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Summary

Vitamin D (VD3) has been linked to immunological processes, and its

supplementation may have a role in treatment or prevention of diseases

with underlying autoimmune or pro-inflammatory states. As initiators of

the immune responses, dendritic cells (DC) are a potential target of VD3

to dampen autoimmunity and inflammation, but the role of DC in VD3-

mediated immunomodulation in vivo is not understood. In addition to

being targets of VD3, DC can provide a local source of bioactive VD3 for

regulation of T-cell responses. Here we review existing studies that

describe the tolerogenic potential of VD3 on DC, and discuss them in the

context of current understanding of DC development and function. We

speculate on mechanisms that might account for the potent but poorly

understood tolerogenic activities of VD3 and the role of DC as both tar-

gets and sources of this hormone.
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Dendritic cells (DC) orchestrate the immune response by

integrating and balancing environmental signals. They

assess imminent danger to the host, and then initiate,

direct, amplify or limit subsequent adaptive immune

reactions.1 Historically, DC have been described as motile

cells within tissues that present antigen to T cells. To

detect invading microorganisms or viral infections, DC

sense molecular patterns that are associated with patho-

gens or danger, such as bacterial cell-wall-derived

lipopolysaccharides, necrotic cell particles or extracellular

nucleotides.2 Significantly, DC can also monitor host or

commensal metabolism and dietary components, includ-

ing short-chain fatty acids and vitamin derivatives.3

Vitamins are organic compounds that are usually

obtained from the diet and are crucial to physiological

processes.4 The steroid vitamins, vitamin A (VitA) and

vitamin D3 (cholecalciferol, here abbreviated as VD3) are

precursors to host nuclear hormone receptor ligands that

regulate transcription. Both VitA and VD3 and their defi-

ciencies have a tremendous impact on the immune

system.5 Vitamin A is solely derived from nutritional

sources, recirculates in the intestinal environment via bile

and significantly shapes intestinal mucosal immune and

barrier functions.5–7 The source, distribution and specific

immunomodulating effects of VD3 are less well under-

stood. In addition to nutritional uptake of cholecalciferol,

precursors can also be formed in superficial skin layers

when UVB irradiation and spontaneous isomerization

non-enzymatically convert 7-dehydro-cholesterol to

VD3.8 However, VD3 does not efficiently bind the intra-

cellular receptor vitamin D receptor (VDR). Rather, cyto-

chrome P oxidase Cyp27a1 converts it to 25-OH-VD3

which is then further metabolized by Cyp27b1 to 1,25-

OH-VD3 (calcitriol), the VD3 derivative with the highest

ability to activate transcriptional activity through the

canonical VDR. Classical studies have shown that

Cyp27a1 is highly expressed in liver, where much of 25-

OH-VD3, the primary circulating form of the vitamin, is

generated. Proximal renal tubular cells are a major site of

Cyp27b1, generating the active metabolite. However,
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recent studies show that these enzymes are also present in

various other tissues and cell types, including DC (dis-

cussed below), allowing local environmental regulation of

1,25-OH-VD3 levels and responses in the immune sys-

tem. In spite of the generation of VD3 from sun exposed

skin, VD3 bioavailability may be insufficient as the result

of habits of sun avoidance or protection and concomi-

tantly insufficient nutritional uptake. An estimated 40–
100% of US or European elderly and 1 billion people

worldwide do not have sufficient VD3 levels.8 Although

severe complications of childhood VD3 deficiency, most

notably rickets, are rarely seen nowadays in countries

with western lifestyle, the epidemiological associations of

autoimmune diseases with VD3 insufficiency point to the

importance of a mechanistic understanding of the inter-

actions of the immune system and VD3.8,9 Clinical trials

are currently ongoing, designed to critically evaluate the

efficacy of VD3 supplementation in multiple sclerosis

(NCT01490502) and Crohn’s disease (NCT02208310).

