dash-dotted box), and an SP2 
site (double dash-dotted box). WT1 sites (human 1332–1348 
and 1336–1352) are conserved between human, chimpanzee, 
macaque, and cow and they overlap an SP2 site (human 
1347–1361) conserved between human, chimpanzee, and 
cow. An EGR1 site (human 1400–1416) overlaps an SP1 site 
(human 1404–1418) and both are conserved between 
human, chimpanzee, macaque, and dog. (B) The binding of 
WT1 and SP1 TFs to native chromatin obtained from WT1-
transfected LNCaP cells was confirmed by ChIP. Lane 1 
shows the no DNA PCR control and lane 2 shows PCR 
amplified input DNA. Lanes 3, 4, and 5 show PCR amplified 
DNA immunoprecipitated by IgG (no antibody control), SP1 
or WT1 antibodies, respectively.
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TFBS to be shared among all genomes present in the align-
ment [39] and may potentially miss the lineage-specific
regulatory elements that are absent from some subsets of
genomes. Therefore, in this work we used TFBS elements
shared between some but not necessarily all of the availa-
ble genomes.

We used evolutionary sequence conservation, as deter-
mined by both the multi-species sequence alignments and
the in silico TFBS predictions, to identify those sites most
likely to regulate expression of target genes that influence
growth of prostate cancer cells. Regulatory regions with
functional importance can be expected to exhibit
sequence conservation due to selection. Thus, predicted
TFBS that are located in the orthologous positions in mul-

tiple genomes are likely to be truly functional. Our identi-
fication of evolutionary conserved WT1 and SP1 binding
sites in the PSA promoter indeed supports this notion
(Figure 2). As expected, conservation of TFBS decreased as
species became more evolutionarily divergent [40], so
those TFBS that were conserved between multiple species
including opossum are more likely to be functionally
important in the regulation of gene expression.

The abundance of overlapping zinc finger TFBS also sup-
ported the functional importance of these regulatory
regions. Thus, we identified many TFBS in potential target
genes that were co-expressed with WT1 in prostate cancer
epithelial cells. Evolutionary conserved WT1 and SP1 sites
in the PSA promoter were confirmed by ChIP to bind both
WT1 and SP1 in LNCaP prostate cancer cells chromatin.
Although it is a novel discovery that both SP1 and WT1
bind the PSA promoter and may play a role in its regula-
tion, reporter assays are needed to confirm their contribu-
tion to transcription. In addition, a WT1 binding site
known to transcriptionally regulate the VEGF promoter
[15] was confirmed by ChIP and found to be in an evolu-
tionary conserved region. Interestingly, transcriptionally
active WT1 and EGR1 binding sites in the AR promoter
[12] were not conserved between human and macaque,
although adjacent genomic regions could be aligned
between multiple species (Figure 4). This suggests that the
AR promoter may have experienced faster turn-over than
the VEGF promoter, yet remained functionally conserved
despite sequence changes at the nucleotide level.

Many of the genes expressed in prostate cancer epithelial
cells have previously been reported to interact and regu-
late each other, suggesting multiple potential targets for
altered pathways that may lead to prostate cancer progres-
sion. We and others have identified gene interactions
[8,14,15,23,41-47] that are consistent with WT1 regulat-
ing the progression and/or growth of tumors in the pros-
tate. However, PSA was a candidate gene target identified
by our in silico evolutionary conservation approach and
confirmed by in vivo chromatin binding assays. PSA is a
member of the kallikrein family of serine proteases and is
a marker of epithelial differentiation in the prostate [48].
It is up-regulated in prostate cancer cells when compared
to normal adjacent tissue [49] and its expression is regu-
lated by the ligand bound androgen receptor (AR) [48].
Since WT1 activates the AR promoter in prostate cancer
cells [23], this suggests that WT1 may directly or indirectly
regulate PSA gene expression.

In addition to PSA, genes that were co-expressed with
WT1 in prostate cancer epithelial cells and that could
potentially interact with, or be regulated by, WT1
included GATA2, ECAD, EGR1, and NDRG1 [6]. GATA
binding proteins are zinc finger transcription factors that

