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Abstract

Background: Noninvasive prenatal diagnosis of fetal aneuploidy by maternal plasma analysis is challenging owing to the
low fractional and absolute concentrations of fetal DNA in maternal plasma. Previously, we demonstrated for the first time
that fetal DNA in maternal plasma could be specifically targeted by epigenetic (DNA methylation) signatures in the placenta.
By comparing one such methylated fetal epigenetic marker located on chromosome 21 with another fetal genetic marker
located on a reference chromosome in maternal plasma, we could infer the relative dosage of fetal chromosome 21 and
noninvasively detect fetal trisomy 21. Here we apply this epigenetic-genetic (EGG) chromosome dosage approach to detect
Edwards syndrome (trisomy 18) in the fetus noninvasively.

Principal Findings: We have systematically identified methylated fetal epigenetic markers on chromosome 18 by
methylated DNA immunoprecipitation (MeDIP) and tiling array analysis with confirmation using quantitative DNA
methylation assays. Methylated DNA sequences from an intergenic region between the VAPA and APCDD1 genes (the VAPA-
APCDD1 DNA) were detected in pre-delivery, but not post-delivery, maternal plasma samples. The concentrations correlated
positively with those of an established fetal genetic marker, ZFY, in pre-delivery maternal plasma. The ratios of methylated
VAPA-APCDD1(chr18) to ZFY(chrY) were higher in maternal plasma samples of 9 male trisomy 18 fetuses than those of 27
male euploid fetuses (Mann-Whitney test, P = 0.029). We defined the cutoff value for detecting trisomy 18 fetuses as
mean+1.96 SD of the EGG ratios of the euploid cases. Eight of 9 trisomy 18 and 1 of 27 euploid cases showed EGG ratios
higher than the cutoff value, giving a sensitivity of 88.9% and a specificity of 96.3%.

Conclusions: Our data have shown that the methylated VAPA-APCDD1 DNA in maternal plasma is predominantly derived
from the fetus. We have demonstrated that this novel fetal epigenetic marker in maternal plasma is useful for the
noninvasive detection of fetal trisomy 18.
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Introduction

Fetal chromosomal aneuploidies are the main reasons for

pregnant women to seek prenatal diagnosis [1]. Definitive

diagnosis of fetal aneuploidy often requires obtaining fetal genetic

materials by invasive procedures, which carry a risk of procedure-

associated fetal loss [2]. The presence of fetal DNA in maternal

plasma has opened up new opportunities for noninvasive prenatal

diagnosis [3]. However, the noninvasive detection of fetal

aneuploidy in maternal plasma is complicated by the low

fractional concentration (3–10%) of fetal DNA, which co-exists

with a large background of maternal DNA [4,5].

To detect fetal Down syndrome noninvasively, we and other

researchers have applied massively parallel genomic sequencing to

determine the proportional amounts of chromosome 21 DNA

molecules in maternal plasma [6–8]. This approach entails the

analysis of millions of DNA molecules, derived from both the

mother and the fetus, in maternal plasma. As an alternative to the
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still technically and bioinformatically complex massively parallel

sequencing-based approach, we have developed other approaches

by targeting fetal-specific DNA or RNA molecules in maternal

plasma [9–12].

Previous findings suggest that the placenta is the major source of

cell-free fetal nucleic acids in maternal plasma [13–15], whereas

maternal blood cells are the major source of maternal nucleic acids

in maternal plasma [16]. Thus, we have used epigenetic signatures

specific to the placenta but not maternal blood cells to target fetal

DNA in maternal plasma [14,17–19]. We have developed a

placental epigenetic signature, namely the unmethylated promoter

of the serpin peptidase inhibitor, clade B (ovalbumin), member 5

(SERPINB5, NM_002639) gene, into a fetal epigenetic (DNA

methylation) marker. Since this fetal epigenetic marker is located

on chromosome 18, it is feasible to detect fetal trisomy 18 by

assessing the ratio of the alleles in fetuses who are heterozygous for

this marker [20]. However, this approach is only applicable to

fetuses polymorphic for the marker. Thus, we developed an

alternative approach, the epigenetic-genetic (EGG) chromosome

dosage approach, with potentially wider population coverage.

We have recently applied the EGG approach for the

noninvasive detection of fetal trisomy 21 [11]. This EGG analysis

involves a fetal epigenetic marker, holocarboxylase synthetase (HLCS,

NM_002639) gene, which is found to be hypermethylated in the

placenta in comparison to maternal blood cells. Comparing this

fetal epigenetic marker, which is located on the chromosome 21,

with a fetal genetic marker on a reference chromosome unaffected

by trisomy 21, we could infer the relative dosage of fetal

chromosome 21 by analyzing maternal plasma DNA [11]. Since

any paternally-inherited fetal sequences that are not found in the

pregnant woman (e.g. Y-chromosomal sequences for male fetuses

or polymorphic sequences inherited only from the father for both

male and female fetuses) and are located on a reference

chromosome can serve as the fetal genetic marker for the EGG

analysis, potentially all fetuses in the general population may be

covered.

