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Abstract

Ectotherms may experience large body temperature (Tb) variations. Higher Tb have been

reported to increase baroreflex sensitivity in ectotherm tetrapods. At lower Tb, pulse interval

(PI) increases and diastolic pressure decays for longer, possibly resulting in lower end-dia-

stolic pressures and mean arterial pressures (Pm). Additionally, compensatory baroreflex-

related heart rate modulation (i.e. the cardiac branch of the baroreflex response) is delayed

due to increased PI. Thus, low Tb is potentially detrimental, leading to cardiovascular mal-

functioning. This raises the question on how Pm is regulated in such an adverse condition.

We investigated the baroreflex compensations that enables tegu lizards, Salvator merianae,

to maintain blood pressure homeostasis in a wide Tb range. Lizards had their femoral artery

cannulated and pressure signals recorded at 15˚C, 25˚C and 35˚C. We used the sequence

method to analyse the heart rate baroreflex-related corrections to spontaneous pressure

fluctuations at each temperature. Vascular adjustments (i.e. the peripheral branch) were

assessed by calculating the time constant for arterial pressure decay (τ)—resultant from the

action of both vascular resistance and compliance—by fitting the diastolic pressure descent

to the two-element Windkessel equation. We observed that at lower Tb, lizards increased

baroreflex gain at the operating point (Gop) and τ, indicating that the diastolic pressure

decays at a slower rate. Gop normalized to Pm and PI, as well as the ratio τ/PI, did not

change, indicating that both baroreflex gain and rate of pressure decay are adjusted accord-

ing to PI lengthening. Consequently, pressure parameters and the oscillatory power fraction

(an index of wasted cardiac energy) were unaltered by Tb, indicating that both Gop and τ
modulation are crucial for cardiovascular homeostasis.

Introduction

Temperature is possibly the most important abiotic factor affecting the physiology of ecto-

therms [1]. Increased body temperature (Tb) is associated with higher heart rate (fH) and

cardiac output [2–7], although mean arterial pressures (Pm) are less affected [4,7–9]. In verte-

brates, acute changes in arterial blood pressure are regulated by the baroreflex mechanism
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[10]. The cardiac branch of the baroreflex response is expressed as baroreflex gain (i.e. the

heart rate variation per unit of pressure change [11]). The maximum baroreflex gain (G50) is

temperature-sensitive in amphibians [7] and reptiles [12], and exhibits higher values at ele-

vated Tb.

At lower Tb, the increased pulse interval (PI) resultant from lower fH necessarily imply

delayed and slower baroreflex-related fH modulations to rapid arterial pressure variations.

Additionally, the extended interval between heartbeats allows for elongated periods of diastolic

pressure decay, potentiating the likelihood for hypotension. Under these circumstances, an

inefficient response of the cardiac branch of the baroreflex mechanism could result in a hin-

dered tissue perfusion. Notwithstanding, free-ranging amphibians and reptiles experience a

broad range of Tb [1,13–22] without any apparent cardiovascular malfunction or homeostasis

impairment. Therefore, other mechanisms must compensate for the loss of efficiency of the

cardiac branch of the baroreflex at low Tb.

We speculated that the vascular branch of the baroreflex could assist the cardiac branch in

sustaining the cardiovascular homeostasis when Tb reduces. One way of assessing vascular reg-

ulation is by analyzing the rate of diastolic pressure decay (i.e. the time constant for arterial

pressure decay during diastole: τ; Fig 1A), which is the result of the action of both vascular

resistance and compliance when aortic valves close [23]. We expected that, since vascular resis-

tance increases at colder Tb [4,8], diastolic pressure (Pd) should exhibit a slower decline, thus

avoiding hypotension. In addition, a slower pressure decay could minimize pressure oscilla-

tions around Pm at lower Tb, thus reducing the relative “wasted” cardiac energy (i.e. the oscil-

latory power fraction–OPF [24]). Therefore, we postulated that the control of the vascular

system by the peripheral branch of the baroreflex would compensate the loss of efficiency of

the cardiac branch in maintaining pressure homeostasis by regulating τ according to PI length-

ening. This could prevent both hypotension and larger oscillations of blood pressure when Tb

decreases.

