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a b s t r a c t

Metabolic engineering efforts toward rewiring metabolism of cells to produce new compounds often
require the utilization of non-native enzymatic machinery that is capable of producing a broad range of
chemical functionalities. Polyketides encompass one of the largest classes of chemically diverse natural
products. With thousands of known polyketides, modular polyketide synthases (PKSs) share a particu-
larly attractive biosynthetic logic for generating chemical diversity. The engineering of modular PKSs
could open access to the deliberate production of both existing and novel compounds. In this review, we
discuss PKS engineering efforts applied at both the protein and cellular level for the generation of a
diverse range of chemical structures, and we examine future applications of PKSs in the production of
medicines, fuels and other industrially relevant chemicals.
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1. Introduction

Polyketides are one of the largest classes of natural products,
possessing immense structural diversity and complex chemical
architectures. Many polyketides (PKs) are among the most impor-
tant secondary metabolites for their applications in medicine,
agriculture, and industry. Examples include anticancer drugs
(epothilone) [1,2], antibiotics (erythromycin) [3], insecticides (spi-
nosyn A) [4] and antifungals (amphotericin B) [5]. These particular
examples of polyketides are biosynthesized by multimodular
enzyme complexes known as type I modular polyketide synthases
(PKSs). Working in an assembly-line fashion, multimodular PKSs
assemble and tailor readily available acyl-CoAs within the host cell
into large, complex, chiral molecules [6]. Each of these PKSs com-
prises a series of modules that can be further dissected into a series
of domains responsible for the extension of the polyketide back-
bone through condensation and selective reductive processing of
an acyl-CoA building block. The collinear architecture of these
modules, apparent by inspection of the domains present and the
predictive selectivity motifs harbored within, provide insights into
the chemical connectivity and stereochemical configuration of the
polyketide metabolite from analysis of its coding sequence.

One of the best-studied PKSs is the 6-deoxyerythronolide syn-
thase (DEBS) (Fig. 1A), which is responsible for synthesizing the
macrolactone core of the antibiotic, erythromycin [7]. The catalytic
domains of DEBS are expressed within modules that are each
responsible for a single round of chain elongation and reductive
processing. To this end, the loading acyltransferase (AT) domain
loads the acyl carrier protein (ACP) with a starter unit derived from
propionyl-CoA (Fig. 1A). The ketosynthase (KS) within each module
catalyzes decarboxylative carbon-carbon bond formation between
an acyl precursor and the ACP-bound methylmalonyl derivative.
Unlike fatty acid synthases (FASs), the occurrence of reductive do-
mains within modules varies, and PKS intermediates typically
exhibit various levels of reduction. If present, the ketoreductase
(KR) converts the b-ketone to an alcohol using NADPH. The dehy-
dratase (DH) eliminates the alcohol to form an olefin, and the
enoylreductase (ER) utilizes NADPH to reduce the olefin to a
methylene. Finally, a thioesterase (TE) domain, located at the ter-
minal of DEBS 3 module, catalyzes the release and cyclization to
produce the macrolactone, 6-deoxyerythronolide (6-dEB). The
structure and mechanism of each PKS domain is reviewed in detail
elsewhere [8e12].

With this collinear biosynthetic logic in mind, engineered PKSs
have the potential to become an effective retrobiosynthetic plat-
form to produce molecules that are difficult or too complex to ac-
quire via traditional synthetic means (Fig. 1BeC). From DNA
sequence, one could control chemical structure by successfully
modifying and rearranging existing polyketide modules and do-
mains [13,14]. Moreover, rationally-designed PKSs could be intro-
duced into a variety of engineered hosts [15e17] capable of
expressing these large PKS complexes while providing the
necessary precursor metabolites to biosynthesize a target chemical.
In this review, we highlight PKS engineering efforts at both the
protein level and the host/cellular level. We further aim to describe
PKS engineering efforts within the context of metabolic engineer-
ing, and introduce the idea of successful PKS/host modifications for
both traditional medicinal applications as well as the production of
fuels and commodity chemicals.
2. PKS protein engineering

The ability to tailor the molecular architecture of polyketide
metabolites through the inclusion of various reductive domains
and/or domains with altered selectivity has long been the promise
of PKSs as a retrobiosynthetic platform. In this section, we discuss
the current knowledge of PKS engineering at the protein level. We
have divided the PKS protein engineering section into sections
based on domain type. Within the types of domains, we have
selected the most engineerable targets. We will not focus on KS or
ACP domain engineering in this review, as they are arguably the
least targetable domains based on the chemistry and functions they
perform, respectively. In addition, methyltransferase domains,
which transfer an S-adenosyl-methionine-derived methyl group to
the a-carbon of the b-keto intermediate, are somewhat rare and
less well characterized, and thus will not be discussed here. In each
section, we will first give a basic overview of the current state of
knowledge regarding the specific domain(s) in question. Next, we
will highlight some significant accomplishments in engineering,
both via site-directed mutagenesis and/or domain swapping ex-
periments. Because of the extensive amount of published PKS
research, we cannot include all examples of PKS engineering within
the scope of this review. Nevertheless, numerous representative
examples are highlighted.
2.1. Loading modules

Nature has evolved several mechanisms for activating acyl
substrates to initiate PK biosynthesis. To begin chain formation,
modular type I PKSs employ a loading module (LM) to select the
priming unit. LMs are categorized based on their domain archi-
tecture and the mechanism by which each activates substrates to
begin chain formation. Although LMs are not officially character-
ized within the field, for simplicity within this review we will refer
to each class of LMs with a representative letter (e.g. “type A” or “A-
type”) so as not to confuse the reader with the type I, II, or III PKS
designations used to describe the entire assembly line systems.

The most common LM organization consists of a condensation-
incompetent KSQ (named for the active site C/ Q mutation), AT,
and ACP domain (Type A LM) [18,19]. In type A LMs, the KSQ de-
carboxylates malonyl- or methylmalonyl-CoA to yield acetyl- or
propionyl starter units, respectively (Figs. 2 and 3) [20]. The AT
domains of these modules are strictly specific for CoA esters of
dicarboxylic acids (malonyl- or methylmalonyl-CoA) [20] and share



Fig. 1. Biosynthesis of 6-deoxyerythronolide and examples of both native and engineered polyketide synthases. A) Modular biosynthesis of 6-deoxyerythronolide by the well-
studied 6-deoxyerythronolide polyketide synthase. B) The carboxylic acid starter unit promiscuity by the borrelidin PKS was utilized to produce adipic acid (C) from succinic acid
and malonic acid using an engineered BorA2 containing a full reductive loop (highlighted in green circle) and a thioesterase. B) The broad starter unit selectivity of the lipomycin
PKS was utilized to produce 3-hydroxyacid congeners from branched acids and methylmalonyl-CoA (C). The carbon backbone for both the native and engineered polyketides are
represented in bold. Grey domains represent the native pathway and blue domains represent engineered insertions.
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a conserved arginine residuewith extender AT domains that is used
to stabilize the free carboxyl moiety of the substrate [18]. Type B
LMs prime polyketide biosynthesis with a much broader range of
substrates (Figs. 2 and 3), and their domain organization consists of
an AT and ACP didomain. The AT domain selects a CoA-bound
priming unit and transfers it to its cognate ACP where it is poised
for transfer to the KS of the first extension module. Because type B
LM ATs are not limited to utilizing b-carboxy-CoA starters, they
tend to recognize a more diverse set of starter units derived from
other acyl-CoAs. For example, the B-type avermectin LM natively
primes with either 2-methylbutyryl-CoA or isobutyryl-CoA, and it
can also accept a large number of other substrates [21]. Similarly,
while the related lipomycin LM primes biosynthesis with
isobutyryl-CoA in vivo, in vitro it also loads a variety of other
branched fatty acyl-CoAs (Fig. 1BeC) [22]. Nevertheless, type B
domain architecture does not always imply promiscuity. Another B-
type LM from the borrelidin PKS is selective for dicarboxylic acid
starter units both in vivo [23] and in vitro (Fig. 1BeC) [24]. The final
common organization (type C) of LMs consists of a CoA-Ligase-type
(CoL) domain located upstream of an ACP, which activates a



Fig. 2. Summary of polyketide synthase engineering strategies highlighted in this review. Starter unit selectivity and incorporation is mediated by either native or non-native
swapped LMs. Intermolecular linker regions allow for successful communications between domains. Chemical diversity is further increased by varying the extender building blocks.
AT mutagenesis or AT swaps mediate incorporation of various extender units into a polyketide intermediate. Various degrees of reduction at the b-keto position can be accom-
plished by KR mutagenesis, KR swaps and/or the insertion of full or partially full reductive loops, containing DH and ER domains. Release of the polyketide intermediate is mediated
by various releasing domains, which further increase chemical diversity into the final product.