Yet, if we use the EGG approach to detect the small increase

(,1.5-fold) in the dosage of fetal chromosome 21 relative to any

other unaffected fetal chromosome in maternal plasma samples

collected from pregnancies involving a Down syndrome fetus, an

analytical platform of high precision is required. The bisulfite-

based detection method of fetal epigenetic markers can only offer

limited precision, because bisulfite has been reported to degrade

.90% of the input DNA [21]. A bisulfite-independent method

using methylation-sensitive restriction enzyme that digests only

unmethylated, but not methylated DNA has been developed to

detect methylated fetal epigenetic marker [17]. Adopting this

method to detect the methylated HLCS DNA molecules in

maternal plasma, we have achieved an analytical precision that

was high enough to distinguish between trisomy 21 and euploid

fetuses noninvasively [11].

Therefore, the fetal epigenetic marker suitable for the EGG

approach has to be resistant to digestion by methylation-sensitive

restriction enzymes in maternal plasma. In other words, we need a

fetal epigenetic marker that is hypermethylated in the placenta, the

predominant source of fetal DNA in maternal plasma [14], and is

located on the potentially aneuploid chromosome. Most of the

earlier studies searched for fetal epigenetic markers only within

selected genomic loci on chromosome 21 [11,22,23]. Using

methylated DNA immunoprecipitation (MeDIP) and tiling array

analysis [24], other investigators have expanded the search to

chromosome 18 and reported numerous loci as potential fetal

epigenetic markers [25]. However, no studies have validated

whether these MeDIP-identified markers are detectable in

maternal plasma, let alone their fetal-specificity in maternal

plasma and clinical application.

In this study, we aimed to identify fetal methylated markers on

chromosome 18 by MeDIP in a systematic way, and to confirm its

detectability and fetal-specificity in maternal plasma. Furthermore,

we applied this marker to develop an EGG test for the noninvasive

detection of fetal trisomy 18.

Materials and Methods

Objectives
To systematically test if there are any genomic loci on

chromosome 18 that are hypermethylated in the placenta,

compared with maternal blood cells, we profiled the DNA

methylation levels in the two tissue types by MeDIP and tiling

array (MeDIP-chip). To test if the methylated DNA of such a locus

is fetal specific in maternal plasma, we measured its plasma

concentration before and after delivery of the fetus. To test if this

methylated fetal epigenetic marker in maternal plasma can be used

to detect fetuses with trisomy 18 using the EGG approach, we

measured its concentrations relative to a fetal genetic marker by

digital PCR.

Ethics approval
This study was conducted according to the principles expressed

in the Declaration of Helsinki. Ethics approval from the Joint

Chinese University of Hong Kong-New Territories East Cluster

Clinical Research Ethics Committee and the respective institu-

tional review broads was obtained. All patients provided written

informed consent for the collection of samples and subsequent

analysis.

Subjects and sample collection
Women with singleton pregnancies attending the respective

hospitals in Hong Kong and the UK were recruited (File S1).

Placental tissues were collected from first- and third-trimester

pregnant women undergoing pregnancy termination and elective

cesarean section, respectively. Maternal peripheral blood samples

were collected just before and 24 hours after the obstetrics

procedures. Additionally, blood samples were collected from first-

and second-trimester pregnant women attending antenatal care.

The trisomy 18 status of the fetus was confirmed by full

karyotyping of chorionic villus samples. Blood samples were also

collected from non-pregnant individuals as negative controls for

validating the fetal-specificity of the candidate marker in plasma.

Sample processing
Maternal plasma was harvested from EDTA-blood by our

previously established double-centrifugation protocol [26]. The

maternal blood cell sample portion was recentrifuged at 2,5006g

for removal of any residual plasma. Placenta was rinsed

thoroughly in phosphate buffered saline to remove blood. DNA

was extracted from plasma, blood cells and the placenta with the

methods described in File S1.

MeDIP and tiling array (MeDIP-chip) analysis
The DNA sample was sonicated and subjected to MeDIP by

antibody specific for methylated cytosine [24]. The immunopre-

cipitated product was amplified, labeled and hybridized on the

GeneChip Human Tiling 2.0R Arrays (Affymetrix). Genomic loci

with significantly higher DNA methylation in the placenta, relative

to maternal blood cells, were identified by the Tiling Array

Software (TAS) version 1.1 and the Model-based Analysis of

Noninvasive Prenatal Detection of Edwards Syndrome
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Tiling array (MAT) method with the parameters described in File

S1 [27,28].

Rapid and quantitative DNA methylation analysis by the
Epityper

MeDIP-identified locus was analyzed by a quantitative DNA

methylation assay, the Epityper (Sequenom) [29](File S1). Briefly,

the genomic locus of interest in a bisulfite-converted DNA sample

was subjected to PCR amplification by primers listed in Table S1,

in vitro transcription into RNA, and uracil-specific cleavage on the

complementary strand. The product derived from PCR amplicons

would therefore be fragmented. Fragments derived from the

methylated and unmethylated DNA molecules would have

different masses due to the difference in nucleotide sequence at

the CpG site caused by bisulfite conversion. The mass differences

were readily resolved and quantified as distinct peaks by matrix-

assisted laser desorption and ionization time-of-flight (MALDI-

TOF) mass spectrometry. In the Epityper, the DNA methylation

level of one or more CpG sites in any one cleaved fragment was

reported as an integral unit, namely a CpG unit. For each CpG

unit, a methylation index (MI) was calculated as the ratio of the

methylated peak height to the sum of the methylated and

unmethylated peak heights.