The primary function of DC, to initiate and refine

adaptive immune responses, positions them as potential

therapeutic tools in diseases with skewed or missing

T-cell and B-cell responses. As such, DC therapy has suc-

cessfully entered the clinic for cancers,10 where cytotoxic

T cells are primed by DC differentiated from easily avail-

able circulating CD14+ blood monocytes by ex vivo incu-

bation with the tumour antigen PAP fused to

granulocyte–macrophage colony-stimulating factor (GM-

CSF). Similarly, the feasibility of DC-based immunomod-

ulation is being explored in the setting of autoimmune

diseases, where detrimental immune reactions damage

host tissue.11 Clearly, a tolerogenic approach that limited

or aborted T-cell or B-cell responses to self antigens

would represent a significant advance in the treatment or

prevention of autoimmune disease. Here we consider the

physiology and potential therapeutic application of VD3

in the context of the tolerogenic programmes and func-

tions of DC.

Insights from culture models of DC generation
from monocytes

Vitamin D3 has long been proposed as programming DC

for tolerance, dampening their ability to activate effector

T-cell generation, while enhancing their potential to

induce anti-inflammatory regulatory T (Treg) cells. This

concept, extensively reviewed,3,5,12–18 arose from studies

of GM-CSF-driven differentiation of human blood

CD14+ monocytes into motile cells with dendrites

(moDC), capable of presenting antigen on MHC class II

(MHCII).19 The properties of these in-vitro-generated

moDC were substantially altered when 1,25-OH-VD3 was

included during their differentiation: VD3-‘tolerized’

moDC were less effective in their induction of T-cell pro-

liferation,20 but rather induced Treg cells that promoted

transplant tolerance.21,22 MoDC generated in the presence

of 1,25-OH-VD3 were less capable of producing inter-

leukin-12 (IL-12) p70,23 but rather secreted IL-10.14,24

These cells also possess decreased densities of the co-sti-

mulatory molecules CD80 and CD86 and of the antigen-

presenting MHCII complex.20,23 Hence, with all three

pillars of T-cell activation being hampered by 1,25-OH-

VD3 modulation of moDC development, its potential as

a tolerance-inducing agent for DC therapy, and as a ther-

apeutic immune modulator against diseases with underly-

ing inappropriate or overwhelming inflammation, was

recognized.11,18

VD3 in metabolic imprinting of DC

In addition to its effects on cytokine and co-stimulatory

molecule expression, VD3 alters the metabolic profile of

developing moDC. Maturation and activation of DC is a

thermodynamically challenging process, where fatty acid

synthesis provides crucial components of endoplasmic

reticulum and Golgi organelles, and increased energy is

necessary for migration and plasticity.25 To meet these

needs, glycolysis breaks down glucose for ATP generation.

The resulting pyruvate can be metabolized to acetyl-CoA

and subsequently used for fatty acid genesis, or it can fuel

the tricarboxylic acid cycle to create CO2 and proton

donors. The latter then drive the respiratory chain to cre-

ate ATP, a process called oxidative phosphorylation of

glucose. However, energy can also be generated without

an obligatory need for oxygen through anaerobic glycoly-

sis and consequential excretion of glucose-derived lactate,

useful particularly in relatively anaerobic (hypoxic) envi-

ronments, as in sites of tissue damage. Rapidly growing

tumour cells also show this method of glucose break-

down, but independently of the presence or absence oxy-

gen – then termed aerobic glycolysis, or the Warburg

effect.26 The decisive triggers to induce oxidation-inde-

pendent Warburg metabolism, and its benefits for a single

cell or the organism are still not completely understood.26

Generally, the anabolic needs to synthesize biomolecules

during activation, cell division or expansion are sup-

ported by Warburg metabolism, converting glucose into

carbon donors for fatty acid synthesis or pentose for

nucleotide synthesis. At the same time, anabolic use of

carbon or excretion of lactate rather than oxidative phos-

phorylation helps to avoid a build up of glycolysis

metabolites. This Warburg metabolic pathway has there-

fore been proposed as a general anabolic principle of acti-

vated and proliferating cells, while glucose breakdown

through oxidative phosphorylation is a characteristic of

differentiated or resting cells – not only for tumours, but

also in normal tissue and the immune system.26,27 Indeed,

in murine GM-CSF-DC (see below), Toll-like receptor

stimulation promotes increased anabolic glycolysis rather

than oxidative phosphorylation, which is crucial for DC
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activation, survival and function in the face of increased