Fig. 3. Examples of loading modules. In type A LMs, the KSQ decarboxylates malonyl-
or methylmalonyl-CoA to yield acetyl- or propionyl starter units, respectively. Type B
LMs consist of an AT that selects a CoA-bound priming unit and transfers it to its
cognate ACP. Type C LMs consists of a CoL domain located upstream of an ACP. The CoL
activates a carboxylic acid substrate in an ATP-dependent fashion in order to load it
onto the ACP, either in cis or in trans. It is also common to find other accessory domains
within type C LMs, between the CoL and ACP domain (represented by the black line
between the cis CoL and ACP).
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carboxylic acid substrate in an ATP-dependent fashion so that it can
then be loaded onto the ACP (Figs. 2 and 3). While some LMs have
the CoL domain in cis (e.g. rifamycin [25], rapamycin [26]), others
have a separately encoded CoL domain that activates the ACP of the
loading domain in trans in a mechanistically similar fashion (e.g.
aureothin [27], and several mycobacterial polyketide synthases
[28]). It is also common to find other accessory domains within
type C LMs, such as the enoylreductase domains observed in FK506
and rapamycin biosynthesis [26,29].

The inherent promiscuity of certain loading modules and the
wide variety of potential starter units make the initial precursor
loading process an attractive protein engineering target. To date,
most LM engineering efforts have focused on swapping LMs with
type A or type B architectures that incorporate short fatty acyl
groups into polyketides. Possibly the first LM swap successfully
placed the tylosin LM (type A) into the platenolide (type A LM)
biosynthetic pathway, resulting in the production of 16-methyl
platenolide derived from propionyl-CoA (methylmalonyl-
derived) instead of the native acetyl-CoA (malonyl-derived) starter
unit [30]. In a similar experiment, Leadlay and coworkers
exchanged the native 6-deoxyerythronolide LM (type B) for the
avermectin LM (type B), increasing the diversity of erythromycins
produced in vivo [31]. Both of these early examples demonstrated
the feasibility of swapping loading modules with consistent
domain architectures.

Mixed LM type swaps have also been explored. By replacing the
type B LM of DEBS M1þTE with the type A LMs from the olean-
domycin or tylosin pathways, production of triketide lactones
(TKLs) derived from almost exclusively acetate- or propionate-
derived starter units, respectively, was achieved [20]. Under the
same conditions, the native type B DEBS LM architecture lends itself
to broader starter unit selectivity, resulting in the production of
both types of TKLs [32]. Therefore, by changing LM type, greater
starter unit fidelity was achieved. In addition, an AT swap of the
oleandomycin (type A LM) loading AT with the extending AT from
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the second rapamycin module (rapAT2, also conferring malonyl-
CoA specificity) resulted in production of C13-methyl erythromy-
cins [20]. A similar AT swap into the nystatin LM nysA (type A)
resulted in the restoration of nystatin production in a nysA
knockout strain of S. noursei, albeit at much lower titers than the
native system. In addition, swapping in a methylmalonyl-CoA-
specific AT domain resulted in no production of the nystatin
analog, perhaps due to the innate specificity of the downstream
nysB module or the nysA KSQ domain [33]. These swaps illustrate
the potential to exercise tighter control over starter units incor-
porated into polyketides that normally begin with type B LMs in
order to engineer systems to precisely control the metabolites
produced.

LM swaps involving type C LMs could provide mechanisms for
introducing even greater diversity into polyketides than type B LMs
based on the range of starter units the type C LMs accept.
Dihydroxycyclohexene-carboxoyl-CoA [34], benzoyl-CoA [35], and
3-amino-5-hydroxybenzyl-CoA [25] are just a few of the starter
units incorporated via this type of LM. Attempts to switch the type
C LM of the rimocidin PKS protein (RimA) with the type A LM from
the nystatin PKS (NysA) showed that while RimA could initiate
nystatin biosynthesis in the native S. noursei producer, nysA could
not rescue rimocidin biosynthesis in a rimA knockout strain of
S. diastaticus. In addition, RimA natively accepts both acetate and
butyrate starter units, but only acetate units could be incorporated
into the nystatin skeleton, suggesting that the downstream nys PKS
is gatekeeping [36]. However, a swap of the non-canonical sor-
aphen LM SorA (ACP-KS-AT-AT architecture) into DEBS1þTE pro-
duced a small amount of the expected benzoyl-CoA-derived TKL
[37]. In addition, a swap of the first SorA AT domain into the
DEBS LM also resulted in the production of a TKL incorporating
benzoyl-CoA. These experiments illustrate that more exotic LM
swaps, including type C LM swaps and domain swaps within LMs,
may be tolerated by modular PKSs. However, incorporation of non-
native starter units via noncognate LMs could require additional
engineering of the downstream modules of the polyketide syn-
thase, as they might not accept or act on unusual or bulky func-
tionalities [38].

Currently, there is no flawless method for LM engineering to
incorporate nonnative starter units into polyketides. The most
common approach involves swapping a full LM (that selects for a
desired starter) in place of the native LM. This has been met with
limited success, and a more detailed understanding of where bot-
tlenecks arise is needed before LM swaps can become a more
common practice. Because LMs can occur in cis or in trans, the
native protein-protein interactions that occur within each type of
system should be considered. It might be best to retain the native
intermodular linker for in cis LMs, and in the sameway, LMs used to
complement in trans may be more successful if domains are engi-
neered with C-terminal linker domains from the native system
(Fig. 2). Other possibilities for retaining native protein-protein in-
teractions include performing AT swaps within LMs instead of
swapping full modules. We hypothesize that more conservative
swaps (in terms of chemical structure) will be more successful
because of the gatekeeping functions of the downstream PKS
modules. Interactions between the LM ACP and the first KS of the
downstream extension module should also be considered, as
improper protein-protein interactions will prevent chain trans-
location to the first extension module. However, until a more
detailed and systematic study of LM swaps is published, the
importance of each of these factors for each unique system is un-
known. Therefore, with the current state of knowledge, each LM
engineering attempt should be optimized individually and should
be attempted with multiple domain boundaries in order to find the
most productive system.
2.2. AT domains

The acyltransferase domain is responsible for selecting the CoA-
based starter and/or extender units that form the majority of the
carbon backbone of the growing polyketide. AT domains are
attractive engineering targets for several reasons. First, we can
easily predict the substrate specificity of most AT domains based on
conserved residues. Secondly, AT domains are the primary sources
of diversification at the a-carbon, a diversity that extends beyond
the extent of the various oxidations states of the b-keto groups to
include other heteroatoms, halogens, and unique functionalities
that are otherwise unachievable via traditional polyketide chem-
istry [39e44]. Finally, AT domains are frequently more promiscu-
ous in comparison to other PKS domains [39,45,46], making
precursor-directed mutagenesis viable. For these reasons, AT do-
mains are the most well-studied of all PKS domains in terms of
engineering via site-directed mutagenesis, domain swapping, and
other host-level techniques (vide infra).

While nature uses numerous diverse extender units to form
PKSs, most known ATs select for either malonyl- or methylmalonyl-
CoA [47]. Well before the first KS-AT didomains structures were
solved for DEBS M3 [48] and M5 [49], consensus sequences were
identified within the AT domain that correspond to malonyl-
(HAFH) or methylmalonyl-CoA (YASH) specificity [50]. With
structural information in hand, identification of active site residues
for targeted mutagenesis became much easier. Later on, more
diverse extender units were identified, revealing other specificity
motifs in the associated AT domains. The AT from module 3 of the
epothilone cluster, for example, accepts both malonyl- and
methylmalonyl-CoA and contains a “HASH” motif [51], while the
allylmalonyl-CoA-specific AT from module 4 of the FK506 cluster
has a “CPTH”motif at the same location [52]. Several other ATs with
unique specificity-conferring residues at this position have also
been discovered and their cognate extender units identified,
significantly expanding the chemistries accessible via PKS-
mediated biosynthesis [47,53]. Nevertheless, simply mutating
these residues to the appropriate specificity motif does not neces-
sarily confer specificity to the desired extender unit. Mutation of
the of the methylmalonyl-specific “YASH” motif to “HAFH” in DEBS
AT1 [46], AT4, and AT6 [54] increased promiscuity, allowing the
domains to accept and transfer both malonyl- and methylmalonyl-
CoA. However, later in vitro investigations demonstrated that these
modules had greatly reduced activity [55]. Mutations outside the
active site can also lead tomore promiscuous AT domains, although
a greater amount of retention of native substrate specificity is
frequently observed [54,56,57]. These types of mutations can even
abolish the transacylation activity of the domain altogether [52].
Evidence suggests that the specificity conferred by these conserved
residues could be overcome if nonnative extender unit concentra-
tions are high enough relative to the native extender [58].