Priority for Epityper analysis was given for MeDIP-identified

loci that would (i) allow appropriate PCR design, including a high

annealing temperature of the primers; (ii) result in Epityper assays

with the maximum number of detectable fragments (CpG units),

the masses of which were within the detection range of the mass

spectrometer; and (iii) allow specific PCR amplification from

bisulfite-converted DNA. (i)-(ii) were mainly calculated by the

Epidesigner 2.0 program (Sequenom); and (iii) was checked by the

BiSearch search tool [30]. Occurrence of genomic variations in

the analyzed regions were checked using the Database of Genomic

Variants (http://projects.tcag.ca/variation/) [31]. We made sure

that there was no reported variant of higher than 1% frequency in

the regions we analyzed.

Single-base single-molecule DNA methylation analysis by
bisulfite genomic sequencing

To quantify DNA methylation at the resolution of single CpG

site in a single molecule, bisulfite genomic sequencing was

performed [32]. Briefly, a genomic locus in the bisulfite-converted

DNA was amplified by PCR primers (Table S1). The PCR

products were cloned and segregated as colonies, each represent-

ing a single molecule for sequencing (File S1). For each CpG site in

a DNA sample, a MI was calculated as the ratio of the number of

methylated clones to the total number of clones sequenced.

Conventional quantitative PCR assays for VAPA-APCDD1,
ZFY and b-actin DNA

DNA samples, which had been subjected to digestion by

methylation-sensitive restriction enzyme (File S1) or mock

digestion by 50% glycerol instead of an enzyme, were then

analyzed by 3 quantitative polymerase chain reaction (qPCR)

assays. One qPCR assay was designed to target an intergenic

region between the VAMP (vesicle-associated membrane protein)-

associated protein A, 33 kDa (VAPA, NM_003574) gene and the

adenomatosis polyposis coli down-regulated 1 (APCDD1, NM_153000)

gene. Another assay, targeting the zinc finger protein, Y-linked (ZFY,

NM_003411), an established genetic marker for detecting fetal

DNA in maternal plasma of pregnancies bearing male fetuses, was

adopted from our previous study [5]. The third assay was designed

to target a completely unmethylated region (positive control for

methylation-sensitive restriction enzyme digestion) of the b-actin

(ACTB, NM_001101) gene.

All 3 assays involved hydrolysis probes for detection. The

primer and probe sequences and reaction conditions are listed in

Tables S2 and S3. Concentrations of each target were quantified

by a standard calibration curve constructed with known

concentrations of a male genomic DNA sample. Any signals

detected below the limit of detection (3 copies/PCR for all 3

qPCR assays), as determined by the method in File S1, were

considered undetectable. Eight no template controls (water only)

were included in every PCR run.

Digital PCR assays for EGG dosage analysis
Since high analytical precision is required for chromosome

dosage analysis, this part of the study was performed by digital

PCR [33]. We performed digital PCR through the dilution of the

DNA sample to an average concentration of one template

molecule in every two reaction wells [34]. This diluted DNA

sample was then distributed to hundreds of reaction wells on a

384-well plate for PCR amplification of VAPA-APCDD1, ZFY and

b-actin DNA. Primer and probe sequences and reaction conditions

are listed in Tables S2 and S3. The actual number of template

molecules was calculated by the direct counting of the number of

positive wells followed by correction for the Poisson distribution

(File S1).

Statistical analysis
Statistical analyses were performed with the Sigma Stat v3.5

(Systat).

Results

Systematic identification of chromosome 18 loci
hypermethylated in the placenta by MeDIP and the
Epityper

We have embarked on studying DNA methylation levels of the

entire chromosome 18, which contains about 351,500 CpG sites in

74.7 million bases of non-repetitive DNA sequence [35]. Ten

DNA samples from 5 first-trimester euploid placentas and 5 first-

trimester maternal blood cell samples were subjected to MeDIP

and tiling array analysis. The array interrogated DNA methylation

level every 35 bases (average inter-probe distance) on essentially all

the non-repetitive DNA sequences of the entire chromosome.

Genomic loci with a signal log ratio between the placenta and

maternal blood cells of .0.4 in the TAS analysis or with a

P,1025 in the MAT analysis were considered as hypermethylated

in the placenta. We identified 3,043 CpG sites located in 178 loci

(68 and 110 loci from the TAS and MAT algorithms, respectively)

with higher DNA methylation levels in the placenta, relative to

maternal blood cells. We found that 140 loci (79%) were located

within genes and the remaining 38 loci (21%) were located in the

intergenic regions. The results from the TAS and MAT algorithms

are listed in Table S4 and Table S5, respectively. The data

discussed in this publication have been deposited in NCBI’s Gene

Expression Omnibus [36], and are accessible through GEO Series

accession number GSE22837.
Selecting for CpG sites with high DNA methylation levels

in the placenta. Quantitative DNA methylation levels at the

resolution of CpG sites are required for developing fetal epigenetic

markers in maternal plasma. For this purpose, we analyzed the

MeDIP-identified loci by quantitative DNA methylation assays,

the Epityper, which were less labor-intensive and time-consuming

than bisulfite sequencing, because it did not involve cloning and

sequencing [29,37]. Priority was given for 370 CpG units (located

Noninvasive Prenatal Detection of Edwards Syndrome
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in 26 loci) which were most efficiently analyzed by the Epityper

platform (Figure 1A). For each CpG unit, we compared the DNA

methylation levels of two first-trimester placentas, with two first-

trimester maternal blood cell samples (Figure 1B and Table S6).