membrane-forming demands due to secretory processes

or migration.28–31 However, when 1,25-OH-VD3 is given

to human monocytes undergoing GM-CSF differentiation

to create tolerogenic DC (as outlined above), an early

transcriptional programme is started that engages oxida-

tive phosphorylation.32–34 By sustaining oxidative phos-

phorylation as a mode of glucose breakdown, the

metabolic pattern used by quiescent cells, VD3 may sup-

port or favour immune quiescence and tolerance. This

metabolic effect of VD3 could help to explain the associa-

tion of VD3 deficiency with autoimmune syndromes, and

the potentially beneficial effects of VD3 supplementation.

Additional studies will be required to further elucidate

the specific mechanisms and consequences of metabolism

control by VD3.

Potential relevance of culture models to
inflammatory (monocyte-derived) DC in vivo

A potential problem with these seminal studies is that

moDC may not be representative of DC in vivo. The artifi-

cial culture conditions used to generate them from blood-

derived CD14+ monocytes clearly lack many or most fac-

tors (cellular and soluble) that their precursors would expe-

rience in vivo. The moDC are perhaps most similar to

human CD14+or mouse CX3CR1intermediate Ly6Chigh

monocyte-derived inflammatory DC35 that differentiate

from blood-circulating monocytes in target tissues.36

Although these represent a minor subset of DC in vivo in

most settings, they may be important targets of VD3

immunoregulation. Notably, steady-state intestinal lamina

propria leucocytes also contain a population of CD11b+/

Sirpa+ CD103– MHCII+ ‘DC’ that originate from mono-

cytes,37 possibly differentiated in the low-grade and

restricted inflammatory setting of the lamina propria (in-

duced by the constant sensing of luminal bacteria).

CD11b+/Sirpa+ CD103– DC were increased in frequency in

human small intestinal lamina propria with gross findings

of inflammation, and these DC showed transcriptional sig-

natures consistant with monocyte derivation as well.38 In

experimental autoimmune encephalomyelitis (a murine

multiple sclerosis model), central nervous system-infiltrat-

ing CCR2+ monocytes differentiate into pathogenic moDC

under the influence of endogenous GM-CSF and produce

IL-1b to recruit further effector cells initiating and fuelling

T-cell-mediated pathology. Specific deletion of the GM-

CSF receptor on these monocytes, but not on DC, dimin-

ished disease severity.39 Multiple sclerosis is associated with

VD3 deficiency; its murine model experimental autoim-

mune encephalomyelitis, and possibly also multiple sclero-

sis itself, is ameliorated by VD3 supplementation.40,41

Hence, we speculate that, paralleling the in vitro studies of

moDC outlined above, high VD3 conditions in vivo may

redirect monocyte differentiation into tolerogenic versus

inflammatory DC and contribute to the potential therapeu-

tic effects of such supplementation. It will be important to

characterize moDC, generated under VD3-deficient versus

VD3-sufficient settings in vivo, to validate this hypothesis.

VD3 and DC precursor (pre-DC) derived DC in the
mouse

Recent studies refined our understanding about DC biol-

ogy, in particular by dissecting the exact ontogeny of sub-

sets that derive from specialized classical DC precursors

(pre-cDC), such as cross-presenting classical DC 1

(cDC1) or CD4 T-cell-stimulating cDC2. Such DC are

phenotypically and ontogenically distinct from monocyte-

derived, redifferentiated in vivo moDC that originate

from the committed monocyte progenitor36,42,43 (Fig. 1).