The incorporation of rare extender units can also be achieved by
targeting other residues with site-directed mutagenesis (Fig. 2). For
example, mutating an active site valine to an alanine in DEBS AT6
created a more promiscuous enzyme that was able to incorporate
various nonnative extender units such as propargylmalonyl-,
allylmalonyl-, and ethylmalonyl-CoA into the erythromycin back-
bone [57]. More recent work has revealed that targeted active site
mutagenesis screens can be more effective at producing ATs that
are more specific for nonnative extenders than the native substrate.
Williams and coworkers showed that DEBS AT6 could be converted
to a propargylmalonyl-CoA-specific domain by screening a library
of active site mutants and identifying a Y / R mutation that
changes the native specificity [44]. Combined with exogenous
feeding of precursors (vide infra), AT mutagenesis screens could be
used to create diverse libraries of polyketides from just one
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engineered PKS.
AT swapping is also commonly undertaken as a method for

constructing hybrid modules capable of producing new polyketides
with novel a-carbon substituents (Fig. 2). Traditionally, AT swaps
were constructed via restriction enzyme-based cloning, thus
relying on conserved restriction sites flanking the AT domain. One
of the first attempts at a full AT swap was performed by Leadlay and
coworkers inwhich the native AT domain fromDEBS1-TE (malonyl-
CoA specific) was replaced with the AT domain from module 2 of
the rapamycin synthase (methylmalonyl-CoA specific) [59]. The
hybrid protein was able to produce TKLs exclusively derived from
methylmalonyl-CoA with little to no effect on yield, highlighting
the significant potential of the technique for producing novel
polyketides.

Katz and coworkers showed that, when placed in the context of
a full modular PKS system, AT domain exchanges are not as efficient
as the native system [40]. Swaps of malonyl-CoA-specific ATs from
the pikromycin and rapamycin PKSs into DEBS modules 1 and 2, in
particular swaps into the second module, resulted in significantly
lower titers of the expected erythromycin derivatives [41e43]. In a
similar study, a swap of the second rapamycin AT into module 6 of
DEBS was capable of producing 25 mg/L of the appropriate 6-
deoxyerythronolide B analogs, suggesting that the efficiency of
AT-swapped modules may be affected by the position of the
module within the larger context of the assembly line [60]. How-
ever, a successful swap of the ethylmalonyl-CoA-specific AT domain
from niddamycin in module 4 of DEBS, suggested that other factors
may be at play [61]. A functional rapamycin AT2 swap into DEBS
module 4 finally illustrated that the domain boundaries for AT
swaps (and any domain swap) may need to be optimized for each
unique acceptor module-AT pairing [62]. Several other examples of
AT domain exchanges emerged, each reporting extremely low titers
due to the engineered nature of the systems at hand [63,64]. DEBS
module 4 was the last module in the model system to be success-
fully engineered in this manner by varying the domain boundaries
used, suggesting that modules with full reductive loops may
necessitate different AT swap domain boundaries because of the
architectural difference due to the domains and linkers that sur-
round the AT.

The mixed success observed with AT swaps led to the pursuit of
a more fundamental understanding of the mechanisms of catalysis
in native versus engineered AT systems. To this end, Khosla and
coworkers systematically characterized the bottlenecks hindering
successful AT swaps [43]. By analyzing the kinetics of AT acylation
and KS-mediated condensation in native and engineered systems,
they concluded that condensation in the hybrid modules occurred
at a rate over ten times slower than the native system. In addition,
limited proteolysis experiments and the poor expression of the
engineered proteins suggested that the AT swapped mutants are
inherently less stable and adopt a different protein conformation.
AT domain swaps may minimize or interfere with the important
protein-protein contacts required for condensation. Swapped do-
mains may disturb the orientation of stabilizing residues [65] with
respect to hydrogen bonding partners that help maintain the
dimeric structure of the PKS or prevent the proper interaction of
the ACP domain with the KS-AT linker [66]. Most recently, Keasling
and coworkers performed a detailed kinetic analysis of AT-swapped
modules utilizing different domain boundaries and showed that
the optimized boundaries could be applied to construct functional
swaps of various heterologous AT domains [67]. We hypothesize
that more comprehensive biochemical and structural studies of AT
domain swapswill reveal a less ambiguous set of design rules for AT
replacements.

A final method for AT domain engineering involves the
complementation of inactivated cis-AT PKSs with trans-acting
domains. Although this review does not focus on engineering trans-
AT PKS systems, we will note that the freestanding AT domains
from these PKSs can successfully communicate with cis-AT PKS
modules [39]. In trans-AT PKSs, the acyltransferase domain is not
incorporated into the same polypeptide as the remaining catalytic
domains of a typical PKS module. Instead, a freestanding trans-AT
typically transfers extender units to multiple ACP partners. The
utilization of trans-ATs to generate polyketide diversity in place of
the activity of a native domain has been demonstrated in several
contexts. Typically, an AT null (AT0) mutant is generated by con-
verting the conserved active site serine to an alanine, destroying
the active site nucleophile responsible for initial attack of the
extender unit thioester. Khosla and coworkers originally showed
that trans-AT domains such as DszsAT from the disorazole PKS
system could be used to complement an AT0 version of DEBS1
in vitro [39]. It was later found that the DszsAT could also be used to
produce fluorinated polyketides through the transfer of
fluoromalonyl-CoA to several different AT-deficient modules of
DEBS, both in vitro and in vivo [68]. This technique has since been
further extended to a bimodular system in which DszsAT was able
to communicate with multiple ACPs at once, transferring
fluoromalonyl-CoA to AT0 versions of DEBS module 2 and 3 to
produce a difluorinated TKL [69]. Other trans-AT domains, such as
the KirCII AT, have successfully been used to install propargyl and
allyl groups into polyketides, albeit so far only within the native
kirromycin PKS system [45].

AT domain engineering has been extensively studied, yet similar
to LMs, no consensus set of engineering rules exist. It is well
established that mutation of the active site serine in a conserved
“GHSxG” motif to alanine abolishes domain activity. Changing
domain specificity with point mutations has also been successful,
but rational engineering in this case is still unpredictable. We
believe that techniques such as saturation mutagenesis of active
site residues can be successful but could require large screens of
many mutants. AT domain swapping is currently also a viable
method for changing a-carbon substituents. Based on recent ex-
periments, it appears that screening and optimization of various
swaps has yielded a potential set of widely applicable domain swap
boundaries for ATs [67]. It remains to be seen, however, if this
method will be generalizable to all type I PKS systems given the
potential for disrupted protein-protein interactions and gate-
keeping from downstream processing. In the case of protein-
protein interactions, protein stability and folding likely plays a
crucial role in expressing active soluble chimeric PKSs. It remains to
be seen whether domain swapping or site-directed mutagenesis
will prove themore productive ATengineeringmethod in a general.
However, we anticipate that the continued improvement in DNA
synthesis and sequencing technologies will facilitate more large-
scale systematic experiments that result in the improved activ-
ities of engineered enzymes.

2.3. KR domains

Ketoreductases perform the NADPH-mediated reduction of
newly-formed b-keto groups after condensation. They are both
stereospecific and stereoselective, and they are also known to
epimerize a-substituents (if present) prior to reduction [70,71]. KRs
are characterized based on their stereochemical outcomes: A-type
KRs generate L-configured alcohols and B-type KRs D-configured
(Fig. 4). KRs are further described based on the final orientation of
any a-substituents. A1 and B1 KRs produce D-configured a-sub-
stituents, and A2/B2, L-configured [8]. Finally, C-type KRs are
reductase-incompetent but can retain epimerase activity [72].
Structures are available for each type of KR: A1 [73], A2 [71], B1 [74],
B2 [75], and C2 [76].



Fig. 4. Reducing domain(s) product outcomes. Potential stereochemical outcomes of each combination of b-carbon processing domains within a PKS module.
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A- and B-type KRs can be distinguished not only by function, but
also through the presence of certain structural elements. The
presence of an “LDD” motif ~57 residues before the catalytic tyro-
sine indicates a B-type KR (although frequently only the final “D” of
this motif is strictly conserved) whereas it is absent in A-type KRs.
Additionally, A-type KRs typically contain a tryptophan eight resi-
dues before the catalytic tyrosine. Structural insight has guided
mutagenesis efforts, leading to the generation of A2-type [71] and
nonstereospecific A-type KRs [73] derived from A1-type KRs.
Additionally, a B2-type KR was converted to an A2-type through a
single point mutant [77]. Not only can KR specificity be modified
through site-directed mutagenesis, but activity can be completely
abolished as well. Mutation of the catalytic tyrosine of the DEBS
module 6 KR lead to production of the expected ketone, illustrating
that KR inactivation is a way to generate new polyketides [78].