The present study was designed to investigate putative functional adjustments of both car-

diac and peripheral branches of the baroreflex that allow effective pressure regulation in a

range of Tb experienced by the tegu lizard, Salvator merianae. The study was conducted during

the non-reproductive period of the species, when facultative endothermy is not manifested

and Tb varies as a typical ectotherm lizard [25]. We used the sequence method to assess barore-

flex gain at the operating point (Gop; i.e. gain at the point of the baroreflex sigmoidal curve cor-

respondent to the Pm operating point [26]) and baroreflex effectiveness index (BEI; i.e. the

capacity of the baroreflex to overcome concomitant stimuli modulating fH [27,28]) to investi-

gate the responses of the cardiac branch. Since longer PI at lower Tb enables pressure to decay

Fig 1. Representative original pressure traces recorded from tegu lizards, Salvator merianae. A) Pressure (in kPa)

of a S. merianae recorded at 15˚C (n = 1). The scheme indicates the peak systolic pressure (Ps), end-diastolic pressure

(Pd), pulse pressure (Pp), mean arterial pressure (Pm; closed circle), diastolic pressure decay (red broken line), and

pulse interval. B) Pressure (in kPa) recorded at 15˚C (grey line), 25˚C (blue line) and 35˚C (red line) (n = 1). C)

Example of estimated pressure decay using the Windkessel equation (black lines), based at the diastolic pressure

recorded at 15˚C (grey line), 25˚C (blue line) and 35˚C (red line) (n = 3).

https://doi.org/10.1371/journal.pone.0242346.g001
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for longer times, it is possible that Gop is adjusted to protect against hypotensive episodes.

We also investigated τ and the ratio τ/PI as an estimate of vascular regulation at different Tb.

We predicted that in order to preserve systemic functionality, τ and PI should variate accord-

ingly as to maintain τ/PI and OPF relatively constant. Hence, baroreflex should trigger com-

pensatory adjustments that involve both cardiac and vascular responses to Tb changes in S.

merianae.

Material and methods

Animal acquisition and maintenance

Eleven juvenile tegu lizards (Salvator merianae, mean mass ± standard deviation: 622.7 ± 90.6

g) were donated by the Jacarezário (UNESP–Rio Claro, Brazil), and maintained at the facilities

of the Laboratory of Experimental Biology (UFSCar–São Carlos, Brazil). Animals were kept in

groups of four to five individuals at 1.2 × 0.8 × 0.8 m tanks with access to heating lamps, under

a natural light regime ~12:12 h. Tegu lizards were fed on eggs and chicken liver and had access

to ad libitum water supply. Feeding was interrupted for five days (equivalent to the postpran-

dial duration after 10% of body mass ingestion in S. merianae maintained at 30˚C [29]) prior

to experimental procedures to avoid SDA effect on the cardiovascular parameters.

Instrumentation

Before surgical procedures, lizards were sedated with elevated levels of CO2 until complete loss

of righting reflexes [28,30–33]. Individuals underwent tracheal intubation and were mechani-

cally ventilated with isoflurane (2–5%; 5 breaths × min-1; tidal volume of 30 ml × kg-1; SAR-

830/P Ventilator) throughout the entire surgical procedure. A heating cushion set to 30˚C was

used to maintain a stable body temperature. Local anaesthetic (Lidocaine 2%, Pearson; 10

mg × kg-1) was injected in the left thigh before a 3 cm longitudinal incision was made. The

femoral artery was occlusively cannulated with a P50 catheter filled with heparinized saline (50

IU × ml-1). Lizards were injected with antibiotic (Chemitril, 11mg × kg-1) and anti-inflamma-

tory/analgesic (Flunixin 1.1mg × kg-1) just after the surgical procedure, and after every 48

hours for four days. All procedures were performed under sterile conditions. Animals were

allowed to recover in a temperature-controlled chamber set to 35˚C (which is within the spe-

cies’ preferred body temperature range [25,34]) in a maintenance container (25 × 35 × 10 cm).

