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Numerous pathological conditions, including cancer, inflammatory diseases, and

neurodegenerative diseases, are accompanied by overproduction of reactive oxygen

species (ROS). This makes ROS vital flagging molecules in disease pathology.

ROS-responsive drug delivery platforms have been developed. Nanotechnology

has been broadly applied in the field of biomedicine leading to the progress of

ROS-responsive nanoparticles. In this review, we focused on the production and

physiological/pathophysiological impact of ROS. Particular emphasis is put on the

mechanisms and effects of abnormal ROS levels on oxidative stress diseases,

including cancer, inflammatory disease, and neurodegenerative diseases. Finally, we

summarized the potential biomedical applications of ROS-responsive nanocarriers in

these oxidative stress diseases. We provide insights that will help in the designing of

new ROS-responsive nanocarriers for various applications.
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INTRODUCTION

Oxygen is necessary for aerobic respiration in living bodies. It is required in oxidative metabolism
for the generation of adenosine triphosphate. However, partial reduction of molecular oxygen is
mutagenic as it leads to the formation of reactive oxygen species (ROS) (Kaelin and Thompson,
2010). ROS constitutes a collective terminology referring to oxygen-derived free radicals and
small molecules consisting of superoxide anion (O2·

−), hydroxyl free radical (·OH), hydrogen
peroxide (H2O2), hypochlorous acid (HOCl), singlet oxygen (1O2), and so on (Bayr, 2005; Giorgio
et al., 2007; Trachootham et al., 2009; Dickinson and Chang, 2011; Gligorovski et al., 2015). O2·

−

is the primary ROS produced by metabolic processes. Activation of oxygen with an electron
from physical irradiation produces O2·

−, which generates ROS through a series of reactions.
O2·

− directly interacts with other molecules through enzymatic or metal-catalyzed processes to
produce secondary ROS (Imlay, 2003; Valko et al., 2006; Hayyan et al., 2016). ROS is indispensable
for normal physiological functions as they participate in cell signaling, immunity, and tissue
homeostasis (Bryan et al., 2012; Ray et al., 2012; Nathan and Cunningham-Bussel, 2013; Nosaka
and Nosaka, 2017).
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ROS is considered as a double-edged sword playing beneficial
or unavoidable toxic functions in living systems, depending
on the equilibrium between ROS production and antioxidants.
ROS is essential for physiological metabolism at normal
concentrations. They regulate cellular response to hypoxia and
resistance to infectious agents and participate in several cell-
signaling systems. However, very high or low ROS levels directly
or indirectly result in the pathogenesis of various diseases
(Bandyopadhyay et al., 1999; Di Rosanna and Salvatore, 2012;
Franceschi et al., 2018). Generally, numerous substances in
cells are susceptible to the effects of ROS. ROS causes cellular
damage and results in the formation of harmful by-products,
such as lipid oxides and lipid peroxides. Similarly, excessive
ROS causes damage proteins and DNA, blocks enzyme activity,
or even leads to cancer (Kumar et al., 2008; Mouthuy et al.,
2016; Kunkemoeller and Kyriakides, 2017; Franceschi et al.,
2018). The imbalance in ROS generation and elimination is
believed to be implicated with the oxidative stress, resulting in
mitochondrial dysfunction. Oxidative stress directly or indirectly
causes various diseases (Andersen, 2004; Barnham et al., 2004;
Houstis et al., 2006; Ishikawa et al., 2008; Fraisl et al., 2009;
Trachootham et al., 2009), including stroke (Sarmah et al.,
2019), sepsis (Hoetzenecker et al., 2012), diabetes (Liang et al.,
2018), hypertension (Touyz, 2003), neurodegenerative diseases
(Radi et al., 2014), inflammation (Blaser et al., 2016), and
cancer (Schumacker, 2015). Restoring the appropriate ROS
concentration by regulating ROS production or neutralizing ROS
is a potentially effectivemeans of preventing and treating diseases
related to oxidative stress (Zhou et al., 2016).