In addition to site-directed methods for engineering KR do-
mains, numerous experiments have illustrated the viability of full
KR domain swaps to modulate the stereochemistry and oxidation
state of a given polyketide. Preliminary experiments were per-
formed in the model DEBS system. A swap of the inactive KR
domain frommodule 3 into module 2 resulted in the production of
a TKL with a keto group in place of the alcohol generated by the
native system [79]. This preliminary result showed that the sur-
rounding domains function in the presence of a non-cognate KR
partner. Complete removal of KR domains and replacement with an
AT-ACP linker, on the other hand, has produced completely inactive
mutants [80]. As the generation of loss-of-function mutants can
easily be achieved via site-directed mutagenesis, it is the preferable
method for KR inactivation because it allows for the retention of
native protein-protein interactions and folding. Construction of KR-
swapped PKSs with novel functions have also been reported. Suc-
cessful gain-of-function KR swaps were implemented in a three
module DEBS system in which KR domains from the rapamycin
modules 2 or 4 were swapped into DEBS module 2, producing TKLs
with non-native hydroxyl stereochemistry [81]. In a similar set of
experiments, researchers from the same group showed that KR
swaps could also be performed by replacing the KR in DEBSmodule
2 with KR5 and KR6 of DEBS [82]. Interestingly, KR6 was
nonfunctional in this context. Further applying these KR swap
design principles, Ashley and coworkers subsequently used KR-
swapped DEBS modules to produce various derivatives of 6-
deoxyerythronolide B in vivo, albeit with significant titer losses
compared to the wild type system [80].

More recent efforts have focused on applying KR swaps to tailor
the stereochemistry of both hydroxy groups and the adjacent a-
methyl groups. Weissman and coworkers evaluated 14 total A2 and
B2-type KR swaps into module 2 of DEBS1þTE using different swap
sites [83]. Interestingly, there were obvious differences in activity of
swaps performed using the various junctions. In addition, the A-
type KR swaps weremore functional than B-type swaps, suggesting
that domain replacements that retain the native KR type might be
more successful (DEBS module 2 contains an A1-type KR). Finally,
all of the KR domains were sourced from modules with KS-AT-KR-
ACP domain organization, so swaps of KR domains with neigh-
boring reductive domains may need to be optimized separately. A
subsequent study also corroborated the results from the work by
Weissman and coworkers. Only A-type KR domain exchanges into a
lipomycin PKS derivative (LipPKS1þTE), natively containing an A2-
type KR, were active whereas all attempts to swap in B-type KRs
produced PKSs incapable of reduction [84]. By comparing KR swaps
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of domains that contain or lack the newly-discovered KR dimer-
ization element (DE), Keasling and coworkers also found that
retaining the DE from the acceptor module almost always produced
PKSs competent at performing condensation. Retaining the DE
producedmutants withmuch higher activity than previous reports,
suggesting that more systematic analyses of the structural impli-
cations of domain swaps might improve the activity of hybrid PKSs.

A few trends emerge when comparing the various strategies for
altering the stereochemical outcome conferred by the KR domain.
An aspect that appears to be generally consistent between studies
with small molecule substrates, mutagenesis, and domain swaps is
that KRs that reduce longer substrates (presumably possessing
larger binding pockets) tend to be either less active on smaller
substrates, or tend to generate predominantly the energetically
favored A2 product. This was observed in studies by Keatinge-Clay
and coworkers, wherein small N-acetylcysteamine (SNAC) mimics
were treated with a panel of various type I KRs [71]. This is also
consistent with the work of Keasling and coworkers, where DEBS
KR6 (the KR from the terminal module) was shown to retain the
least amount of selectivity among the KRþDEs swapped [84]. The
notion that expanding the binding pocket affects stereochemical
outcomewas further corroborated by the work of Keatinge-Clay via
enlarging active site through point mutations [77]. This observation
has implications for choice of donor KRs to exchange in KR swap-
ping experiments. If the donor KR does not natively reduce a sub-
strate of similar size to the target small molecule, it is unlikely to
retain stereochemical fidelity, thus impacting the processing of
downstream b-carbon processing domains (Fig. 4).

2.4. DH and ER domains

Dehydratase domains are responsible for installing the majority
of alkenes in polyketides. Dehydration proceeds via the syn-
coplanar elimination of water and is therefore sensitive to the
stereochemical configuration of the substrate [85]. Thus, DH do-
mains are tied to the KR domains that precede them. Most DHs
follow B-type KRs and catalyze trans-olefin formation (Fig. 4) [8].
However, both cis- and trans-alkenes are found in polyketide
backbones. Post-PKS processing is implicated in formation of the
cis-olefins in borrelidin [86] and rifamycin [87]. The cis-alkene of
phoslactomycin, however, is likely installed by the DH of the first
module of the synthase, Plm1 [88]. This DH succeeds an A-type KR,
so syn-coplanar elimination of water from the resultant KR product
would yield a cis alkene (Fig. 4). Despite having several DH crystal
structures [87,89,90], there is no clear trend in the active site res-
idues that govern the stereochemistry of reduction or the prefer-
ence for a-substituents [91].

Although DH engineering has not been as extensively pursued
as the engineering of other PKS domains, several examples of both
site-directed and swap-based engineering exist. There are several
known examples of naturally-inactive DH domains, such as those
observed in the amphotericin [92], avermectin [93], nystatin [94],
and nanchangmycin [95] clusters. Each of the inactive domains
exhibits a H/ R or H/ Ymutationwithin the conserved active site
motif “HxxxGxxxxPP”. Installing the H/ Y mutation in a DH
domainwithin the FR-008 PKS resulted in successful inactivation of
the DH and production of solely the appropriately hydroxylated
products [96]. Using this same technique, a DH in the nystatin
cluster could also be inactivated [97]. DH swaps have also been
attempted. The DH domain from DEBS was swapped into a module
of the avermectin synthase in S. avermitilis, resulting in the exclu-
sive production of C22,23-unsaturated avermectins (although at
much lower titers than the wild type) [98]. DH domain swaps were
also employed in a polyketide synthase engineered to produce
adipic acid, decreasing the amount of 3-hydroxyadipoyl product
that had built up due to suspected non-optimal DH activity. Inter-
estingly, the same group showed that DH domains can also be
provided in trans to achieve the same effect (Fig. 1C) [99].

Even less is known about the ER domains, which reduce trans-a,
b-unsaturated intermediates provided by DHs. ERs, like KR do-
mains, exhibit epimerase activity on a-substituents as well [91]. ERs
that produce L-oriented products possess a conserved tyrosine that
is absent in D-type ERs [100]. A crystal structure of the ER from the
second module of the spinosyn PKS (Spn2) shows this character-
istic L-type tyrosine residue proximal to 4-pro-R-hydride of the
bound NADPþ, suggesting its role as the proton donor [101]. This
structure also revealed a lysine-aspartate pair that was crucial for
catalysis; the lysine is thought to act as the proton donor in D-type
ERs. Finally, this structure revealed that the ER domain is inserted
between the structural and catalytic domains of the KR, tying the
ER to its cognate KR partner.

Early mutagenesis studies of ER domains in DEBS module 4
targeted the conserved “HAAAGGVGMA” NADPH binding motif for
engineering [102]. Changing this sequence to “HAAASPVGMA,”
based on the NADPH binding motif of the inactive KR domain from
the same module, resulted in production of primarily D6,7-anhy-
droerythromycin C, the expected product. Moreover, mutation of
the conserved L-type tyrosine in the same ER resulted in a change
of stereochemistry at the a-methyl substituent, switching it from
the S to R configuration [100]. Nevertheless, it should be noted that
the same mutation in the rapamycin ER failed to produce the ex-
pected inversion of stereochemistry in TKL products; therefore,
more studies of stereocontrol in ERs are needed before a compre-
hensive method for switching a-substituent orientation can be
determined. Subsequent mutagenesis experiments performed by
Keatinge-Clay and coworkers were unable to completely inactivate
the Spn2 ER through a single mutation [101]. Instead, mutations
both slowed the rate of reduction and increased the rate of the
hydroxylation side reaction.

When introducing a non-native DH and ER domain into a
chimeric PKS, it is important to consider the DH stereoselectivity of
the hydroxylated product exercised by the upstream KR domain
(Fig. 4). It might be best to pair DH domains with their cognate KR
partners in order to ensure proper stereochemistry of the hydrox-
ylated substrate. Alternatively, swaps of DH domains into modules
with the same KR type could also be successful. Not only is proper
substrate stereochemistry required, but substituents farther from
the zone of reactivity could also come into play [99]. Another study
corroborated this hypothesis, presenting structural and functional
data to suggest that DHs which natively act on long-chain (C28-30)
substrates are unable to dehydrate shorter chain (C4) substrates
[103]. This was consistent with the structural information pre-
sented, highlighting a substrate channel that made hydrophobic
interactions with the acyl chain of the long-chain substrates. Other
issues involving protein-protein interactions, protein solubility and
protein stability, could also arise, as different ACP partners can
completely reverse the stereospecificity of DHs [87].