ChIP verification of WT1 and SP1 binding to endogenous AR promoter and sequence analysisFigure 4
ChIP verification of WT1 and SP1 binding to endog-
enous AR promoter and sequence analysis. Functional 
WT1 TFBS in AR promoter region were previously identified 
by EMSA and reporter assays [14,23]. (A) ChIP analysis of 
chromatin from WT1 transfected LNCaP prostate cancer 
cells verified these TFBS were functional. Lane 1 shows the 1 
Kb ladder, lane 2 shows the No DNA PCR control, and lane 
3 shows PCR amplified input DNA. Lanes 4, 5, and 6 show 
PCR amplified DNA immunoprecipitated by IgG (no antibody 
control), WT1 or SP1 antibodies, respectively. (B) Predicted 
TFBS are based on human sequences and marked by boxes 
as described in Figure 1. Evidence for conservation of the 
functional WT1 (human 1434–1450) TFBS was limited by 
lack of sequence information available for chimpanzee (and 
lack of conservation with macaque). Surprisingly the TCC 
rich EGR1 site (human 1524–1537), previously shown to 
bind WT1 in vitro [14], also showed no evolutionary conser-
vation.
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bind the WGATAR consensus motif and are expressed in
multiple tissues, including endocrine glands [50-52].
Interestingly, GATA TFs regulate WT1 expression, as mul-
tiple GATA TFBS are found within the WT1 promoter and
enhancer regions [53-55]. GATA binding protein 2
(GATA2) has been shown to be one of the main GATA
family members expressed in the prostate of human and
mouse [56]. It has been suggested that GATA2 plays a role
in androgen mediated regulation of PSA expression, pos-
sibly through interaction with AR, as GATA sites are adja-
cent to AR TFBS in the PSA promoter [56]. WT1 could
contribute to GATA2 mediated regulation of target genes
in prostate cancer cells, if WT1 also physically interacts
with GATA2. This notion is consistent with the observa-
tion that WT1 interacts with GATA4 to regulate SRY gene
expression [57]. This complex pattern of zinc finger-pro-
tein interaction between WT1 and GATA, along with reg-
ulation of WT1 expression by GATA TF, suggests a
potential for WT1 feedback control of GATA activity.

The WT1 promoter is itself a target of autoregulation by
WT1 [47]. WT1 is a multifunctional transcription factor;
its four major isoforms are formed by alternative splicing
at two sites resulting in the inclusion or exclusion of (1)
exon V and/or (2) a tripeptide (KTS) in exon 9 that alters
the zinc finger DNA binding structure [58]. While the
functions of the various isoforms of WT1 are still being
discovered, the -KTS isoform is a transcriptional regulator
with G-rich recognition sequence [58]. The +KTS isoform
is also likely to be present in prostate cancer cells but
would contribute to gene regulation via splicing and post-
transcriptional gene regulation [59,60]. Here we have
identified potential target genes with well-described DNA
binding sites recognized by the -KTS isoform and have not
assessed the less well understood RNA binding sites recog-
nized by the +KTS isoform [60].

The early growth response 1 gene (EGR1) is a homolog of
WT1 [7]. Although it has only three zinc-fingers, it shares
some TFBS with WT1. EGR1 has been implicated as a can-
cer suppressor gene and activates genes required for differ-
entiation [7]. In human prostate cancer, EGR1 is over-
expressed [11,12] and in a mouse model of prostate can-
cer, EGR1 regulates genes essential for progression of
tumor growth [61]. Since WT1 regulates the EGR1 pro-
moter in vitro [8] it may indirectly regulate other EGR1 tar-
get genes, such as the N-myc downstream regulated gene
1 (NDRG1), an α/β hydrolase. In many cancer cell lines it
has been shown to be up-regulated by both hypoxia and
hormone treatment suggesting that it could be linked to
androgen induced differentiation and signaling in the
prostate [62,63]. Since EGR1 regulates NDRG1, WT1
could either directly or indirectly regulate NDRG1.

While analyzing the homologous sequences of the differ-
ent gene promoters, numerous overlapping TFBS were
found, suggesting competition for binding and differen-
tial regulation of these gene promoters. Several studies
have shown that EGR1 and SP1 TFBS often overlap
[7,64,65]. When EGR1 binds to a site also bound by SP1,
it displaces the SP1 "activator" from the binding site and
represses transcription of these genes [7]. For example, the
promoter of NDRG1 was shown to be regulated by an
overlapping EGR1/SP1 binding site [65] (located outside
of the surveyed region of our study). It was shown that
this evolutionary conserved site was vital in positively reg-
ulating expression of NDRG1 [65]. Similarly, our results
showed evolutionary conserved overlapping EGR1/SP1
sites in several other gene promoters, including VEGF and
PSA. In the latter, overlapping EGR1/SP1 sites were found
to be conserved between human and two other primate
species (chimpanzee and macaque).

Additionally, WT1 and EGR1 compete for binding at
shared TFBS. WT1 recognizes and binds to EGR1 sites on
the promoters of many different genes [7,9,66-68]. WT1
generally functions as a transcriptional repressor when
bound to EGR1 TFBS in the transforming growth factor-
beta 1 (TGFβ1) and EGR1 promoters, while EGR1 func-
tions as an activator [8,9]. Many gene promoters with
overlapping WT1, EGR1, and SP1 binding sites have been
identified (reviewed in [7]). For example, three-way com-
petition occurs between EGR1, SP1 and WT1 for binding
and regulation of superoxide dismutase expression [66].
However, the mechanisms of gene regulation at overlap-
ping sites, including TF competition, are not well under-
stood.