The unique redox microenvironment distinguishes the
pathological area from the surrounding normal environment
(Forman and Torres, 2001; Gomberg, 2020). For instance, the
concentration of H2O2 in healthy human plasma is ∼1 to 8µM
(Lacy et al., 2000), whereas its level following activation of
macrophages is as high as 1,000µM (Droge, 2002; Yao et al.,
2019). The concentration of hydrogen peroxide in respiratory
lining cells is nearly 0.1 to 1µM, but this increases by 20-fold
in cases of inflammatory lung disease (Sznajder et al., 1989;
Burgoyne et al., 2013). Developing ROS-responsive agents is
postulated to be a promising solution to control the detrimental
effects of ROS in cells (Liang and Liu, 2016; Hu et al., 2017; Zhang
et al., 2019). Changes in the chemical structure, biochemical, or
physical properties of ROS-responsive materials are induced by
environmental stimuli (e.g., light, enzymes, pH, ionic strength,
temperature, etc.) (Wang et al., 2014; Fang et al., 2015; An
et al., 2016; Dou et al., 2017; Lee et al., 2018; Qiao et al., 2018;
Xiang et al., 2018; Yang et al., 2020b). So far, stimuli-responsive
agents have been extensively studied in biotechnology, as well as
biomedicine fields (Hoffman, 2013; Grzelczak et al., 2019; Ovais
et al., 2020). Redox-reactive materials hold huge promise in the
design of drugs and gene delivery systems to target site-specific
disease sites based on overproduction of ROS, protecting the
cells against oxidative stress. This is because they can sense and
eliminate active oxygen.

Nanotechnology provides numerous applications in the field
of biomedicine. The development of nanotechnology has resulted
in considerable progress in the design of nanoparticles (NPs)

targeting ROS responses. Many researchers have studied the
preparation and application of some ROS-responsive NPs
(Tapeinos and Pandit, 2016; Xu et al., 2016; Saravanakumar et al.,
2017; Ballance et al., 2019; Fan and Xu, 2020). Herein, we focused
first on the production and physiological/pathophysiological
effects of normal levels of ROS. Then the roles of ROS in
cancer, inflammatory diseases, and neurodegenerative diseases
were clarified. Moreover, we also focused on the latest progress
of various ROS-responsive nanocarriers and highlight the
mechanisms by which nanocarriers respond to changes in
the oxidative microenvironment and its potential biomedical
applications in three aspects, including cancer, inflammatory
diseases, and neurodegenerative diseases (Figure 1).

ROS PRODUCTION AND
PHYSIOLOGICAL/PATHOPHYSIOLOGICAL
EFFECTS

The Generation of ROS
In 1954, Commoner et al. (1954) discovered free radicals in
various freeze-dried biological materials. In the same year,
Gerschman (1954) proposed that oxidized free radicals derived
from partially reduced oxygen cause oxygen poisoning and
related diseases. Harman (1956) subsequently defined these
oxidizing free radicals and small molecules as ROS. ROS is
produced by healthy cells during metabolism and in specific
subcellular compartments (mainly mitochondria, Figure 2A,
West et al., 2011). Activation of the nicotinamide adenine
dinucleotide phosphate oxidase (NOX) complex located in the
cell membrane generates ROS in some cancer cells (Figure 2B,
Brandes et al., 2014). The endoplasmic reticulum also produces
ROS; for example, flavoenzyme endoplasmic oxidoreductin-1
uses O2 as a 2-electron receptor to produce H2O2 (Nathan and
Cunningham-Bussel, 2013). O2·

−, as the first generated ROS,
acts as a signaling molecule in aerobic organisms and regulates
multiple physiological processes, including cell aging, apoptosis,
and host defense (Newsholme et al., 2016). The monovalent
reduction between O2 and NADPH molecules generates O2·

−,
which is converted to H2O2 and has a relatively short biological
life span (Bhattacharjee, 2019). Notably, H2O2 is the most stable
form of ROS and diffuses freely within and between cells. Besides
direct oxidative injury, O2·

−and its by-product H2O2 participate
in the formation of other reactive substances (Bolduc et al.,
2019). For instance, O2·

− results in the production of highly
reactive hydroxyl groups (·OH) through the Haber-Weiss cycle
or a Fenton-type reaction.