To select CpG units potentially useful for developing fetal

epigenetic markers in maternal plasma, we identified CpG units

with a methylation index (MI) #0.20 in the maternal blood cells

(criterion #1), and with a difference in MI of $0.50 between the

placenta and maternal blood cells (criterion #2). These criteria

were adopted with slight modification from our previous study in

developing fetal markers in maternal plasma [22]. Among the 370

CpG units analyzed by the Epityper, 40 CpG units, located in 8

MeDIP-identified loci, fulfilled both criteria #1 and #2 (Table 1;

Figure 1B, highlighted as green bars). Three or more potentially

useful CpG units were found in each of 5 MeDIP-identified loci

(Table 1, top 5 loci). Thus, we further confirmed these

observations in more cases. The majority of the analyzed CpG

units in these 5 loci were confirmed to possess significantly higher

DNA methylation levels in 5 first-trimester placentas, relative to 5

first-trimester maternal blood cell samples (Figure 2; Table S7,

Mann-Whitney test, p,0.05).

Selecting for CpG sites with low inter-individual variation

in placental DNA methylation levels. We then assessed the

inter-individual variations of the MI of the 5 selected loci in 10

Figure 1. Quantitative DNA methylation levels by the Epityper. (A) Genomic locations of the loci (vertical bars) that were analyzed by the
Epityper. (B) Two tracks, each with 5 panels, are shown. First panel (from top). Bar graph of methylation indices (MI) in maternal blood cells (Y-axis)
against the chromosomal locations of the CpG units (X-axis, a categorical axis) within the indicated locus (a-z, fifth panel). Each bar represents one
CpG unit. The chromosomal locations and MI of each CpG unit are listed in Table S6. A CpG unit is potentially useful for marker development if it
fulfills criterion #1: MI in maternal blood cells #0.2 (lower than the dotted line, highlighted as green bars in the third panel). Second panel. Bar graph
of the differences in MI between the placenta and maternal blood cells (Y-axis) against the chromosomal locations of the CpG units (X-axis). A CpG
unit is most suitable for marker development if it further fulfills criterion #2: MI difference $0.5 (higher than the dotted line, highlighted as green
bars in the fourth panel).
doi:10.1371/journal.pone.0015069.g001
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first-trimester placental tissue samples. These 5 loci were

interrogated by 6 Epityper assays (Figure 3). For each CpG unit,

a coefficient of variation (CV = standard deviation (SD)/mean) of

the MI in 10 placentas was calculated (Figure 3 and Table S8).
For each Epityper assay, a median CV of all the CpG units within

the assay was also calculated. The 4 Epityper assays with the

lowest median CV were selected for further investigation (Figure 3,

first 4 assays).

These 4 Epityper assays were performed on 6 euploid and 6

trisomy 18 placental tissue samples. No significant difference

between the two groups were found in the methylation of any

CpG unit, suggesting that placental DNA methylation was not

altered by trisomy 18 (Mann-Whitney test, P.0.05; Table S9).

Selecting for CpG sites overlapping with methylation-

sensitive restriction enzyme sites. To select specific CpG

sites that would be most promising as a noninvasive fetal DNA

marker, we performed bisulfite sequencing on the 4 selected

regions. Consistent with the MeDIP and the Epityper data, most

of the sequenced CpG sites were predominately methylated in the

placenta and almost completely unmethylated in maternal blood

cells (Figures 4A and S1). We examined these CpG sites for any

overlapping sites recognized by two commonly used methylation-

sensitive restriction enzymes, HinP1I and HpaII. There were 5, 3, 1

and 1 such sites within 100 bp from the following regions:

MAT.18.0094.1 (VAPA-APCDD1 region 1), MAT.18.0094.2

(VAPA-APCDD1 region 2), MAT.18.0071.3 (B4GALT6), and

MAT.18.0097.2 (CTDP1), respectively (Figures 4B and S1,

upward arrows). Thus, MAT.18.0094.1 was selected for deve-

loping a fetal-specific assay in maternal plasma, because the

highest number of such sites would facilitate the most complete

removal of the unmethylated maternal DNA.

This MeDIP-identified region, MAT.18.0094.1, is an intergenic

region located 73 kb downstream of the VAPA gene and 421 kb

upstream of the APCDD1 gene (Figure 4A). Hence, we refer to this

locus as VAPA-APCDD1.

Detection and characterization of digestion-resistant
VAPA-APCDD1 DNA in maternal plasma

We designed a qPCR assay to target region 1 of VAPA-APCDD1.

Since the PCR primers flanked 5 methylation-sensitive HinP1I and

HpaII sites, only VAPA-APCDD1 molecules methylated in all 5

CpG sites would result in amplifiable qPCR signal (Figure 4B).

Thus, the concentration of digestion-resistant VAPA-APCDD1

DNA detected by this qPCR assay is reflective of the level of the

methylated DNA of this potential marker.