2.5. Reductive loops

Reductive loops, here defined as any combination of reducing
domains, determine the degree of reduction of the b-carbon
formed post-condensation and typically set the stereochemistry of
any a-substituents (see previous sections). Typically, site-directed
mutagenesis is performed on single reductive domains to achieve
a desired outcome, whether it be domain inactivation or a change
in activity. Schulz and coworkers, however, systematically evalu-
ated the feasibility of “domain skipping” mutations in every
reducing domain in the monensin PKS in order to evaluate the
ability of downstream modules to accept less reduced substrates
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[104]. PKSs mutated in a way that produced less reduced in-
termediates were less likely to produce the desired final product.
All ER inactivations reliably produced the expected products, but
only two thirds of DH and one half of KR inactivations resulted in
any detectable premonensin analogs. This suggests not only that
downstream domains may display selectivity for their native sub-
strates, but also that attempts to engineer more drastic changes of
degree of reduction within the molecular structure may be less
successful.

Full reductive loop additions into modules with fewer (or no)
native reducing domains have been successfully employed in a few
cases. A series of reductive loop swaps into DEBS module 2 were
promising examples, demonstrating that heterologous reducing
domains can be feasibly employed [105]. Excitingly, Leadlay and
coworkers illustrated that the KR, DH and ER domains can not only
be exchanged among PKSs, but they can also be added to modules
having a partial reductive loop, natively containing a KR domain.
However, the junctions of each domain swap may need to opti-
mized on a case-by-case basis, as no single set of boundaries was
optimal for every hybrid PKS. By heeding this advice, Keasling and
coworkers were successfully able to engineer a PKS capable of
producing a novel polyketide, adipic acid, by introducing a full
reductive loop into the first module of the borrelidin PKS
(Fig.1BeC). A series of donor loops and junction sites were tested to
find the most productive mutant. Although application of reductive
loop swaps was promising, a significant bottleneck at the DH was
observed [99].

In addition to full reductive loop swaps, other examples of
reductive domain replacements have been published. A swap of the
DH-KR didomain from module 11 to module 12 of the pimaricin
PKS improved activity of the marginally active module 12 DH [106].
The most successful mutant retained the linkers flanking the native
DH-KR, while replacing simply the DH domain proved ineffective.
Additional examples include a swap of the pikromycin module 4
DH-ER didomain into the avermectin PKS [107] and replacement of
the DEBS KR domains with the full reductive loop from rapamycin
module 1 [80], both of which resulted in significant decreases in
product yield in vivo. Since having a match between substrate size
and activities of both the KRs and DHs (vide supra) have been
shown to impact their levels of activity on non-native substrates
(the ER has been less extensively studied), it may be important to
introduce reducing loops that act on native substrates of a similar
size with regard to the target donor molecule. By continuing to
parse the limitations of these types of swaps, we imagine that more
successful implementations of reductive domain additions and
replacements will arise.

2.6. Offloading domains

To complete PKS biosynthesis, a terminal domain must release
the ACP-bound polyketide intermediate in the last module.
Termination domains include thioesterase (TE) domains and
reductase (R) domains (Figs. 2 and 5). Themore common of the two
release mechanisms, TEs, belong to the a/b-hydrolase superfamily
of proteins and can release the polyketide as a linear acid, macro-
lactone, macrolactam, or macrothiolactone [9] (Figs. 2 and 5). They
are generally selective catalysts in the presence of native substrates,
exemplified by the highly regio- [80] and stereospecific [108]
cyclization performed by DEBS TE. Despite their native specificity,
cyclization TEs are often promiscuous towards unnatural substrates
[12]. DEBS TE, for example, cyclizes various macrolactones derived
from engineered versions of DEBS that produce non-native
oxidized and substituted backbones [80]. Additionally, non-native
6-, 8-, 12-, 14- and 16-membered rings [109] have been produced
by either DEBS TE fusions or mutasynthesis [82,110,111]. Cyclizing
TEs (especially the commonly used DEBS TE) are also known to
hydrolyze nonnative substrates in engineered systems when
cyclization is not feasible [12,22,99,112,113].

A number of striking differences emerge when comparing TEs
that natively hydrolyze their substrates and those that cyclize. The
best studied of the hydrolytic TEs is from tautomycetin, which has
been structurally characterized and shown to have a narrower
substrate chamber than that observed in the structures of the
cyclizing pikromycin and DEBS TEs [114]. The selectivity of this TE
was further elucidated with chemically-synthesized SNAC in-
termediates, which demonstrated that its hydrolytic activity is
highly stereospecific for R-b-hydroxy moieties. Further probing the
hydrolytic selectivity of the tautomycetin TE, Kim and coworkers
swapped the tautomycetin TE domain with the macrocyclic poly-
ketide pikromycin TE [115]. The Pik-TE-swapped strain produced a
mixture of both linear tautomycetin and a cyclized analog [115].

Although most termination TE domains are located at the C-
terminus modular PKSs, the modular PKSs that encode the poly-
ethers such as nanchangmycin [116,117] and monensin [118] lack a
C-terminally tethered (cis) thioesterase. Deng and coworkers
demonstrated that the discrete TE domain NanE, also part of the a/
b-hydrolase superfamily of proteins, is required for the biosynthesis
of nanchangmycin. NanE catalyzes the specific hydrolysis of the
polyether analog, nanchangmycin-SNAC [116,117].

A termination mechanism that is evolutionarily related to thi-
oesterases consists of tandem sulfotransferase (ST)-TE domains
which yield terminal olefins, as found in the curacin PKS (Figs. 2 and
5). The ST-TE didomains mechanistically employ the sulfo-
transferase domain to activate the b-hydroxy group formed by the
terminal module. The activated sulfate group then undergoes a
decarboxylative elimination reaction to yield the terminal olefin as
the released product [90,119,120]. This biosynthetic logic is partic-
ularly attractive for applications of engineered polyketides to pro-
duce a variety of desirable chemicals, especially monomers for
polymeric materials [121] or synthetic handles for further func-
tionalization of natural products [122].

Another less common releasing enzyme, the R (reductive)
domain, generally catalyzes the NADPH-dependent reductive
release of polyketide and non-ribosomal peptide intermediates via
thioester reduction (Figs. 2 and 5). R domains possess a Rossmann
fold [123], characteristic of nucleotide binding proteins which
release acyl intermediates by either a 2- electron reduction,
yielding an aldehyde final product, or by a 4-electron reduction,
yielding a primary alcohol final product. Examples include the
reductive release of aldehyde-containing products such as aur-
eusimine [124] and primary alcohols in glycopeptidolipid [125] and
myxalamid biosynthesis [9,126]. Structure-guided mutagenesis of
the terminal myxalamid R domain, MxaA, generated variants with
increased activity towards hydrocarbon substrates that resulted in
highly-reduced primary alcohols [127]. The removal of bulky resi-
dues in the C-terminal substrate binding domain facilitated
reduction of non-native 10-carbon intermediates, yielding a
reduced 10-carbon alcohol product [127]. This termination mech-
anism is of particular interest when trying to engineer polyketides
that generate fuel molecules (e.g. n-butanol [128]).

2.7. Intermodular linkers

Intermodular linkers facilitate communication and chain
translocation between two modules. They can take the form of C-
and N-terminal docking helices that mediate contacts between
modules on separate polypeptides, or they can consist of simple
peptide linkers between two modules on the same polypeptide
(Fig. 2) [10,129e131]. Early attempts to improve intermodular
communication between PKSs focused on covalently fusing two



Fig. 5. Offloading domains. Common TE-mediated release include products such as linear acids, lactones, lactams, thiolactones and olefins. The less common R-domains conduct a
two-electron reduction to produce aldehyde final products or primary alcohols through a four-electron reduction.
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non-covalently-linked modules together. The expected TKLs could
be produced in S. coelicolor by fusing DEBS module 1 to DEBS
modules 3 or 6 by conserving the natural intermodular linker be-
tween modules 1 and 2. This technique could also facilitate
communication of module 1 with rifamycin module 5 (Rif M5).
Finally, by appending the C-terminal linker domain from DEBS
module 2 to the end of Rif M5, the hybrid DEBS M1-Rif M5 protein
could be coaxed to communicate with the downstream DEBS M3.
This preliminary work laid the foundation for combinatorial
biosynthesis of polyketides utilizing modules, not domains, as the
fundamental unit [132].