HOCl is another type of ROS produced by the catalytic
reaction of myeloperoxidase (MPO) and eosinophil peroxidase
with H2O2 and Cl− in body fluids (Freitas et al., 2009). HOCl
is 100 to 1,000 times more destructive than O2·

− and H2O2.
Moreover, when it reacts with other biologically active molecules,
it produces even more toxic effects than O2·− and H2O2.
HOCl promotes the production of 1O2, a free radical with high
reactivity with many biomolecules (Winterbourn, 2008). ·OH,
HOCl, and 1O2 are considered secondary ROS in comparison
with the original ROS (O2·

− and H2O2). They cause higher
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FIGURE 1 | ROS-responsive nanocarriers for various applications. The abundant material chemistry endows nanocarriers with unique ROS-responsive properties for

the treatment of various pathological diseases, such as cancer, inflammation, neurodegenerative diseases, etc.

FIGURE 2 | The major cellular sources of ROS production. (A) The mitochondria sources of ROS (West et al., 2011) (Copyright 2011, reproduced with permission

from Elsevier). (B) The NADPH sources of ROS (Brandes et al., 2014) (Copyright 2014, reproduced with permission from Elsevier).
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oxidative damage to cells and tissues. Therefore, under stress
conditions, it is crucial to prevent secondary ROS-induced
oxidative damage. Unfortunately, there are no endogenous
protective enzymes specific for these secondary ROS.

The Effect of Normal Levels of ROS on
Physiological/Pathophysiological Process
A basal level of ROS can participate in many important
physiological processes and play an important role in various
signal cascades, such as the responses to growth factor
stimulation or inflammation (Finkel, 2011; Le Belle et al., 2011;
Beckhauser et al., 2016). ROS is involved in numerous cellular
processes, including cell growth, proliferation, differentiation,
apoptosis, cytoskeleton regulation, contraction, and migration.
A healthy human body needs protection from the inflammatory
responses, which eliminate harmful stimuli and initiate the
healing process (Clark, 1999; Lamkanfi and Dixit, 2012). The
NOX complex is rapidly activated by soluble factors and
stimulants through interactions with cell surface receptors,
leading to massive ROS oxidation (Lambeth, 2004). Numerous
studies have confirmed that ROS acts as secondary messengers to
regulate the production of inflammatorymolecules and cytokines
(Blaser et al., 2016; Missiroli et al., 2020). For instance, ROS
stimulates macrophages to release tumor necrosis factor and the
proinflammatory cytokine interleukin 1 (IL-1) (Hsu and Wen,
2002).

Active cellular proliferation produces H2O2, which influences
the proliferation and differentiation of stem cells. For example,
H2O2 is produced during proliferation of adult neural
hippocampal progenitor cells, which then regulate self-
renewal as well as neurogenesis via the PI3K/Akt signaling
cascade. H2O2 augments overall proliferation of neural stem
cells (NSCs) at moderate concentrations (Le Belle et al., 2011).
At the same time, H2O2 is also considered as an intracellular
signaling medium for neuronal differentiation induced by
the nerve growth factor (Suzukawa et al., 2000). The rare
case of hypothyroidism has revealed another example of the
importance of ROS in health (Erdamar et al., 2008). H2O2 is
an essential cofactor for thyroid peroxidase, which is involved
in the production of thyroid hormone. Numerous studies
have shown that dual oxidase 2 (and possibly dual oxidase 1)
enzyme is required for H2O2 production and thyroid peroxidase
function (Ameziane-El-Hassani et al., 2005). Notably, patients
with congenital hypothyroidism possess dual oxidase 2 gene
mutations, providing strong support for this theory (Moreno
et al., 2002).