Experimental protocols started five days after the instrumentation surgery, which corresponds

to the recovery time of the resting pattern of autonomic modulation after instrumentation in

S. merianae [30].

Before measurements, the catheter was connected to a Baxter Edward (model PX600,

Irvine, CA, USA) disposable pressure transducer and signals were amplified with a single-

channel preamplifier (Bridge Amp, ADInstruments) before being connected to a Power Lab1

data acquisition system (ADInstruments). Pressure transducers were daily calibrated against

a static water column before measurements using LabChart1 software (LabChart v.7.0,

ADInstruments).

Throughout the recovery period, the catheter was washed with sterile heparinised saline

and signal quality was evaluated in order to check for any signal loss. During the protocol, liz-

ards were exposed to one of the three experimental temperatures (35, 25 or 15˚C) each day, in

a decreasing order. Lizards were given 24 h to allow Tb stabilization at each set temperature

before pressure recording. Tattersall et al. [25] reports that adult tegu lizards (~ 2000 g) require

less than 10 h to cool down approximately 14˚C inside their burrows. Therefore, the 24 h inter-

val between measurements in the present study was sufficient for lizards to stabilize their Tb

with the set environmental temperature. Accordingly, blood pressure traces were recorded for
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2–3 h from autonomic recovered resting lizards at different Tb encompassing the temperature

range most commonly experienced by S. merianae [25].

By the end of the protocol, lizards were anaesthetized and euthanized by injection of thio-

penthal (Thiopentax, Cristália; 50 mg × kg-1), followed by an i.v. injection of a saturated K+

solution until the heart stopped beating. All procedures were performed in accordance with

guidelines from the Brazilian National Council for the Control of Animal Experimentation

(CONCEA), and approved by the Ethics Committee on Animal Use of the Federal University

of São Carlos (CEUA/UFSCar n˚ 4663270916).

Data analysis

Before analysis, pressure signals were filtered using a low pass (20Hz) digital filter. For each

temperature tested, peak systolic and end-diastolic arterial pressures (Ps and Pd, respectively),

heart rate (fH) and pulse interval (PI) were obtained using the distance between consecutive

diastolic pressures (Fig 1A). Mean arterial pressure (Pm) was calculated as Pd + (Ps−Pd) / 3,

whereas pulse pressure (Pp) was the difference between Ps and Pd (Fig 1A) [35].

We utilized the sequence method to assesses the baroreflex at the operating point (Gop)

based on the average of the slopes from spontaneous baroreflex sequences (i.e. minimum of

three cardiac cycles displaying sequential increases or decreases in Ps followed by concomitant

modulation of PI [27,28,36]). Baroreflex gain obtained was then normalized for Pm and PI to

allow for meaningful comparisons between temperatures [37,38]:

Gnorm ¼ GopðPm=PIÞ ð1Þ

Baroreflex effectiveness index (BEI) was calculated as a ratio between the number of barore-

flex sequences and the total number of ramps, which comprise both baroreflex and non-baror-

eflex sequences [27,28]:

BEI ¼
Number of baroreflex sequences

Total number of ramps
ð2Þ

These calculations were performed with CardioSeries software (v2.4, www.danielpenteado.

com) utilizing a minimum of 300 cardiac cycles and delay 1 [28].

To assess the putative regulation of the vascular system to different Tb, we calculated the

time constant of arterial pressure decay during diastole (τ; Fig 1A). We fitted a representative

portion of the second half of the diastolic pressure curve to a modified two-element Windkessel
equation based on Westerhof et al. [23]:

PðtÞ ¼ ðP0 � AÞe� t=t þ A ð3Þ

Where P(t) is diastolic pressure at time t, P0 is end-systolic pressure, and A is the asymptote

[23,39,40]. Values were fitted using GraphPad Prism v.7.00.