Khosla and coworkers demonstrated that the position of mod-
ules within their native context is an important consideration for
intermodular linker engineering. Swapping linker regions between
module 2 and module 3 of DEBS with the module 4 and 5 linkers
significantly increased the Km of the module-module interaction
with little to no effect on the kcat of polyketide transfer between the
modules [133]. The Khosla group also suggested that the KS do-
mains of C-terminal modules, such as DEBSmodule 2 and 4, are less
selective of substrates from upstream ACP partners than N-termi-
nal modules because C-terminal KSs are already covalently teth-
ered to the upstream ACP. The importance of ACP-KS interactions
for chain transfer was again highlighted in the work of Santi and
coworkers, where over 150 module-module interactions were
tested for chain transfer [134]. The efficacy of 11 upstream and 14
downstream module combinations, facilitated by the C- and N-
terminal linker domains from DEBS module 2 and 3, respectively,
was tested for production of the expected TKL products. Although
most of the individual PKSs were active on some level, less than 50%
of the combined two module systems produced any product. The
best combinations were between native partners, suggesting that
incorrect ACP-KS interactions were a limiting factor [135].
3. Engineering at the host/cellular level

Despite all the current insights gained through PKS engineering
at the amino acid, domain, and module level, progress has been
slower than expected. This arises from a lack of understanding and
inability to successfully express PKSs and various polyketide pre-
cursor pathways in a variety of hosts. In this section, we will
highlight some significant accomplishments in polyketide precur-
sor engineering and move towards PKS regulation, metabolic
engineering and the application of synthetic biology tools for PKS
host engineering. Because of the extensive amount of research in
this area, this is not an exhaustive overview of host engineering for
heterologous polyketide production. Nevertheless, numerous
representative examples are highlighted.
3.1. Precursor directed-biosynthesis and mutasynthesis

Precursor-directed biosynthesis (PDB) has been a successful tool
utilized to further understand and expand PKS substrate pro-
miscuity by feeding analogues of their natural building blocks that
are likely tolerated by the native biosynthetic PKS in the producing
host. The efficiency of PDB can be enhanced by complementation
with mutational biosynthesis (“mutasynthesis”), wherein the
naturally occurring precursor pathways are inactivated, thus
removing competition from natural precursors. In addition to
precursor supplementation through feeding experiments, meta-
bolic pathways that produce precursor analogs can be introduced
heterologously to replace the deleted pathways [136].

One of the earliest and most successful examples of mutasyn-
thesis targeted the avermectin PKS. A strain of Streptomyces aver-
mitiliswas generated wherein the enzymes required for generating
the precursors 2-methylbutyryl-CoA and isobutyryl-CoA were
inactivated, more specifically the branched chain fatty acid dehy-
drogenase complex bkd. Out of more than 800 potential precursors
tested, over 40 starter unit analogs were tolerated by the aver-
mectin PKS [21]. Via this method, a cyclohexyl-containing aver-
mectin derivative (later named doramectin) was generated that
exhibited increased antiparasitic activity against veterinary path-
ogens [137]. Another group later identified a shikimate-derived
cyclohexyl-CoA biosynthetic pathway that, when re-introduced
into S. avermitilis Dbkd, enabled the production of doramectin
without cyclohexanoic acid supplementation [138,139]. Intrigu-
ingly, while other PKSs are primed with isobutyryl or 2-
methylbutyryl-CoA (such as lipomycin and tautomycin), no analo-
gous experiments to generate other mutasynthetic analogs in Dbkd
strains has been reported. While the lipomycin loading AT has been
shown to be somewhat promiscuous, only six loading substrates
have been characterized [22]. Thus, it is unclear if the avermectin
PKS has an unusually promiscuous loading AT, or if this extreme
promiscuity is a general feature of loading ATs from type B LMs that
accept bulkier acyl-CoA priming substrates.
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Other examples of PDB have targeted the macrolide rapamycin
[140,141]. In rapamycin biosynthesis, Leadlay and coworkers con-
ducted feeding experiments with starter unit analogues. A series of
21 substrates consisting of monocyclic, polycyclic, branched
aliphatic acids, substituted benzoic acids and heterocyclic acids,
were fed to the rapamycin-producing strain of S. hygroscopicus
[141]. New metabolites were observed in the presence of three
monocyclic aliphatic acids, demonstrating a certain degree of
starter unit promiscuity within the rapamycin LM and further
suggesting some substrate tolerance within the downstream
modules (Fig. 6A) [141]. In a similar approach, Martin and co-
workers explored carboxylic acid starter unit tolerance in the spi-
nosyn PKS appended with the avermectin or erythromycin LM
[142]. Supplementation with a range of carboxylic acids led to the
successful production of new spinosyn analogues (Fig. 6B) [142]. In
a similar example, the aureothin PKS pathway demonstrated
starter unit tolerance towards various aromatic priming analogs
[140]. Lastly, Khosla and coworkers evolved an engineered eryth-
romycin biosynthetic pathway in E. coli, yielding erythromycin
analogs from SNAC precursors. Khosla and coworkers fed diketide
SNAC precursors to E. coli cells harboring a truncated form of DEBS
lacking the loading and first modules. They demonstrated the
incorporation of the native substrate analog diketide SNAC and a
novel diketide-SNAC containing an alkynyl moiety into the eryth-
romycin final product (Fig. 6C). These results support the tolerance
of DEBS to utilize a nonnative substrate for priming, extension and
modification by the downstream DEBS PKS machinery to produce
an alkynyl-containing erythromycin derivative [143,144].

The selectivity and promiscuity of extending acyltransferase
domains can also be targeted for PDB and/or mutasynthetic ap-
proaches to alter PKS scaffolds.While the AT domains that select for
malonyl-CoA or methylmalonyl-CoA are typically quite selective for
their respective extender units [41], it is common for ATs that
naturally select for more uncommon and/or bulkier substrates to
have more relaxed intrinsic substrate selectivity. For example,
module 5 of the monensin PKS natively incorporates both
methylmalonyl-CoA as well as ethylmalonyl-CoA [145e147]. In the
salinosporamide PKS, while the major product is derived from
SalA-AT-mediated chloroethylmalonyl-CoA incorporation (forming
salinosporamide A), analogs containing ethylmalonyl-CoA (salino-
sporamide B) andmethylmalonyl-CoA (salinosporamide D) are also
generated (Fig. 6D) [148]. This inherent promiscuity can be har-
nessed in concert with precursor pool engineering to bias the dis-
tribution of metabolites or generate new metabolites altogether.
Deletion of 5-chlorodeoxyadenosine (a precursor for
chloroethylmalonyl-CoA) biosynthetic genes coupled with exoge-
nous supplementation of 5-fluorodeoxyadenosine [149] or heter-
ologous expression of the heterologous precursor pathways [150]
resulted in the generation of a fluorinated analog,
fluorosalinosporamide.

Likewise, the promiscuity of the monensin AT5 was explored to
generate premonensin analogs (Fig. 6E). Schulz and coworkers
determined that MonAT5 accepts propargylmalonyl, allylmalonyl,
propylmalonyl, and butylmalonyl-SNAC when supplemented in the
media [147]. Similar promiscuity was shown for an ethylmalonyl-
CoA selective AT in the kirromycin pathway, KirCII (Fig. 6F).
In vitro, KirCII accepts a range of longer malonyl derivatives
including allylmalonyl-CoA, propargylmalonyl-CoA, and to a lesser
extent azidoethyl-CoA [151,152]. Rather than supplementing the
culture with SNAC analogs, Williams and coworkers introduced a
highly promiscuous mutant of the malonyl-CoA ligase, MatB, from
Rhizobium trifolii [152,153] into the host strain S. collinus Tü 365 and
supplemented exogenous allylmalonate and propargylmalonate.
The malonate derivatives were then activated by MatB and incor-
porated into the polyketide to generate kirromycin analogs [45].
Propargyl-containing extender units were introduced in one
additional polyketide scaffold through targeted mutagenesis. A
combination of structural modeling and sequence comparisons of
ATs with specificity for bulkier substrates (such as ethylmalonyl-
CoA) was used to expand the promiscuity of a methylmalonyl-
selective AT [54,57].