Concentrations of digestion-resistant VAPA-APCDD1 DNA

in first-, second-, and third-trimester maternal plas-

ma. Using the above qPCR assay, we quantified the VAPA-

APCDD1 DNA in HinP1I and HpaII-digested maternal plasma

samples obtained from the three trimesters. Digestion-resistant

VAPA-APCDD1 DNA was readily detected in 26 maternal plasma

samples (5/6 (83%) first-trimester, 8/10 (80%) second-trimester

and 10/10 (100%) third-trimester samples). The concentrations of

the digestion-resistant VAPA-APCDD1 DNA in the three trimesters

were statistically significantly different (Kruskal-Wallis ANOVA

test, P,0.001) (Figure 5A).

Correlation between digestion-resistant VAPA-APCDD1

DNA and an established fetal genetic marker in maternal

plasma. To determine if there was any correlation between the

concentrations of digestion-resistant VAPA-APCDD1 DNA and

those of the ZFY DNA, an established genetic marker for detecting

male fetal DNA in maternal plasma, we analyzed the maternal

plasma samples from 13 pregnant women bearing male fetuses in

the previous experiment. Digestion-resistant VAPA-APCDD1 and

ZFY concentrations were positively correlated (r = 0.91;

P,0.00001; Spearman correlation) (Figure 5B). Both assays were

optimized to run under identical PCR thermal profiles (Table S3)

and showed similar efficiencies as reflected by the slopes (23.77

and 23.53 for the VAPA-APCDD1 and the ZFY assays,

respectively) and y-intercepts (39.7 Cq and 38.9 Cq for the

VAPA-APCDD1 and the ZFY assays, respectively) of the two

calibration curves.

Postpartum clearance of digestion-resistant VAPA-

APCDD1 DNA in maternal plasma. To further investigate if

digestion-resistant VAPA-APCDD1 DNA in maternal plasma would

be cleared upon delivery of the fetus, we collected pre-delivery and

24-hour post-delivery maternal plasma samples from 10 other

pregnant women. In all 10 cases, the digestion-resistant VAPA-

APCDD1 DNA was rapidly cleared from maternal plasma to

almost undetectable levels (Figure 5C), demonstrating that its

existence in maternal plasma was fetal-specific. The plasma

concentrations of digestion-resistant VAPA-APCDD1 DNA before

and after delivery of the fetuses were statistically significantly

Table 1. MeDIP-identified loci with CpG sites useful for developing fetal epigenetic markers in maternal plasma.

Locus ID

Number of CpG
fulfilling criteria
#1 and #2

Chromosomal
location on
chr 18

Associated
gene symbol Associated gene

RefSeq accession
number, region

MAT.18.0094 19 10022563-10023955 VAPA-APCDD1 VAMP (vesicle-associated membrane protein)-
associated protein A, 33kDa, and Adenomatosis
polyposis coli down-regulated 1

NM_003574 and
NM_153000, inter-
genic region

MAT.18.0071 5 27485628-27487511 B4GALT6 Beta-1,4-galactosyltransferase 6 NM_004775, intron

MAT.18.0097 4 75542484-75543900 CTDP1 Carboxy-terminal domain, RNA polymerase II,
polypeptide A phosphatase, subunit 1

NM_004715, intron

MAT.18.0096 4 72292238-72293387 ZNF516 Zinc finger protein 516 NM_014643, intron

TAS.18.1887 3 72227405-72228513 ZNF516 Zinc finger protein 516 NM_014643, intron

TAS.18.0841 2 27486040-27487378 B4GALT6 Beta-1,4-galactosyltransferase 6 NM_004775, intron

MAT.18.0098 2 54075774-54077141 NEDD4L Neural precursor cell expressed, developmen
tally down-regulated 4-like

NC000018.9, intron

TAS.18.0675 1 19035725-19036654 CABLES1 Cdk5 and Abl enzyme substrate 1 NM_138375, intron

Genomic locations are defined according to the human genome database in the UCSC Genome Browser (March 2006 assembly, hg18). chr, chromosome.
doi:10.1371/journal.pone.0015069.t001
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Figure 2. DNA methylation levels by MeDIP and the Epityper on 5 promising loci for marker development. Left panels. The positions of
these 5 loci (dotted-line boxes) in relation to the associated genes, and their exons (blocks) and introns (lines) are shown. The genes are shown in the
direction of mRNA transcription from left to right. The bar graph below each gene shows the difference in the MeDIP-chip probe signals between the
placenta and maternal blood cells plotted against chromosomal location. Each vertical bar represents the signal from one probe. The average inter-
probe distance is 35 bp. A positive value implies a higher DNA methylation level in the placenta, compared with maternal blood cells. Horizontal lines
with arrows at both ends indicate the regions spanned by the Epityper assays (a–f). Right panels. The median DNA methylation indices (MI) of CpG
units within the Epityper assays are shown in a grey intensity scale. Asterisks indicate the CpG units with higher DNA methylation in five placentas
than five maternal blood cell samples (Mann-Whitney test, P,0.05). The chromosomal locations and MI of each CpG unit are listed in Table S7.
doi:10.1371/journal.pone.0015069.g002
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different (Wilcoxon signed-rank test, P = 0.002). As a control for

successful DNA extraction, we quantified the total DNA amount

by the VAPA-APCDD1 DNA qPCR assay, and detected DNA in all

pre-delivery and post-delivery maternal plasma samples before

enzyme digestion. As a control for complete enzyme digestion, a

qPCR assay was designed to target a region on the b-actin gene,

which was known to be completely unmethylated (MI = 0.00) in

both the placenta and maternal blood cells (Figures 4B and S2),

and no signals were detected in any of the HinP1I- and HpaII-

digested maternal plasma samples. The lower limits of detection of

the b-actin and VAPA-APCDD1 qPCR assays were both 3 copies

per reaction, as determined by the methods in File S1.