The great majority of ‘professional’ DC in vivo derive

from bone marrow pre-DC.1 In this regard, studies

addressing the effects of VD3 on murine DC have mostly

cultured whole bone marrow with GM-CSF or GM-

SCF + IL-4 to generate CD11c+ cells (GM-CSF-DC). In

such systems, CD11c+ MHCII+ progeny (fulfilling classi-

cal DC definitions) comprise a significant portion of

MHCIIintermediate cells having a phenotypic, developmental

and transcriptional profile reminiscent of macrophages

(‘GM-Mac’). The MHC-IIhigh ‘GM-DC’ are indeed bona

fide DC, depend on interferon regulatory factor 4, are

probably derived from pre-cDC and efficiently present

antigen to CD4 T cells.44–46 Using this differentiation

protocol, a framework similar to that for human moDC

was developed where murine DC are rendered tolerogenic

by 1,25-OH-VD3 during differentiation. These cells

secrete fewer pro-inflammatory cytokines, express lower

levels of co-stimulatory molecules, and propagate Treg

cell conversion and effector T-cell hyporesponsiveness.47

According to microarray analyses, the above-mentioned

MHC-IIhigh ‘GM-DC’ but not MHCIIintermediate ‘GM-

Mac’ express VDR,44 so they are probably the subpopula-

tion described as 1,25-OH-D3-responsive. However, as

for human moDC, murine GM-DC have no exact in vivo

counterpart. They show transcriptional hallmarks only

partly overlapping with in vivo migratory DC, and are

clearly distinct from in vivo lymph-node-resident or sple-

nic DC.46

Hence, the recently improved understanding of DC

biology raises questions of whether or not the effects seen

in human moDC and in murine in-vitro-differentiated

GM-CSF-DC truly reflect the biology of tissue-resident

DC. The latter still receive multiple input signals from

their microenvironment (such as Wnt proteins48) that

can shape their capacity to stimulate T cells, and which

are often absent or present at non-physiological levels in

in vitro settings. Indeed, the VitA derivative retinoic acid

(RA) has a crucial role in DC differentiation: not only

does it induce the formation of intestine-homing pre-
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mucosal DC (pre-lDC) in the bone marrow,49 but it also

shapes further differentiation and function in target tis-

sues through its receptor RAR.6,50–53 In contrast, a similar

role of VD3 and VDR in this context is not known. VD3,

Cyp27b1 or VDR deficiencies have a myriad of effects on

immune cells and other compartments, such as an

impaired intestinal epithelial barrier,54 altered calcium

homeostasis55 and constant low-grade inflammation with

Bone marrow

HSC

GMP

MDP

cMoP

Ex vivo culture with GM-CSF (mu) or GM-CSF + IL-4 (hu)

cDC2

cDC1

RA,
tissue-
derived
factors,
VD3?CDP

(huCD14+)
Mono

(huCD14+)
Mono

Mono-DC

pre-cDC

pre-µDC

pre-cDC

pre-µDC

pre-cDC

RA

pre-µDC

Blood Tissue

Effector
mono

Tissue
resident

mac

HumanMurine

Figure 1. Overview of monocyte- and dendritic cell (DC) precursor-dendritic DC differentiation in vitro and in vivo. Haematopoeitic stem cell-

derived granulocyte–monocyte precursors (GMP) give rise to monocyte-and-DC precursors (MDP), after which developmental pathways segre-

gate into a DC lineage with common DC precursors (CDP) and into a monocytic lineage with common monocyte precursors (cMoP). CDP-

derived precursors exhibit early specialization to gut-tropic mucosal DC precursors (pre-lDC), regulated by retinoic acid (RA)6,49 and classical

DC precursors (pre-cDC), and within the latter into cDC1 or cDC2 lineages in the bone marrow.80 Pre-cDC and pre-lDC then circulate through

blood and home to tissues where they complete their differentiation under tissue-specific influences.1,6,38,49 The cMoP differentiate to human

CD14+/mouse Ly6C+ monocytes and circulate through blood. Upon migration to tissues, they can fulfil various microenvironmentally specific

functions.36 Green boxes delineate populations used for GM-colony-stimulating factor (GM-CSF)-dependent differentiation protocols in most

studies addressing DC–vitamin D3 (VD3) interactions.
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elevated IL-6,56 which makes studies of DC biology in

these mice problematic due to secondary effects. Future

studies with novel genetic tools, single-cell-based, or sin-

gle-population-based analyses and corresponding bioin-

formatics should help to clarify the

cell-specific influence of VD3 on DC in vivo, with possi-

ble implications for patients. Specifically, they will have

to determine: which DC in vivo are targeted by 1,25-OH-

VD3, and at which developmental state; what their ensu-

ing immune functions are; and how dietary supplemented

or sun-induced VD3 participates.