3.2. Metabolic engineering for improved precursor pools

Outside the limitations of directly engineering PKSs, one
approach to improve polyketide production involves increasing the
availability of polyketide precursors. Pathways for the biosynthesis
of polyketide metabolites often use precursors synthesized during
glycolysis, the tricarboxylic acid cycle, and the pentose-phosphate
pathway [154]. Metabolic engineering has successfully improved
selected bottlenecks in various strains, increasing intracellular
precursor pools, and thus redirecting flux towards the desired
polyketide biosynthetic pathway. The deletion of the S. coelicolor
phosphofructokinase gene plfkA or the S. lividans glucose-6-
phosphate dehydrogenase genes zwf1 and awf2 achieved higher
production of actinorhodin and undecylprodigiosin, respectively
[155]. Inactivation of the glyceraldehyde-3-phosphate dehydroge-
nase gap1 in S. clavuligerus resulted in more clavulanic acid pro-
duction [156,157]. In contrast to deletion or knockout of genes,
overexpression and knockin of genes has been utilized more often
as a strategy to increase specific precursors for polyketide pro-
duction. Such polyketide precursors include well-known and
unique starter-/extender-units. For many type I assembly-line PKS
pathways, such as DEBS, priming begins with one propionyl-CoA
starter unit and extension is performed with (2S)-methylmalonyl-
CoA. E. coli does not naturally produce (2S)-methylmalonyl-CoA,
posing a bottleneck for expression of the erythromycin pathway in
this host [158]. Hillenmeyer and coworkers have worked to over-
come E. coli's (2S)-methylmalonyl-CoA limitation by introducing
heterologous propionyl-CoA carboxylases (PCCs) (Fig. 7A) [159].
The propionyl-CoA carboxylase is a biotin-dependent enzyme that
catalyzes the carboxylation of propionyl-CoA to form (2S)-meth-
ylmalonyl-CoA. The core PCC complex consists of two genes
encoding the biotin carboxyl carrier a-subunit protein and a b-
subunit containing the carboxylase activity [160,161]. Hillenmeyer
and coworkers examined the effect of heterologous expression of
various PCCs on erythromycin production in E. coli by optimizing
both expression of the S. coelicolor PCC complex and screening 13
homologous PCCs from diverse species [159]. The hybrid PCC
complex from Myxococcus fulvus and S. coelicolor outperformed all
other PCC complexes in stimulating erythromycin production.

Unlike E. coli, where certain acyl-CoA extender units may be
limited or nonexistent, Streptomyces already contain the common
precursors to support polyketide biosynthesis. The diverse pre-
cursor pools that Streptomyces produce facilitate the heterologous
expression and engineering of full pathways in these hosts. For
example, in S. coelicolor and S. lividans strains heterologously
expressing the DEBS PKS, Floss and coworkers constructed strains
capable of producing 3 mg/L of 2-desmethyl-2-methoxy-6-
deoxyerythronolide via the introduction of the methoxymalonyl-
ACP biosynthetic pathway from Actinosynnema pretiosum [64].
The incorporation of methoxymalonyl-ACP was also utilized in
S. fradiae, a host that natively produces three of the most common
polyketide precursors: malonyl-CoA, methylmalonyl-CoA, and
ethylmalonyl-CoA [162]. By introducing the biosynthetic pathway
for methoxymalonyl-ACP into an S. fradiae strain heterologously
expressing the midecamycin pathway, Katz and coworkers pro-
duced a methoxymalonate-platenolide analog (Fig. 7B) [162]. More
recently, precursor pool engineering was also successfully
employed to improve salinomycin production in S. albus.
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Fig. 7. Examples of metabolic engineering for improved precursor pools. A) Overexpression of PCC for the conversion of propionyl-CoA to (2S)-methylmalonyl-CoA allowed for
the production of 6-deoxyerythronolide B in bacteria that don't natively produce methylmalonyl-CoA (such as E. coli). B) Expression of the methoxymalonyl-ACP biosynthetic
pathway in a platenolide producer generated a platenolide analog containing the methoxy moiety. C) Higher titers of mithramycin were achieved by increasing the precursor supply
of malonyl-CoA and glucose-1-phosphate. Green boxes denote upregulated pathways and red cross marks denote downregulation or knockout pathways. D) Post-translational
modification of apo-ACPs by PPTases generated active holo-ACPs which can activate FAS biosynthetic pathways in primary metabolism or PKS pathways in secondary metabolism.
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Metabolomic analysis suggested that intracellular ethylmalonyl-
CoA concentrations were limiting titer, so an additional copy of
the crotonyl-CoA carboxylase gene responsible for generating
ethylmalonyl-CoA was integrated into the producing strain. This
approach improved titers over ten fold [163].

M�endez and coworkers improved precursor metabolite pools
for the production of the antitumor compound/polyketide myth-
ramycin in S. argillaceus by increasing the precursor supply of
malonyl-CoA and glucose-1-phosphate (Fig. 7C) [157]. The myth-
ramycin PKS uses ten malonyl-CoA units for chain extension and
cyclizes the extended polyketide to a tetracyclic intermediate. The
tetracyclic intermediate is subsequently glycosylated by five
deoxysugars derived from glucose-1-phosphate, generating myth-
ramycin as the final product [157]. By either overexpressing the
S. coelicolor phosphoglucomutase gene pgm or by inactivating the
ADP-glucose pyrophosphorylase gene glgCa, they were able to
Fig. 6. Examples of precursor-directed biosynthesis altering priming unit. A) Starter u
Extender unit PDB using a diketide SNAC precursor in the erythromycin PKS. D) Incorpora
Incorporation of propargyl-, propyl- and allylmalonyl-SNAC into the monensin polyketide
polyketide backbone.
increase glucose-1-phosphate production (Fig. 7C). Moreover, they
increased malonyl-CoA concentrations by overexpressing the
acetyl-CoA carboxylase ovmGIH gene or by inactivating the acyl-
CoA diacylglycerol acyltransferase gene aftAa, the latter strategy
being superior for improving mythramycin production [157].

In another example of PK precursor engineering to produce
myxothiazol, Müller and coworkers identified in the S. cellulosum
Soce56 genome an operon responsible for methylmalonyl-CoA
production [164]. The operon, consisting of three genes, included
a methylmalonyl-CoA epimerase epi, methylmalonyl-CoA mutase
mcm and meaB which were sub-cloned and heterologously
expressed in P. putida KT2440 containing the myxothiazol PKS/
NRPS hybrid. The engineered P. putida strain containing both the
myxothiazol PKS/NRPS and the three enzymatic methylmalonyl-
CoA pathways produced myxothiazol [164]. Such an engineered
P. putida strain provides an additional PKS expression host outside
nit PDB in the rapamycin PKS. B) Starter unit tolerance in spinosyn biosynthesis. C)
tion of fluoromalonyl-CoA through mutasynthesis of the salinosporamide pathway. E)
backbone. F) Incorporation of propargyl- and allylmalonyl-CoA into the kirromycin
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of the previously mentioned E. coli and Streptomyces species.

3.3. Phosphopantetheinyltransferase expression and regulation

Another frequent issue encountered when heterologously
expressing PKSs is the need for post-translational activation of each
ACP domain with a prosthetic phosphopantetheine arm. All ACP
domains must be converted to the holo form by phosphopante-
theinyltransferases (PPTases), which install the phosphopante-
theinyl prosthetic group of ACP domains. PPTases can have a range
of substrate selectivities, depending on whether they evolved to
activate a carrier protein from a specific biosynthetic pathway or
whether they have a pleiotropic role in the cell, activating multiple
pathways [165e167]. PPTases are classified by whether they acti-
vate fatty acid biosynthetic pathways from primary metabolism
(AcpS-type PPTases) or polyketide and nonribosomal peptides from
secondary metabolism (Sfp-type PPTases) (Fig. 7D) [168]. In host
organisms that do not natively harbor multiple polyketide and/or
non-ribosomal peptide biosynthetic pathways (such as E. coli or
S. cerevisiae) integration of a promiscuous Sfp-type PPTase is critical
to enable the heterologous production of polyketide metabolites.
The promiscuous PPTase Sfp, from the surfactin biosynthetic
pathway in Bacillus subtilis, has historically been the most common
choice for application in heterologous systems [169,170]. Sfp has
been integrated into E. coli to generate strains engineered specif-
ically for polyketide production: BAP1 [171] and K207-3 [172].
Successful production of polyketide metabolites has also been
accomplished in S. cerevisiae strains containing genomically-
integrated Sfp [173e175]. The usefulness of many B. subtilis labo-
ratory strains for heterologous PKS production is diminished
because of a common frameshift within the sfp gene, effectively
shutting down the production of multiple secondary metabolites
[166,176,177]. Indeed, to successfully heterologously produce 6-dEB
in the commonly used B. subtilis Marburg 168 strain, restoration of
Sfp activity was required [177]. As an alternative to Sfp, the simi-
larly promiscuous PPTase, Svp, from S. verticullus ATCC15003 has
also been used to post-translationally modify a wide range of ACPs
[178].

In most Streptomyces, heterologous polyketide production can
be achieved without integration of an exogenous PPTase [179],
suggesting that most Streptomyces species natively harbor pro-
miscuous PPTases. This is unsurprising, given the wealth of sec-
ondary metabolites that are produced by Actinomycetes. However,
more recently the overexpression of PPTases has been explored as a
means of boosting polyketide production in various Actinomycetes.
Li and coworkers demonstrated that overexpression of the
endogenous PPTase SchPPT in S. chattanoogensis L10 increased the
production of the polyketide natamycin by over 40% [180]. Other
experiments suggest that PPTases may play a major role in the
regulation of PKS expression. For example, overexpression of either
Sfp or Svp in over 33 Actinomycetes activated the expression of
silent biosynthetic pathways [181]. Although a basal level of PPTase
expression is typically sufficient for polyketide production, these
experiments suggest that overexpression of these enzymes can
significantly enhance or alter the regulation and production of PKS
metabolites. Thus, to achieve extremely high titers of polyketide
products in Streptomyces and related Actinomycetes, manipulating
the expression of both endogenous and exogenous PPTases is likely
an underexplored approach.