Epigenetic-genetic (EGG) dosage analysis of fetal
chromosome 18 in maternal plasma by digestion-
resistant VAPA-APCDD1 DNA

Digital PCR assays for the VAPA-APCDD1, ZFY and b-

actin DNA. To detect the relatively small (,1.5-fold) increase in

the dosage of chromosome 18 in trisomy 18, the digital PCR

platform, which featured a higher precision than conventional

qPCR, was used. These digital PCR assays were first validated in

HinP1I and HpaII-digested plasma samples collected from 5

pregnant women before and after delivery, and 4 non-pregnant

females. By these digital PCR assays, digestion-resistant VAPA-

APCDD1 DNA and ZFY DNA were detected in pre-delivery

maternal plasma samples, but were almost undetectable in post-

delivery maternal plasma and non-pregnant female plasma

samples (Table S10). b-actin DNA was not detected in all 3

groups of digested samples (Table S11).

EGG dosage analysis of chromosome 18 in the

placenta. Since the placenta is the main source of fetal DNA

in maternal plasma, we tested EGG analysis in the placenta before

attempting it in maternal plasma. Digital PCR assays for VAPA-

APCDD1 and ZFY DNA were performed on HinP1I- and HpaII-

digested DNA samples extracted from placental tissues of five

trisomy 18 and five euploid male fetuses. The ratio of digestion-

resistant VAPA-APCDD1 to ZFY was calculated for each sample.

These ratios were significantly higher in the trisomy 18 placentas

than the euploid placentas (Mann-Whitney test, P = 0.029; Figure

S3). A reference interval, defined as the mean ratio digestion-

resistant VAPA-APCDD1 to ZFY 61.96 SD, was calculated from

the euploid placentas as 1.20–1.66. The ratios in all of the trisomy

18 placenta were above the upper reference limit (Figure S3).

EGG dosage analysis of fetal chromosome 18 in maternal

plasma. Since the digestion-resistant VAPA-APCDD1 DNA and

ZFY DNA are fetal-specific in maternal plasma, we reasoned that

EGG dosage analysis of the fetus or the placenta could also be

performed in maternal plasma. Maternal plasma samples were

collected from 27 women with euploid male fetuses, and 9 women

with trisomy 18 male fetuses. The median gestational ages at

sample collection were 14.1 weeks (IQR, 12.9–16.6) and 13.3

weeks (IQR 12.9–14.5) among the euploid and trisomy 18 fetuses,

respectively. The HinP1I- and HpaII-digested plasma samples were

subjected to digital PCR assays for VAPA-APCDD1 and ZFY DNA

(Figure S4). To facilitate a fair comparison, we diluted each plasma

sample to a comparable average template concentration (m) of ZFY

(reference) molecules per reaction well. The median m values were

0.08 and 0.05 per reaction well for the euploid and trisomy

samples, respectively. The ratio of digestion-resistant VAPA-

APCDD1 to ZFY was calculated for each sample. The ratios of

digestion-resistant VAPA-APCDD1 to ZFY were significantly higher

in maternal plasma samples of trisomy 18 fetuses than those of

euploid fetuses (Mann-Whitney test, P,0.001) (Figure 6). A

reference interval of 0.34–3.04 was calculated for the 27 maternal

plasma samples from euploid pregnancies. The ratio of one

euploid sample fell outside the reference interval. The ratios of 8

out of 9 trisomy 18 samples were above the upper reference limit.

b-actin DNA was essentially undetectable by the digital PCR

assay in all of the 36 digested maternal plasma DNA samples,

implying that complete digestion had occurred. Ten cases were

selected for comparing the detectable concentrations of b-actin

DNA before and after digestion. b-actin DNA was detectable in all

the maternal plasma samples before, but not after, digestion

(Figure S5).

Discussion

Using MeDIP-chip analysis, the Epityper and bisulfite sequenc-

ing, we have systematically identified methylated fetal epigenetic

markers on chromosome 18. We have also demonstrated that one

such marker, namely the digestion-resistant VAPA-APCDD1 DNA,

was readily detectable in maternal plasma during pregnancy, but

rapidly cleared to almost undetectable levels upon delivery of the

fetus. Further characterization has shown that the concentrations

of this novel marker in maternal plasma were positively correlated

with those of an established fetal genetic marker.