We calculated oscillatory power fraction (OPF) as determined by Saouti et al. [24]:

OPF ¼ 1 � Pm=Ps ð4Þ

Data were analysed using one-way ANOVA for repeated measures using temperature as

factor followed by Tukey post hoc test using SigmaPlot (v. 11). Normality was assessed with a

Kolmogorov-Smirnov test. Statistical significance was assigned as P< 0.05. Data are presented

as mean ± standard deviation.
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Results and discussion

Acknowledging that adult S. merianae produce internal heat during the reproductive season

[25], we studied juveniles during the non-reproductive period to avoid this confounding fac-

tor. Nonetheless, it is worth noting that the preferred Tb of S. merianae does not depend on

size or reproductive condition [34]. Heart rate exhibited the typical increase with Tb as

observed in other reptiles [3,8,41,42], with the concomitant decrease in PI (Table 1; Fig 1B). In

a recent investigation, O2 consumption of tegu lizards increased about 4-fold between 17˚C

and 37˚C [43], and fH followed a similar pattern in the present study. This indicates that car-

diac output regulation supporting metabolic alteration triggered by temperature change is

mainly governed by fH modulation. The close relationship between fH and metabolic rate has

been experimentally evidenced for S. merianae [43]. Despite the magnitude of those alter-

ations, none of the pressure parameters changed with Tb (Table 1). This agrees with results

reported for the freshwater turtle Trachemys scripta, where Pm remains unchanged upon Tb

variation [4].

Gop was the lowest when measured at 35˚C (Table 1). This result is in stark contrast with

those from other ectotherms, where baroreflex sensitivity was shown to increase with tempera-

ture [7,12]. This may be due to differences between the sequence method and the pharmaco-

logical method (i.e. the Oxford method) regarding the calculation of baroreflex gain. The

sequence method used in the present study estimates baroreflex gain close to the Pm at the

operating point, whereas the pharmacological method used in previous studies [7,12,38,44,45]

calculates maximum gain [26]. The Pm at the operating point for S. merianae was estimated to

be higher than Pm at the midpoint of the fH baroreflex response range [44], which is used to

calculate G50 [46]. Therefore, the two methods estimate gain at different regions of the barore-

flex response curve (Fig 2). A steeper slope at the midpoint of the fH baroreflex response range

increases G50. We speculate that, when Tb increases, the slope of the baroreflex sigmoidal

curve at the operating point decreases, whereas the slope at the midpoint of the fH baroreflex

Table 1. Temperature effects on the hemodynamic variables.

Variable Body temperature ANOVA

15˚C 25˚C 35˚C F2,31 P

fH (bpm) 12.83±4.17a 22.48±9.49b 42.74±19.10c 37.611 <0.001

PI (s) 5.04±1.28 a 3.14±1.32 b 1.62±0.58 c 34.974 <0.001

Ps (kPa) 6.24±1.47 7.08±1.27 7.24±1.73 1.646 0.219

Pd (kPa) 4.35±0.94 4.95±0.96 5.15±1.41 1.524 0.243

Pm (kPa) 4.98±1.09 5.66±1.03 5.84±1.50 1.591 0.230

Pp (kPa) 1.89±0.76 2.13±0.66 2.09±0.61 1.003 0.385

Gop (s × kPa-1) 5.46±2.60a 5.00±5.02a 1.52±0.66b 7.585 0.004

Gnorm (unitless) 5.25±2.07 7.95±5.80 5.39±1.82 2.065 0.154

BEI (unitless) 0.42±0.13 0.31±0.14 0.37±0.09 2.988 0.074

τ (s) 5.87±2.56a 2.90±1.43b 1.92±1.01b 16.472 <0.001

τ/PI (unitless) 1.21±0.58 0.99±0.43 1.25±0.69 0.678 0.520

OPF (unitless) 0.20±0.06 0.20±0.05 0.19±0.05 0.158 0.855

fH = heart rate; PI = pulse interval; Ps = systolic pressure; Pd = diastolic pressure; Pm = mean arterial pressure; Pp = pulse pressure; Gop = baroreflex gain at the operating

point; BEI = baroreflex effectiveness index; τ = pressure decay time constant; τ/PI = ratio between pressure decay time constant and pulse interval; OPF = oscillatory

power fraction. Different letters denote statistical differences according to temperature changes (one-way ANOVA for repeated measurements and Tukey test;

P < 0.05). Data are presented as mean ± s.d. (n = 11).

https://doi.org/10.1371/journal.pone.0242346.t001
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response range increases at the same conditions (Fig 2). In this way, it is possible that increased

Tb could induce reductions in Gop at the same time G50 increases.