VD3-programmed DC for immune therapy

Although in vivo counterparts that mirror the VD3-

dependent effects observed in cultured DC remain to

be described, in-vitro-generated moDC are clearly cap-

able of manipulating adaptive immune responses and

are being used in the clinic.10,57 Hence, the transfer of

in-vitro-differentiated, VD3-primed DC bears potential

to alter autoinflammatory diseases.58,59 Protocols to dif-

ferentiate moDC use purification of CD14+ blood cells,

and most likely omit dedicated DC precursors, which

circulate in human peripheral blood in low numbers.

These blood-borne pre-DC can be induced to differen-

tiate into bona fide DC ex vivo.60,61 For future DC-

based immunotherapy, it will be of interest to compare

the tolerogenic potential of preDC-derived DC and

monocyte-derived DC generated ex vivo with or with-

out VD3. Still, general mechanisms of adoptive DC

therapy need to be addressed further, as tolerogenic

DC may be harmful when broadly impairing immuno-

surveillance during malignancies or infection,62 or when

presenting loaded antigens in a pro-inflammatory set-

ting.

DC as a source of 1,25-OH-VD3 for T cell
programming

In addition to its potential to skew DC development,

VD3 directly modulates T-cell responses. The presence of

1,25-OH-VD3 during T-cell activation inhibits their pro-

liferation, favours Treg cell development, and alters traf-

ficking receptor expression.63–65 However, circulating

levels of 1,25-OH-VD3 in vivo are too low to mediate

these effects,8,66 and 25-OH-VD3, the major circulating

form of the vitamin, does not itself activate VDR-depen-

dent transcription. Hence, 1,25-OH-VD3 must be gener-

ated locally to effect T-cell programming, and DC can

fulfil this function: both in-vitro-derived human moDC

and subsets of in vivo DC can generate and present the

hormone to T cells.67 At the level of gene expression, all

physiological in vivo subsets of mouse DC, including plas-

macytoid DC, and both cDC1 and cDC2 express the 25-

hydroxylase Cyp27a1 (Immgen database, http://www.