3.4. Transcriptional regulation and refactoring of PKS genetic
components

Polyketide biosynthetic gene clusters commonly contain
pathway-specific regulatory elements that act as activators or
repressors of various genetic elements within the cluster. In the
biosynthesis of tylosin, for example, both activators and repressors
have been identified and characterized [182,183]. Activator ele-
ments often belong to the Streptomyces Antibiotic Regulatory Pro-
tein (SARP) family, a group of proteins known to enhance the
production of polyketides such as daunorubicin, mithramycin and
tylosin [155]. These SARPs can be effectively used as tools to in-
crease polyketide production. Tylosin production, for example, is
increased when the SARP regulators tylS and tylR are overexpressed
in the native producer S. fradiae [183]. Mithramycin production in
S. argillaceus can also be enhanced by overexpressing two SARPs,
mtrY and mtmR, on multicopy plasmids [184,185]. Other families of
transcriptional regulators, such as the LysR-type transcriptional
regulators (LTTRs), can serve as additional tools for controlling
polyketide production. The role of LTTRs has been studied in the
ascomycin biosynthetic cluster; in particular, Wen and coworkers
have characterized the role of the LTTR fkbR1 [186]. Inactivation of
fkbR1 leads to a reduction of ascomycin production, which can be
restored by complementation with fkbR1. Overexpression of fkbR1,
on the other hand, results in increased ascomycin production,
suggesting that fkbR1 acts as a positive regulator [186]. Manipula-
tion of negative regulators can also be used as a tool for manipu-
lating polyketide pathways. For example, inactivation of a
transcriptional repressor (tylQ) from the tylosin pathway causes
production to begin at an earlier stage of S. fradiae growth [187]. On
the other hand, disruption of the tylP gene that encodes a g-
butyrolactone receptor increases production [182].

DNA-based regulatory elements can be used to complement the
manipulation of protein-based positive and negative regulators for
the optimization of polyketide production. The introduction of
heterologous promoters, for example, has been effectively used to
activate multiple silent polyketide clusters in various hosts. Elicit-
ing expression of silent polyketide pathways is often challenging
due to poorly understood regulation mechanisms. In addition,
these silent polyketide gene clusters often remain inactive under
typical culturing conditions. With the goal of developing a gener-
alizable method to elucidate the function of cryptic biosynthetic
gene clusters, Zhao and coworkers developed a synthetic biology
approach to activate silent biosynthetic gene clusters [188]. The
entire silent biosynthetic gene pathway was refactored using a
plug-and-play scaffold, containing a set of heterologous functional
promoters and placed in a heterologous host under more tradi-
tional culturing conditions. Using this strategy, Zhao and coworkers
successfully activated the previously silent spectinabilin pathway
from S. orinoci [188].

More recently, Apel and coworkers used a similar plug-and-play
method for the assembly of artificial genes into functional
biosynthetic gene clusters [189]. As a proof of concept, the novo-
biocin pathway was disassembled and genetically reorganized us-
ing the artificial gene operon assembly method, a tool that
consecutively assembles artificial genes into a destination vector
and subsequently expresses them under the control of a de-
repressed promoter in a Streptomyces host. By completely refac-
toring the pathway in S. coelicolor, Apel and coworkers could
observe production of novobiocin precursors and novobiocin [189].

The development and improvement of omic analyses (geno-
mics, proteomics, metabolomics and transcriptomics) further pro-
vides a useful tool to understand PK biosynthetic bottlenecks in a
given host. In a recent example, Liu and coworkers utilized a tar-
geted omics approach to identify rate-limiting steps in the heter-
ologous production of spinosad in S. albus [190]. Both targeted
metabolomics and translational analysis indicated insufficient ac-
tivity of enzymes involved in two essential sugar precursors:
rhamnose and forosamine. Moreover, the PKS protein SpnE and
methyltranferase SpnI were not detectable by targeted proteomics
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analysis, suggesting other rate-limiting steps. With the aim of
overexpressing the sugar biosynthetic module, the polyketide
synthase SpnE, and the methyltransferase SpnI, strong constitutive
promoters were replaced with native promoters. The new refac-
tored engineered S. albus strain increased spinosad production by
1000-fold over the wildtype S. albus strain [190].

The increasing promise of the CRISPR-Cas9 system for rapid and
targeted genetic manipulations [191,192] has led to the develop-
ment of protocols for using the technique in natural product-
producing bacteria such as Streptomyces. Several groups laid the
foundation for work with CRISPR-Cas9, first with the development
of methods for performing knockouts [193,194]. Later, Zhao and
coworkers extended the usefulness of this CRISPR-Cas9 platform,
using it to perform knockins to activate silent biosynthetic gene
clusters in Streptomyces [195]. In a one-step strategy, multiple
biosynthetic gene clusters of type I, II and III PKSs in five Strepto-
myces species were activated. Moreover, by introducing
strategically-placed constitutive promoters, they elicited the pro-
duction of a new metabolite in S. viridochromogenes: a multicyclic
type II polyketide [195].

4. Host, precursor, and protein engineering synergy

Ultimately, for PKS protein engineering to be feasibly employed
to produce target chemicals, it must be evaluated whether the
engineered PKS activity in vivo is similar to its activity in model
systems such as biochemical in vitro assays. In vitro studies afford
absolute control of substrate and cofactor concentrations, which is
not feasible in vivo. Thus, combinations of host and engineered PKS
can result in various (and sometimes unanticipated) substrate in-
corporations. A study that exemplifies this phenomenon dissects
the LM of DEBS. While in the native Saccharopolyspora erythrea
DEBS is primed exclusively by propionyl-CoA [196], the LM of DEBS
incorporates other priming units in heterologous systems [197].
Depending on the host, TKLs from DEBS1þTE can form via priming
by acetyl-CoA (in S. coelicolor [198] and S. venezuelae [197]) or
isobutyryl-CoA (in S. venezuelae [197]), albeit as minor products.
Reynolds and coworkers interrogated the relationship between PKS
architecture and starter unit incorporation in variations of
DEBS1þTE expressed in S. venezuelae. It was determined that
placing the LM and module 1 on separate polypeptides (with the
use of heterologous docking domains) changed the distributions of
acetyl, propionyl, and isobutyryl priming units incorporated in
comparison to the ratios observed with both modules on the same
polypeptide (i.e. the selectivity shifted from predominantly pro-
pionyl selective to isobutyryl-selective). This was rationalized
through biochemical studies suggesting that the loading AT selects
isobutyryl-CoA as the thermodynamic product. However, DEBS KS1
has faster kinetics for propionate compared to isobutyrate. When
the loading domain is placed on a separate polypeptide from
module 1, there is a resulting kinetic stall. This kinetic stall shifts
the product formation towards thermodynamic control, especially
when higher levels of isobutyl-CoA are present [197]. This example
demonstrates that the apparent selectivity of PKS domains can be
altered depending on the architecture of the PKS in concert with
the precursor availability. Therefore, results of both in vitro and
in vivo experiments for engineered polyketide production should
be evaluated with a careful consideration of the advantages and
limitations of each experimental approach.

5. Conclusions

With all the current success in PKS/host engineering, the gap
between our understanding of PKS biosynthetic logic and the
application of PKSs as a retrosynthetic platform is narrowing. In the
past, our ability to design, build and test chimeric PKSs was limited
by DNA sequencing and assembly techniques. Currently, our ability
to discover and generate PKS genotypic diversity, enabled by
improved DNA sequencing and synthesis technologies, allows us to
rapidly build sizeable libraries of engineered PKSs [199,200].
However, our ability to screen the resulting libraries lags. There is a
need for more high-throughput approaches to test engineered PKS
scaffolds. Analytical methods such as liquid chromatography
coupled with mass spectrometry are improving and new tech-
niques are being developed which allow for increased throughput
with limited sample preparation [14,201e203]. Transcription
factor-based biosensors could be potentially employed to screen
and select for successful engineered PKSs constructs [204]. Addi-
tionally, there are an increased number of computational and bio-
informatic tools which aid the identification of candidate swaps as
well as the curation and annotation of PKS pathways [205e210].
With the increasing success of chimeric PKS scaffolds, there will
also be a need for optimization of precursor flux within the target
host. The metabolic engineering pathways for polyketide pre-
cursors must be integrated into hosts that express highly soluble
and active engineered PKSs. By building on existing polyketide
engineering and characterization strategies, harnessing current
synthetic biology technologies, and utilizing advances inmetabolic/
host engineering, we anticipate future successes in engineering
PKSs capable of producing designer polyketides for applications in
medicine, fuels, and industrial products.
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