Nonetheless, the higher Gop at 15˚C and 25˚C indicates the sensitivity for correction of arte-

rial pressure perturbations are enhanced. Since longer PI leaves more time for pressure to

decay, it is possible that this increased Gop helps S. merianae to better protect against hypoten-

sion. The unaltered normalized gain values (Gnorm; Table 1) indicate that the baroreflex sensi-

tivity in the tegu lizard is actively optimized to work at the different fH and blood pressure

conditions imposed by different Tb. This is further substantiated by the unaltered BEI over

temperature changes (Table 1).

The two-element Windkessel model (Eq 3) fitted well to our dataset (R2 > 0.999; Fig 1C).

Increased temperatures led to decreased τ (Table 1), probably as a result of reduced arterial

resistance [4,8,47], indicating pressure during diastole falls faster at 25˚C and 35˚C. However,

the ratio τ/PI was similar at all temperatures tested (Table 1), meaning that the time for pres-

sure decay was proportional to pulse interval. A constant relationship between τ and PI was

also observed for mammals where fH decreases as an effect of scaling with body size, and was

argued as the reason why Pp and Pd were unaltered [48]. Likewise, the constant Pp and Pd

exhibited by S. merianae in the present study are probably the result of the proportional

changes of τ related to PI. This conclusion was supported by the unvarying OPF at all tempera-

tures (Table 1), indicating that the relative energy expended by the heart at each cardiac cycle

remains constant (~18–20% energetic waste) throughout the temperature gradient experi-

enced by resting S. merianae in our experiments.

The present study was the first to evaluate the efficiency of the orchestrated baroreflex

response from both heart rate and vascular regulation to temperature variations in an ecto-

therm vertebrate. Here, we demonstrated that both responses are adjusted in concert to regu-

late the arterial blood pressure at different Tb. For example, Gop was exacerbated when Tb

dropped from 35˚C to 25˚C, possibly as a stronger response to hypotension since pressure

decayed for longer and τ was similar between these two Tb. On the other hand, τ increased

when Tb reduced from 25˚C to 15˚C, while Gop remained unchanged. Those adjustments

Fig 2. Schematic figure comparing baroreflex sensitivity assessed by two different methods. The sigmoidal

baroreflex curves represent a theoretical response to body temperature (Tb) changes. The sequence method estimates

gain at the operating point (Gop; red circle), whereas the pharmacological method estimates maximum gain (G50; blue

circle). The slope at the specific point of the curves are in red for Gop, and blue for G50. Note that, while the slope at Gop

is less inclined at higher Tb, slope at G50 is steeper.

https://doi.org/10.1371/journal.pone.0242346.g002

PLOS ONE Baroreflex in tegu lizards

PLOS ONE | https://doi.org/10.1371/journal.pone.0242346 November 23, 2020 6 / 10

https://doi.org/10.1371/journal.pone.0242346.g002
https://doi.org/10.1371/journal.pone.0242346


ensured similar Pm at all Tb tested, and prevented the amplification of pressure oscillations

when PI increased, thus minimizing the cyclic waste of cardiac energy. Therefore, the present

data underlines the fundamental role of the vascular regulation, in addition to the baroreflex-

related heart rate response, in sustaining blood pressure homeostasis and cardiac efficiency of

S. merianae at different Tb.
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Validation: Renato Filogonio, Hans Malte.

Visualization: Karina F. Orsolini, Cléo A. C. Leite.
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