MECHANISMS AND EFFECTS OF
ABNORMAL ROS LEVELS ON OXIDATIVE
STRESS DISEASES

Cancer
Globally, cancer, following the cardiovascular disease, has the
second highest death rate. Chemotherapy is currently among
the primary clinical therapies for cancer; however, it is well-
known to have relatively serious side effects.While chemotherapy

drugs kill tumor cells, they additionally kill healthy cells and
severely damage the immune system (Blattman and Greenberg,
2004). At the same time, multiple rounds of treatment with
chemotherapeutic drugs cause cancer cells to become resistant,
rendering the chemotherapy drugs ineffective (Riley et al., 2019).
ROS has a critical influence on the progression of the cell cycle
of malignancy cells through their role in energy metabolism,
cell movement, cell state maintenance, cell proliferation, and
apoptosis (Liou and Storz, 2010). Notably, ROS plays a dual
function in tumors; they promote tumor proliferation, survival,
and adaptation to hypoxia (Tafani et al., 2016). Cancer cells
increase their metabolism and adapt to hypoxia to increase their
ROS production rate to overactivate cancer-promoting signaling.
On the other hand, ROS promotes antitumor signaling and
triggers cancer cell death induced by oxidative stress (Reczek
andChandel, 2017).Moreover, ROS promotes tumorigenic signal
transduction by overactivating the PI3K/Akt/mTOR survival
cascade and by oxidation and deactivation of phosphatase
and tensin homolog deleted on chromosome ten (PTEN) and
protein tyrosine phosphatase 1B (PTP1B) phosphatase (negative
modulators of PI3K/Akt signal transduction). The carcinogenic
stimulation of Akt elevates ROS production to additionally
promote cancer cell proliferation and survival (Clerkin et al.,
2008; Cairns et al., 2011). Other relationships between cancer
and ROS have also been elucidated. For example, ROS promote
tumor cell survival by activating nuclear factor κB and Nrf2
(transcription factors that up-modulate antioxidant expression),
which enable malignancy cells to escape ROS-mediated cell
apoptosis (Morgan and Liu, 2011). ROS production decreases
with the destruction of the mitochondrial respiratory chain,
reducing the occurrence of tumors (Weinberg et al., 2010).
In response to glucose and hypoxia deficiency, cancer cells
undergo metabolic transformations, including AMP protein
kinase activation, hypoxia-inducible factor (HIF) stabilization,
and the use of a carbon metabolism axis (Denko, 2008). This
raises the production of NADPH and ROS while leading to
tumor angiogenesis and metastasis (Ye et al., 2014). ROS
formation is additionally promoted by the release of O2·

−,
·OH, and H2O2 from the mitochondrial electron transport
chain. ROS then stabilizes HIF-1α in normoxia and hypoxia
(Huang et al., 1996). ROS plays an essential role in cancer
cell metastasis by stimulating matrix metalloproteinases that
break down constituents of the extracellular matrix to promote
cancer cell invasion and infiltration (Folgueras et al., 2004). This
stimulates the formation of the infiltrating foot, a membrane
protrusion in cancer cells that is rich in actin, and participates in
the proteolysis and invasion behavior of malignancy cells (Morry
et al., 2017).

Inflammatory Diseases
Inflammation is related to many types of diseases, such as
arthritis, coronary heart disease, myocardial infarction, asthma,
and cystic fibrosis (Franceschi et al., 2018). Mounting research
evidence shows that the overproduction of free radicals at
the inflammatory area is related to the pathogenicity of
associated diseases (Droge, 2002) Notably, ROS production
has been reported to stimulate NLRP3 inflammatory body
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assembly in a ROS-sensitive manner (Hughes and O’Neill, 2018).
The primary source of ROS in response to harmful stimuli
constitutes the mitochondria, which also directs inflammation
by releasing mitochondrial DNA. Uncontrolled ROS production
bymitochondria, hyperactivated leukocytes, and endothelial cells
under chronic inflammation eventually leads to serious cell and
tissue damage, further promoting and aggravating inflammatory
damage. In numerous inflammatory diseases, the presently
available intervention approaches have limited or no success
(Hotamisligil, 2017); hence, we require new methods of treating
chronic inflammatory diseases. It is assumed that the persistence
of oxidative stress promotes these harmful inflammatory
processes and could serve as new targets for treating chronic
inflammation (Mittal et al., 2014). Rheumatoid arthritis (RA) is
a systemic autoimmune disease with unknown etiology typified
by chronic joint pain, macrophage invasion, and activated T-
cell infiltration. The redox-sensitive signaling cascades cause
abnormal expression of several adhesion molecules related to
RA, which also cause monocytes and lymphocytes to migrate
into the synovium in RA patients (Hitchon and El-Gabalawy,
2004). Atherosclerosis is a disease characterized by arterial wall
thickening and is considered an inflammatory disease because
it promotes the recruitment, expansion, and maintenance of
monocytes/macrophages. This is due to the expression of
endothelial cell factors constituting adhesion molecules and
chemoattractants (Kinscherf et al., 1999) Oxidative stress induces
overexpression of protein kinases and intercellular adhesion
molecules, further promoting the infiltration of monocytes,
smooth muscle cells, and macrophages (Droge, 2002). These cells
bind to oxidized low-density lipoprotein, activate monocytes as
well as macrophages, stimulate the Mn superoxide dismutase
expression, and increase the levels of H2O2 (Yang et al., 2017).
This high aggregation of ROS is thought to contribute to
the development of atherosclerosis by causing high levels of
macrophage apoptosis (Kinscherf et al., 1999).