Combinations of adjacent and overlapping EGR1, WT1
and SP1 TFBS conserved between multiple species were
found in multiple gene promoters. Adjacent sites were
found in the PSA promoter where an overlapping EGR1/
SP1 site is 50 base pairs downstream of a WT1 site and in
the VEGF promoter where an EGR1/SP1 overlapping site
is 20 base pairs away from a WT1 site. Such sites can facil-
itate synergistic interactions or may be required for induc-
ible expression, as described for AR and GATA2
interactions in the PSA promoter [56]. Additionally, in the
VEGF promoter an SP1 site adjacent to a non-canonical
estrogen receptor (ER) TFBS contributes to hormone
induction of VEGF expression [69]. Similarly, WT1
appears to interact with ER at neighboring sites in the
insulin like growth factor 1 receptor (IGF1R) promoter
[70]. These complex arrangements of EGR1, WT1 and SP1
TFBS could facilitate cooperative or competitive binding
by these TFs and would have pleiotropic effects on the reg-
ulation of these genes. Genes with evolutionary conserved
overlapping TFBS could be part of a prostate epithelial cell
transcriptome regulated by WT1.
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Conclusion
Genes coordinately expressed in prostate cancer epithelial
cells have conserved regulatory elements and an abun-
dance of overlapping zinc finger TFBS. Potential WT1 gene
targets were identified based on TFBS sequence conserva-
tion, and the significance of the WT1 TFBS in the PSA pro-
moter was verified in vivo by ChIP assays. Similarly, a
transcriptionally active WT1 binding site in the VEGF pro-
moter was confirmed by ChIP and found to be in a region
conserved amongst primates. Thus, these genes could be
part of a novel network of regulatory pathways initiated
by WT1 and have important implications in the progres-
sion of prostate cancer.

Methods
Promoter sequence compilation
For each of the 24 prostate cancer growth regulatory genes
differentially expressed, the complete or draft genomes of
eight different mammalian species were downloaded
from the Ensembl Genome Browser [71,72]. The follow-
ing genome assemblies were used: the NCBI 36 assembly
of human (Homo sapiens) genome, the NCBI m36 assem-
bly of mouse (Mus musculus) genome, the Pan Tro 2.1
assembly of chimp (Pan troglodytes) genome, a whole
genome shotgun (WGS) preliminary assembly Btau_3.1
of cow (Bos Taurus) genome, a WGS assembly Can Fam2.0
of dog (Canis familiaris) genome, a WGS preliminary
assembly Mmul_1 of rhesus monkey (Macaca mulatta)
genome, the Mon Dom5 assembly of opossum (Monodel-
phis domestica) genome, and the RGSC3.4 assembly of rat
(Rattus noregicus) genome. Since major regulatory ele-
ments are located within several hundred base pairs of
transcription start sites [73], 1.5 kb of human nucleotide
sequence 5' of the translational start site (that is, 5' of the
first exon as defined in Ensembl [72]) was collected.
Orthologous sequences from other mammalian genomes
were obtained from respective genome assemblies. In the
case of the EGR1 promoter this extended beyond 1.5 kb,
so was assigned a negative number. The genome viewer
and annotation program Artemis was used to ensure the
correct context of genomic sequences [74]. In each
sequence, the nucleotide positions were numbered
sequentially, with the targeted promoter region occupying
positions 1 through 1500 (5' to 3' direction) of the for-
ward strand, and ATG start codon located at positions
1501–1503 of the genomic sequence analyzed.

AR and VEGF promoter sequences containing the func-
tional WT1 TFBS for the human AR and VEGF promoters
were obtained from Ensembl (ENSG00000169083 and
ENSG00000112715, respectively). For alignment analy-
ses of known functional sites [14,15], an orthologous pro-
moter region (3 kb) was then collected from eight
mammalian genomes as described above.

TFBS predictions, evolutionary conservation and multiple 
sequence alignments
TFBS of WT1, EGR1, SP1, SP2, AP2 and GATA1 were pre-
dicted for each gene by the program MatInspector [75]
that utilizes the TRANSFAC libraries of TF binding motifs
[75,76]. The default parameters of similarity thresholds
were used for all examined genes, and they were as fol-
lows: core similarity > 0.75 and optimized matrix similar-
ity thresholds (i.e., those that minimize false positives for
each individual matrix as available in the library) [75]. In
MatInspector, core similarity is one of the built-in pro-
gram parameters that determines whether the observed
sequence match will be analyzed further. It refers to the
four most conserved consecutive nucleotides of the
matrix, usually the most critical sites for protein binding,
and reaches 1.0 only when there is a perfect match
[75,77]. Sequence matches with low core similarity (less
than 0.75) are not, by default, reported to the user. Verte-
brate matrices of the Matrix Family Library Version 6.2
(October 2006) that included 464 matrices were used
[78]. Multiple sequence alignments of the promoter
sequences were reconstructed with the program blastZ
using MultiPipMaker [79], and predicted human TFBS
were mapped onto the alignments.