Since these data have suggested that this digestion-resistant

VAPA-APCDD1 DNA was predominantly derived from the fetus in

maternal plasma, we further applied it for the EGG dosage analysis

of fetal chromosome 18 in maternal plasma. We have determined

the ratio of digestion-resistant VAPA-APCDD1 to ZFY in maternal

plasma samples involving 9 trisomy 18 male fetuses, and 27 euploid

male fetuses. A reference interval of this ratio calculated from the

euploid samples was calculated. We then observed the ratios of 8

trisomy 18 fetuses, and only 1 euploid fetus was higher than the

Figure 3. Inter-individual variation of placental methylation levels in promising regions for marker development. For each CpG unit,
the coefficients of variation (CV) of the MI in 10 euploid first-trimester placentas are plotted. For each region, the median CV of all CpG units is shown.
doi:10.1371/journal.pone.0015069.g003
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upper reference limit. Hence using the upper reference limit as a

threshold, all except one trisomy 18 fetuses was detected (i.e. 1 false

negative), and only one euploid was also detected (i.e. 1 false

positive). The sensitivity and specificity were 88.9% and 96.3%,

respectively, for this EGG analysis in maternal plasma.

Of note, in this EGG analysis, we have quantified the reference

chromosome by a fetal genetic marker, i.e. the ZFY DNA, instead

of a fetal epigenetic marker, e.g. the hypermethylated RASSF1A

[17]. This is because we have previously shown that the dosage

analysis had greater power in distinguishing the trisomic from the

Figure 4. DNA methylation levels by bisulfite sequencing in the most promising locus for marker development. (A) Top panel. The
genomic location of one promising locus in relation to two associated genes. The locations of two other promising loci are shown in Figure S1. Middle
panel. Two regions, which were identified by MeDIP as possessing higher methylation in the placenta relative to maternal blood cells, was analyzed
by bisulfite sequencing. See Figure 2 for the legend on the bar graph for MeDIP. Bottom panel. Single-base DNA methylation levels determined by
bisulfite sequencing. For each sample, 8 randomly-picked clones (rows) were scored for each CpG site (column). Filled circles, methylated CpG sites.
Empty circles, unmethylated CpG sites. Upward arrows, cutting sites of the methylation-sensitive restriction enzymes HpaII and HinP1I. (B) Design of
qPCR and digital PCR assays for region 1 of VAPA-APCDD1 (5 cutting sites), ZFY (0 cutting sites), and b-actin DNA (4 cutting sites). Block arrows, PCR
primers. Rectangle, hydrolysis probe.
doi:10.1371/journal.pone.0015069.g004
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Figure 5. Characteristics of digestion-resistant VAPA-APCDD1 DNA in maternal plasma. (A) Box plot of the concentrations of this fetal
epigenetic marker in the first-, second- and third-trimester pre-delivery maternal plasma. The line inside each box denotes the median. Limits of the
box denote the 25th and 75th percentiles. Whiskers denote the 10th and 90th percentiles. Filled circles denote the outliers. The results of the Kruskal-
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euploid cases, if the reference chromosome was quantified by a

fetal genetic marker instead of a fetal epigenetic marker [11]. For

fetal epigenetic markers, there are small degrees of heterogeneity

in the DNA methylation levels between samples. If we determined

the relative ratio between an epigenetic marker on the aneuploid

chromosome and another epigenetic marker on a reference

chromosome, the combined variance caused by the heterogeneous

DNA methylation levels in both epigenetic markers would be

large. The resultant inter-individual variation in the chromosome

dosage ratio would be too large to discriminate trisomy from

euploid cases. Thus, it is preferable to quantify the reference

chromosome by a fetal genetic marker.

Of a similar concern, to minimize the inter-individual variability

in the DNA methylation level of the fetal epigenetic marker used

for quantifying the potentially aneuploid fetal chromosome 18, we

have studied how the DNA methylation levels of each CpG unit

varied across different individuals by the Epityper. Among the six

potential markers, the median of the inter-individual CVs was

observed to vary from 8% to 38% (Fig. 3). The data suggested that

the development of fetal epigenetic markers by MeDIP-based

study should be followed up by quantitative DNA methylation

studies at single CpG resolution. Otherwise, a low degree of inter-

individual variation, which is important for developing quantita-

tive applications such as the assays for the EGG analysis, could not

be guaranteed by the MeDIP-based study alone.

Additionally, our data have suggested that not every CpG site in

the MeDIP-identified regions could fulfill the stringent criteria for

developing fetal epigenetic marker in maternal plasma. Some CpG

sites might possess undesirably high levels of DNA methylation in

the maternal blood cells (Figure 1B, not fulfilling criterion #1),

thus preventing the removal of the maternal DNA sequence in

maternal plasma. On the other hand, some CpG sites might not

have high enough DNA methylation levels in the placenta relative

to maternal blood cells, thus preventing the specific detection of

the fetal DNA sequence in maternal plasma (Figure 1B, not

fulfilling criterion #2). Thus, the quantitative DNA methylation

data provided by the Epityper for each CpG unit within the

MeDIP-identified regions were indispensable for developing fetal

epigenetic markers (Figure 3). The Epityper data have facilitated

us to select for a suitable epigenetic signature, with marked

difference between the placenta and maternal blood cells and with

the least inter-individual variation, to target the fetal chromosome

18 in maternal plasma for the EGG analysis.

In this study, we performed the EGG analysis only in

pregnancies involving male fetuses because a precise digital PCR

assay targeting the Y-chromosome, namely the ZFY DNA assay, is

well established in our laboratory [5]. However, we envision that

this type of EGG analysis can be adopted for pregnancies

involving female fetuses, because any fetal DNA sequence,

including an autosomal sequence, that is inherited only from the

father, and is located on a chromosome unaffected by the

concerned trisomy, can serve as a fetal genetic marker for

quantifying the reference chromosome. Through the latter

approach, EGG analysis can be performed for both female and

male fetuses.