Neurodegenerative Diseases
Diseases in which neuronal loss progresses slowly are collectively
referred to as neurodegenerative diseases (Manoharan et al.,
2016). The common neurodegenerative diseases include
amyotrophic lateral sclerosis (ALS), Parkinson disease (PD),
Huntington disease (HD), and Alzheimer disease (AD). The
brain has a high requirement for oxygen and a comparatively
high level of redox-active metals, e.g., iron or copper, which
play catalytic roles in the production of ROS (Cheignon
et al., 2018). Consequently, the brain is more susceptible to
suffer from oxidative stress (Liu et al., 2017c). Additionally,
as the concentration of polyunsaturated fatty acids in the cell
membrane increases, the brain becomes more prone to lipid
peroxidation (Youdim et al., 2000; Barnham et al., 2004). The
causes of neurodegenerative diseases are closely related to
oxidative stress (Uttara et al., 2009; Melo et al., 2011). Analysis of
AD pathogenesis revealed that the deterioration of antioxidant
status, mitochondrial deterioration, and increased apoptosis
accompany poor antioxidant status (Manoharan et al., 2016).
Physiologically, the brain has a low antioxidant capacity, and
the glial cells and neurons have a relatively strong metabolism

and higher oxidation sensitivity and are more likely to produce
excessive superoxide free radicals, altogether making the brain
more prone to oxidative stress, which causes AD (Nakajima and
Kohsaka, 2001; Gadoth and Göbel, 2011). Similarly, oxidative
stress is closely related to the pathogenesis of PD, ALS, and HD.
The occurrence of diseases, such as PD, also leads to excessive
ROS production. Numerous studies have shown that PD reduces
the activity of the respiratory chain complex I, resulting in
excessive ROS (Schapira, 1998; Guo et al., 2013). At the same
time, dopamine metabolism at the site of the disease increases,
causing the accumulation of toxic oxidative free radicals (Cadet
and Brannock, 1998).

ROS-Responsive Nanocarriers and Their
Applications
The results of our group and numerous other studies show that
ROS could be used as a target or biosignature for the treatment
of various diseases (Huang et al., 2017, 2020; Mei et al., 2018;
Lai et al., 2019; He et al., 2020; Yang et al., 2020a,c; Zhao et al.,
2020). Reactive oxygen species–responsive materials refers to
materials capable of responding to those elevated ROS, such as
H2O2, O

2·−, 1O2, and so on. There have been great progress
in nanomedicines and responsive materials used in biomedical
fields (Tao et al., 2017, 2019; Qiu et al., 2018, 2019; Luo et al., 2019;
Feng et al., 2020; Hu et al., 2020; Kong et al., 2020; Tang et al.,
2020; Xie et al., 2020). ROS-responsive nanocarriers have some
unique advantages for therapy compared with these reported
materials. ROS-reactive agents are activated by ROS in vivo
to produce corresponding physical or chemical changes. ROS-
reactivematerials could be utilized as imaging agents, site-specific
delivery agents, and drugs for the treatment of various diseases.
They could additionally be employed to modulate the tissue
microenvironment and enhance the regeneration of tissues, as
well as navigating and sensing via programmed changes in
material properties (Tapeinos and Pandit, 2016; Saravanakumar
et al., 2017; Ballance et al., 2019). Depending on its reaction to
oxidation, the mechanisms of ROS-reactive functional groups are
categorized into two main classes, namely, the change of physical
characteristics (solubility) and the change in chemical bonds
accompanying polymer degradation. The responsiveness of these
ROS-responsive functional groups under diverse conditions is
dependent on the type of ROS, the structure of the polymer, the
shape of the material, and the exposure time.