Regions that are conserved in multiple genomes are often
found to correspond to functionally important ones [80].
However, because of the species-specific differences in
gene regulation due to underlying differences in morpho-
genesis and development, such as those between different
segments of human and rodent prostate [81], it can be
expected that some functionally important regions will be
conserved only in a limited set of genomes where they
play a critical role. Thus, we used a flexible definition of
"evolutionary conservation" to accommodate such poten-
tial differences between genes and/or TFBS: here a TFBS
was considered evolutionary conserved if it was predicted
as a respective TFBS in orthologous position in at least
three of eight surveyed genomes. In other words, the same
genomic region was predicted to function as a candidate
binding site for a particular TF in at least 3 surveyed
genomes. Further, because differences in presence/
absence of particular TFB sites between genomes may also
be attributed to differences in the role of respective genes
in each of the organisms, we examined evolutionary con-
served sites at different levels of resolution: Human-Pri-
mates, Human-Rodents, and Human-Opossum, thereby,
allowing us to identify genes and TFB sites that are func-
tionally relevant to each of these comparisons.

Cell culture and chromatin immunoprecipitation
LNCaP prostate cancer cells (ATCC-CRL 1740) and
human embryonic kidney 293 cells (ATCC-CRL 1573)
were cultured in RPMI or DEM/F12 (HyClone Laborato-
ries, Utah) media, respectively, as described [15]. The
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cytomegalovirus (CMV) promoter-driven pGFP-WT1 (A)
expression construct encoding the murine Wt1 gene (lack-
ing both KTS insertion and exon 5) fused to GFP coding
region were obtained from Dr. A. Ward [82]. All DNA was
purified by the Qiagen plasmid Maxi Kit (Qiagen,
Carlsbad CA) and transfections were performed using
lipofectamine 2000 (Invitrogen; Carlsbad CA) in serum-
and antibiotic-free media as described [15]. Green fluo-
rescing cells were visualized by epifluorescence micros-
copy (Olympic) at 100–400× magnification at 24 and 48
hrs after transfection prior to cell harvest for chromatin
isolation.

The Farnham ChIP protocol [83] was used with some
modifications. Two million cells were treated with formal-
dehyde to crosslink proteins to DNA and lysed in PBS-PI
as recommended for the EZ ChIP Assay (Upstate Biotech-
nology Inc). Lysates were centrifuged and DNA sheared by
sonication (Biosonik III, Bronwill Scientific, Rochester,
NY) to fragments of 100–400 bp in length. The superna-
tant was pre-cleared by incubation with Protein G Agarose
and incubated overnight at 4°C with either SP1 antibody
(Upstate Biotechnology Inc) or WT1 antibody (a mixture
of C19 and N18 polyclonal Abs, Santa Cruz Biotechnol-
ogy) or non-immune IgG. The antibody/protein/DNA
complex was collected by incubation with Protein G Aga-
rose and washed in increasing salt buffers, then rinsed in
TE as recommended (Upstate Biotechnology Inc). The
complexes were recovered from agarose beads with an
elution buffer, crosslinks were reversed and DNA was
purified using G-50 spin columns. Four percent of both
immunoprecipitated and input chromatin were amplified
by PCR using Taq polymerase (Applied Biosystems by
Roche Molecular System, Inc) and the following set of
primers: VEGF primers (F)
5'TTCCTAGCAAAGAGGGAACG3' and (R)
5'ACCAAGGTTCACAGCCTGAA3'; AR primers (F)
5'TATCTGCTGGCTTGGTCATGGCTTG3' and (R)
5'CTGCTTCCTGAATAGCTCCTGCTT3'; and PSA primers
(F) 5'TCTGCCTTTGTCCCCTAGAT3' and (R)
5'AACCTTCATTCCCCAGGACT3'. Following an initial 10
min denaturation at 95°C, DNA was amplified by 32
cycles of: 1) 20 sec denaturation at 95°C, 2) 30 sec anneal-
ing at either 58°C (for VEGF primers) or 59°C (for AR
and PSA primers) and 3) 30 sec extension at 72°C; ampli-
fication was completed with a 2 min final extension at
72°C. PCR products were fractionated on 1% agarose gel,
and ethidium bromide stained DNA was visualized by a
gel doc system (BIORAD, CA). Specificity controls are
shown in Additional file 2.
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