In this study, we demonstrated the feasibility of applying the

EGG approach for the noninvasive prenatal detection of fetal

trisomy 18. The diagnostic accuracy of the test requires further

evaluation in a larger cohort. Nevertheless, we are the first to use a

bisulfite-independent approach to detect a methylated epigenetic

marker for fetal chromosome 18 in first-trimester maternal plasma,

and to use this approach to achieve the noninvasive detection of

Figure 6. Comparison of chromosome dosage in DNA samples from euploid and trisomy 18 maternal plasma. For each sample, the
ratio of digestion resistant VAPA-APCDD1 DNA (chr18) and ZFY DNA (chrY) is plotted. The reference interval of the euploid ratios was calculated as
0.34–3.04 (bound by the dotted lines).
doi:10.1371/journal.pone.0015069.g006

Wallis ANOVA test showed that there are significant differences among the three trimesters (P,0.001). The P-values of the pairwise comparisons with
significant differences are shown (Dunn’s test). (B) Concentrations of the epigenetic (Y-axis) and genetic (X-axis) markers in 13 maternal plasma
samples (Spearman rank order correlation test, P,0.00001, R = 0.91). (C) The concentrations of this marker in 10 pairs of pre-delivery and post-delivery
maternal plasma (Wilcoxon Signed-rank test, P = 0.002). Corresponding plasma samples from the same pregnant women are connected by a line.
doi:10.1371/journal.pone.0015069.g005
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fetal trisomy 18 in early gestation. Compared with tests based on

massively parallel genomic sequencing, the approach described here

might represent a lower ‘barrier for entry’ by many laboratories

interested in noninvasive prenatal diagnosis, as the equipment and

bioinformatics support requirements are much lower [38].

Supporting Information

Figure S1 DNA methylation levels by bisulfite sequenc-
ing in two promising loci for developing fetal epigenetic
markers. Data on each locus are shown in two panels, each of

which contains 3 sub-panels. Top sub-panel. The genomic location

of the promising locus in relation to the associated gene. Middle

sub-panel. The locus, which was identified by MeDIP as possessing

higher methylation in the placenta relative to maternal blood cells,

was analyzed by bisulfite sequencing. See Figure 2 for the legend

on the bar graph for MeDIP. Bottom sub-panel. Single-base DNA

methylation levels by bisulfite sequencing. For each sample, 8

randomly-picked clones (rows) were scored for each CpG site

(column). Filled circles, methylated CpG sites. Empty circles,

unmethylated CpG sites. Upward arrows, cutting sites of the

methylation-sensitive restriction enzymes HpaII and HinP1I.

(TIFF)

Figure S2 DNA methylation levels by bisulfite sequenc-
ing in the b-actin gene. For each sample, 8 randomly-picked

clones (rows) were scored for each CpG site (column). Filled

circles, methylated CpG sites. Empty circles, unmethylated CpG

sites. Upward arrows, cutting sites of the methylation-sensitive

restriction enzymes HpaII and HinP1I.

(TIFF)

Figure S3 Comparison of chromosome dosage in DNA
samples from euploid and trisomy 18 placental tissues.
For each sample, the ratio of digestion-resistant VAPA-APCDD1

DNA (chr18) and ZFY DNA (chrY) is plotted. The reference

interval of the euploid ratios was calculated as 1.20–1.66 (bound

by the dotted lines).

(TIFF)

Figure S4 Workflow of the EGG chromosome dosage
analysis of maternal plasma samples. Methylation-sensitive

restriction enzymes, HinP1I and HpaII. VAPA-APCDD1/ZFY

assay, a duplex digital PCR assay.

(TIFF)

Figure S5 Concentrations of b-actin DNA in EGG-
analyzed plasma samples before and after enzyme
digestion. b-actin DNA was essentially undetectable by the

digital PCR assay in any of the 36 EGG-analyzed plasma samples

after digestion. Further analysis of ten maternal plasma samples (8

euploid and 2 trisomy 18 cases) before digestion was also

performed by this digital PCR assay. Data of these 10 paired

samples are shown.

(TIFF)

Table S1 PCR primer sequences of the Epityper assays and

bisulfite sequencing.

(XLS)

Table S2 Sequences of PCR primers and hydrolysis probes for

qPCR and digital PCR assays.

(XLS)

Table S3 Reaction conditions for qPCR and digital PCR assays.

(XLS)

Table S4 Hypermethylated regions (68 loci) in the placenta

identified by the TAS algorithm.

(XLS)

Table S5 Hypermethylated regions (110 loci) in the placenta

identified by the MAT algorithm.

(XLS)

Table S6 DNA methylation levels in 370 CpG units by the

Epityper.

(XLS)

Table S7 DNA methylation levels of selected loci in 5 placentas

and 5 maternal blood cells.

(XLS)

Table S8 DNA methylation levels of selected loci in 10

placentas.

(XLS)

Table S9 DNA methylation levels of selected loci in 6 trisomy 18

and 6 euploid placentas.

(XLS)

Table S10 Digital PCR for fetal epigenetic and genetic markers

in 3 types of plasma samples.

(XLS)

Table S11 Digital PCR results for b-actin in HinP1I and HpaII-

digested plasma samples.

(XLS)
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