So far, top-down and bottom-up are the two main methods
for the fabrication of NPs, including the nanocarriers (Chan
and Kwok, 2011; Qiu et al., 2018). Generally, most of the ROS-
responsive nanocarriers are formed by bottom-up methods. The
small drug molecules or polymers can be built up into NPs with
bottom-up methods, but the shape, size, and dispersity are not
easily to control, while the top-down method can be used in
the fabrication of NPs with well-controlled shape and uniform
size (Chan and Kwok, 2011). Maruf et al. (2020) fabricated red
blood cell membrane–coated ROS-responsive 5-aminolevulinic
acid prodrug nanostructures with robust atheroprotection using
the top-down method.
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Drug carriers, in the form of NPs, which respond to ROS,
are designed to release their payloads in response to high
ROS levels by increasing emissions or explosions. The drug
molecules contained in these particles are small compounds
or biomolecules. The particles can be used with a group of
chemicals that react with ROS to create a charge and change
the hydrophilicity, bonding, breaking, or otherwise stimulate
the reaction at the particle. Overall, these reactions cause
the swelling of particles, separation of particles, or increased
release of drug molecules from particles. Researchers choose
specific mechanisms for particle operations and drug delivery,
respectively, depending on the final target of the particles.
Currently, most of the ROS-responsive nanocarriers reported
show low toxicity toward their own in vitro and in vivo cell
and animal evaluation models, and the loading capacity of these
nanocarriers depends on the carrier itself and the interaction
of between the carriers and the payloads. In this section, we
will discuss NPs that respond to ROS and their use as drug
delivery carriers for various applications in cancer, inflammation,
and neurodegenerative diseases. Some representative ROS-
responsive agents and their biomedical applications are also
summarized in Table 1.

Application of ROS-Responsive NPs for
Cancer Therapy
In cancer cells, the concentration of ROS is higher compared
with the normal cells because of the constant generation of
ROS as the by-products of aerobic metabolic processes resulting
from oncogenic transformation (Kong and Chandel, 2020).
The elevated ROS levels in malignancies are employed in the
design of ROS-responsive nanoagents, which promote site-
specific drug release. Themost common typical groups utilized in
the design of ROS-responsive components include boronic ester,
thioketal, and sulfide groups (summarized in Table 1). These
ROS-responsive components result in the design of drug carriers
for the systematic delivery of chemotherapy.

Selenium (Se) is a chalcogen element widely present in some
proteins capable of maintaining the cellular redox homeostasis
(e.g., glutathione peroxidase, thioredoxin reductase) (Chaudhary
et al., 2016). Se-containing particles can oxidize and change their
hydrophilicity in response to ROS. Various Se derivatives of
inorganic, organic, and amino acids have been found to exhibit
biological activity primarily via antioxidant and pro-oxidant
mechanisms (Lai et al., 2019; Huang et al., 2020). The different
oxidation states (−2, 0, +4, +6) and forms of Se contribute
to the antioxidant effects of Se. The direct antioxidant function
of Se is conferred by some of the selenoproteins that directly
protect against oxidative stress. Moreover, the regeneration of
low-molecular-weight antioxidants (Q10, vitamins C and E, etc.)
mediated by selenoproteins makes Se an indirect antioxidant
(Hatfield et al., 2009; Lobanov et al., 2009). However, at elevated
doses, Se typically turns into a pro-oxidant with well-established
growth inhibiting properties and high cytotoxic activities.
Toxicity of Se compounds is thus strictly dependent on the
concentration of Se-binding chemical species and the associated
redox potential (Weekley and Harris, 2013). Therefore, in