immgen.org/). In contrast, none of the analysed mouse

DC subsets expressed Cyp27b1 above a threshold level of

detection (Immgen). However, other studies have

reported the expression and metabolic activity of

Cyp27b1 in human moDC that subsequently influences

T-cell activity, although the degree to which DC can pro-

duce 1,25-OH-VD3 in vitro varies with their activation

and differentiation status.23,67–69 Similarly to macro-

phages, direct stimulation of human and mouse GM-

CSF-DC with pathogen-associated molecular pattern or

pro-inflammatory cytokines triggers Cyp27b1 expression,

as does T-cell contact, especially in a pro-inflammatory

cytokine milieu.23,69–71 Moreover, DC isolated from skin-

draining afferent lymph of sheep have also been shown to

metabolize VD3 to 1,25-OH-VD3.67 Interestingly, human

T cells also express Cyp27b1 upon activation and so can

carry out the final VD3 conversion step on their own.67

Hence, when Cyp27b1 is not expressed by DC, activated

T cells and DC together can still convert VD3 to 1,25-

OH-VD3 through cross-cellular metabolism, a process

that has been demonstrated experimentally in IL-12-sti-

mulated co-cultures of human moDC and naive periph-

eral blood T cells.67

In differentiating moDC, 25-OH-VD3 at concentrations

similar to those in serum (10–100 nM) is sufficient for

DC generation of 1,25-OH-VD3 and autocrine imprinting

of a tolerogenic phenotype (i.e. T-cell hyporesponsiveness

induction or metabolic switches),23,32 but these serum 25-

OH-VD3 levels are too low for the autocrine/paracrine

induction of CCR10 on T cells in moDC : T-cell co-cul-

tures67 (Fig. 2). We speculate that local concentrations

above those present in circulation are induced in skin

and draining lymph by UVB irradiation and confine epi-

dermotropism in T cells through expression of CCR10, a

chemoattractant receptor for the keratinocyte-expressed

chemokine CCL28 while suppressing gut-homing proper-

ties (integrin a4b7 and CCR9 expression).67 In contrast,

tolerogenic imprinting of DC might be a broader, not

skin-specific mechanism of immunomodulation. If the

hormone were presented in a targeted fashion at the

immunological synapse, its action could be limited to

responding T cells. Local diffusion could affect nearby

bystander cells such as stromal fibroblasts or endothelial

cells. Such paracrine secretion would therefore influence

the tissue-specific properties of immune instruction. Per-

haps skin-draining DC, which can synthesize 1,25-OH-

VD3 from D3,67 also transport VD3 after sun exposure,

creating a characteristic environment in skin-draining

lymph nodes. This may provide a mechanism to direct

skin-homing T cells to the epidermis in response to sun-

induced damage, where VD3 is high due to UVB-induced

conversion of 7-dehydro-cholesterol and subsequent iso-

merization. Indeed, in the parallel VitA/RA system, DC

draining the intestine are thought not only to express RA

synthetic capability, but also to transport RA or its
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precursors for processing and presentation in the draining

mesenteric lymph node.5,66,72

1,25-OH-VD3 can be locally inactivated by Cyp24a1-

mediated hydroxylation to a metabolite without

VDR-dependent transcriptional activity. In this way, 1,25-

OH-VD3-induced autocrine Cyp24a1 induction can form

a negative feedback loop of local VD3 activity in vivo.

Although differential Cyp24a1 levels have been reported

for in-vitro-differentiated moDC versus macrophages,68

the relevance of this loop is unclear for the control of

immune cell trafficking. Future studies will be required to

elucidate potential region-specific T-cell trafficking pat-

terns induced by VD3 generation and degradation, similar

to those outlined for VitA/RA and gut trafficking in

recent years.

VD3 influences the migratory patterns of DC

Vaccination has proven to be the most successful dis-

ease-preventing medical intervention. Although discov-

ered centuries ago, the exact mechanisms responsible

for an induction of competent T-cell and B-cell

responses have been subject to continuous debate. Gen-

erally, a major pitfall is the poor induction of cross-

compartment specific immune responses, specifically the

protection of mucosal surfaces (a main entry site for

many pathogens) after subcutaneous or intramuscular

vaccinations. In contrast, oral or intranasal application

together with cholera toxin induces potent mucosal

protection, but toxicity limits its clinical use. 1,25-OH-

VD3, when co-administered subcutaneously with the

adjuvant alum has been shown to overcome this limita-

tion in a murine model, initiating an intestinal and

pulmonary IgA response after subcutaneous vaccina-

tion.73 One hypothesis for these observations is an

altered migratory pattern of DC originating at the site

of vaccination. Bone-marrow-derived GM-CSF-DC that

were matured (after

GM-CSF differentiation) with lipopolysaccharide and

concomitant 1,25-OH-VD3 showed an altered migratory

pattern when injected subcutaneously.74 Whereas con-

trol DC readily migrated to the draining lymph node,

their CCR7 expression sequesters them at sites of

CCL19/21 production in the first lymph node they

encounter, where they then fulfil their bona fide role of

presenting antigen. In contrast, maturation in the pres-

ence of 1,25-OH-VD3 rapidly but transiently decreased

the surface CCR7 expression of GM-CSF-DC, allowing

them to migrate beyond this initial encounter to non-

draining lymph nodes and Peyer’s patches through a

transient up-regulation of intestinal-targeting integrin

a4b7 and associated with expression of the intestinal

cDC2 markers CD103 and DCIR2/Clec4a4.74,75 Notably,

such altered trafficking patterns were also observed for

endogenous tissue-resident DC following subcutaneous

injection of fluorescent microspheres and concomitant

1,25-OH-VD3 injection.74 These migrated DC then ful-

filled their T-cell instructing role in the respective sites:

while activated T cells specific for the vaccinating anti-

gen were only found in draining lymph nodes in the

absence of 1,25-OH-VD3 co-vaccination, 1,25-OH-VD3

co-vaccination resulted in DC-instructed antigen-specific

T cells in both draining and non-draining lymph nodes

as well as in Peyer’s patches.74 In related studies of a

human skin explant model, intradermally injected 1,25-

OH-VD3 increased the migration of dermal CD14+

DC, a monocyte-derived DC population,76 while

repressing the T-cell stimulatory capacities of total

migrating DC.77 Hence, the presence of 1,25-OH-VD3

during DC activation shapes their migratory capacity

upon antigen uptake, and potentially modulates the

scope of their induced T-cell responses not with respect

to antigen specificity, but rather to T-cell skewing and

trafficking potential. 1,25-OH-VD3 regulation of DC

migratory properties during antigen responses may

therefore represent an additional mechanism for regula-

tion of immune responses by local VD3 metabolism.

Similarly to UVB-induced VD3 conversion in skin,

intestinal infection, epithelial barrier breach and inflam-

mation might induce local Cyp27b1 in lamina propria

DC or macrophages, which could result in conversion

of dietary or systemic VD3 metabolites and act on

intestinal DC during their activation. In this scenario,

VDR signalling in DC could compete with VitA effects.

Indeed, the canonical nuclear receptors for VD3 and

RA, VDR and RARa, often counteract each other’s sig-

nalling, potentially through competition for their com-

mon heterodimeric partner, RXR. Such competition has

been documented for T cells: RA induction of integrin

a4b7-mediated and CCR9-mediated intestinal T-cell

Figure 2. Calcitriol (1,25-OH-VD3) and dendritic cell (DC) function during different stages of immune activation. Upper panel, left: 1,25-OH-

VD3 acting on granulocyte–macrophage colony-stimulating factor (GM-CSF) -differentiating precursors renders DC ‘tolerogenic’ by inhibiting

T-cell stimulation pillars, especially after DC maturation (e.g. performed with tumour necrosis factor-a or lipopolysaccharide). Also, profound

metabolic patterns are induced to promote oxidative phosphorylation and reduce fatty acid synthesis. Middle: 1,25-OH-VD3 during DC matura-

tion alters trafficking receptor profiles to redirect migration (see text). Right: Maturation induces DC-intrinsic up-regulation of Cyp27b1. Para-

crine DC-derived 1,25-OH-VD3 serves as a fourth pillar of DC : T-cell interaction and promotes regulatory T-cell generation, inhibits effector

T-cell proliferation and imprints trafficking patterns in instructed T cells. Autocrine 1,25-OH-VD3 possibly has effects on DC themselves as well.

Lower panel: range of concentrations of VD3 and metabolites in blood and epidermis in vivo and required for immune effects in vitro.
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homing is antagonized by 1,25-OH-VD3 in vitro.67

However, VD3 can also cooperate with RA to induce

VitA metabolizing enzymes in human (but not mouse)

intestine-derived or blood-derived DC subsets,78 whereas

it suppresses them in mouse GM-CSF-DC.79 Hence, the

interplay of vitamins A and D and their role in shap-

ing immune responses still requires further investiga-

tion; it is likely to be context-, cell-type- and species-

dependent.

In conclusion, seminal studies show that DC can

metabolize VD3 for programming of T cells, and suggest

that 1,25-OH-VD3 also interacts directly with DC to

influence their migration and their capacity to instruct T

cells and hence to initiate, fine tune or dampen immune

reactions. However, our understanding of the complexity

of both VD3 and DC biology has grown considerably in

recent years, and additional studies are required to

address the role of DC–VD3 interactions in the poten-

tially beneficial effects of VD3 supplementation reported

in some autoimmune and inflammatory diseases. Under-

standing the diverse mechanisms of VD3 action will be

crucial for the appropriate application of VD3 supple-

mentation for therapy or prophylaxis that might evolve

from currently ongoing clinical trials in autoimmune

disease.
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