addition to redox function of modified Se NMs, anticancer
activity of differently modified Se NMs has also been reported
(Liu et al., 2015, 2016). Epidemiological studies have shown
that SeNPs can effectively prevent and treat diseases related to
oxidative stress. The overproduction of ROS is an important
contributor for cisplatin-induced nephrotoxicity. Our group
developed a polyphenol-functionalized SeNPs (Se@TE NPs)
using microwave-assisted method (Lai et al., 2019). Se@TE NPs
showed renal protection activities through reducing the cisplatin-
induced ROS. The facial tea polyphenols are ROS-responsive
and could be consumed with the explosion to ROS, releasing
the inner SeNPs. The suppressing of p53 phosphorylation and
regulating of AKT and MAPKs signaling pathways of Se@TE
NPs were confirmed in HK-2 cells. Further mechanistic studies
suggested that Se@TE NPs showed its protective effects in
the form of selenomethionine (Se-Met) and selenocystine (Se-
Cys2), activating selenoenzymes and eliminating the excessive
ROS (Figure 3). Recently, in our other Se-related work, we
paid attention to the chiral nanomaterials and fabricated a
chiral glutathione (GSH) SeNPs (G@SeNPs), coated with GSH
on the surface of SeNPs, capable of preventing oxidation
damage caused by palmitic acid (Huang et al., 2020). G@SeNPs
showed ROS-responsive and clearance activities in INS-1 cells.
Positron emission tomography imaging of chiral G@SeNPs in
vivo illustrated that the 64Cu-labeled L-G@SeNPs were cleared
slower in organs than D-G@SeNPs because of the homologous
adhesion between L-GSH and the L-phospholipid membrane.
This remaining higher concentration of L-G@SeNPs contributed
to the stronger antioxidant activities.

Zhang et al. (2015) developed a biocompatible ROS-
responsive β-cyclodextrin (β-CD) NPs through the conjugation
of 4-phenylboronic acid pinacol ester (PBAP) onto the hydroxyl
groups of β-CD for upgraded drug delivery applications. Because
of the sensitivity of boronic ester units to the oxidation-
responsive microenvironment, the newly obtained (Ox-bCD)
material is hydrolyzed into parent β-CDmolecules when exposed
to ROS, displaying superior biocompatibility both in vitro and
in vivo. Additionally, other therapeutics, such as imaging agents
and biomacromolecules, can also be transported using this ROS-
triggered nanocarrier for different applications.

Proteins have also been used as carriers for ROS-responsive
cancer therapy. For instance, a protein-based delivery system
named RNase A-NBC is responsive to ROS designed through
a convenient chemical conjugation of 4-nitrophenyl 4-(4,4,5,5-
tetramethyl-1,3,2-dioxaborolan-2-yl) benzyl carbonate (NBC)
with the lysine residues of RNase A. These RNase A-NBC NPs
present with minor cytotoxicity against normal cells but selective
inhibition cytotoxicity against tumor cells because of the high
concentration of ROS in malignant cells compared with the
healthy cells. The high levels of H2O2 react with the amide bond
and induce the lysine deprotection in cancer cells, reestablishing
the cytotoxicity effect of RNase A in tumor cells. These protein-
based pharmaceutical products are used as a tool targeting ROS-
responsive cancer therapy (Wang et al., 2014).

ROS is elevated in the tumor microenvironment and the
biotin transporter; avidin is overproduced in many tumors.
The cancer-targeting ROS-responsive nanocarriers release
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TABLE 1 | Representative ROS-responsive materials and their biomedical applications.

ROS-responsive materials Nanocarriers Application References

Selenium Diselenide block copolymers Oxidants and reductants dual-responsive

combining radiotherapy and chemotherapy.

(Ma et al., 2010b)

Diselenide-containing polyelectrolyte multilayer

film

Combination of chemotherapy and

photodynamic therapy

(Ren et al., 2013)

Phosphate segments and selenide groups

polymer

H2O2-triggered drug release for cancer

treatment

(Liu et al., 2013)

Selenium-containing polyphosphoester

nanogels

ROS induced the release of Dox for cancer

treatment

(Zhang et al., 2018)

Selenium-containing amphiphilic block

copolymer PEG-PUSe-PEG

Oxidation-responsive release of Dox (Ma et al., 2010a)

Sulfur Polypropylene sulfide nanoparticles Reduce the tissue reaction to neuroprostheses (Mercanzini et al., 2010)

Free-blockage mesoporous Nanoparticles ROS induced the release of Dox for cancer

treatment

(Cheng et al., 2017)

Thioether linked conjugates GSH and ROS dual-responsive for cancer

chemotherapy

(Luo et al., 2016)

Thioketal nanoparticles (TKNs) loaded with

TNF-α-siRNA

ROS-sensitive nanoparticles targeting

inflammation with oral administration

(Wilson et al., 2010)

Tellurium Coassemblies of tellurium-containing

molecules and phospholipids

ROS-responsive with good biocompatibility (Wang et al., 2015)

Hyperbranched tellurium-containing polymers Site-specific elimination of excess ROS (Fang et al., 2015)

Tellurium-containing polymer (PEG-PUTe-PEG)

based nanoparticles

Near-infrared light stimuli-responsive

synergistic therapy for cancer

(Li et al., 2017a)

Tellurium-containing polymer micelle Combination of chemo- and radio-therapies

with responsive to both H2O2and 2Gy gamma

radiation

(Cao et al., 2015)

Oxalate esters Poly(vanillin oxalate) (PVO) nanoparticles H2O2-responsive nanoparticles for the

treatment of ischemia–reperfusion injury

(Kang et al., 2016)

Poly(vanillyl alcohol-co-oxalate) (PVAX)

polymers

Oxidation-responsive nanoparticles for

anticancer drug delivery

(Huang et al., 2018)

Peroxalate nanoparticles In vivo imaging of H2O2 (Lee et al., 2007)

Hydroxybenzyl alcohol (HBA)-incorporated

copolyoxalate

H2O2 responsive nanoparticles for detection

and therapy of ischemia–reperfusion injury

(Lee et al., 2013)

Poly(vanillin oxalate) (PVO) H2O2- and acid-mediated hydrolytic

degradation with anti-inflammatory activity

(Kwon et al., 2013)

Phenylboronic acid (ester) Amphiphilic block copolymers containing aryl

boronate ester-capped block

Sustained drug release combination

chemotherapy with magnetic resonance (MR)

imaging

(Deng et al., 2016)

Conjugating phenylboronic acid pinacol ester

(PBAP) groups onto β-CD

ROS-responsive and H2O2-eliminating

materials for diseases associated with

inflammation and oxidative stress

(Zhang et al., 2017)

Boronic ester modified dextran polymer

nanoparticles

H2O2 responsive nanoparticles for ischemic

stroke treatment

(Lv et al., 2018)

Poly[(2-acryloyl)ethyl(p-boronic acid

benzyl)diethylammonium bromide]

(BA-PDEAEA, BAP) modified traceable

nanoparticles

H2O2 responsive nanoparticles for RNAi-based

immunochemotherapy of intracranial

glioblastoma

(Qiao et al., 2018)

the drugs into the tumor microenvironment, resulting in
higher antitumor efficacy. Based on the cancer-targeting and
ROS-responsive dual concepts, Lee et al. (2018) proposed
new bilirubin-based NPs (BRNPs) using biotin as cancer
targeting ligand and bilirubin as the ROS-responsive carrier.

Additionally, doxorubicin (Dox) is loaded as a therapeutic
drug. In the synthesis of this drug, bt-PEG-BR is first obtained
by reacting bilirubin and biotin-PEG, and then the Dox@bt-
BRNPs are prepared in a single-step self-assembly procedure,
with its size ∼100 nm (Figure 4). Dox is released from the
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FIGURE 3 | Tea polyphenol functionalized selenium nanoparticles reversed cisplatin-induced renal injury (Lai et al., 2019) (Copyright 2019, reproduced with

permission from Elsevier).

FIGURE 4 | Biotin-conjugated bilirubin nanoparticles (bt-BRNPs) are formed from biotin-PEG-bilirubin (bt-PEG-BR) and PEG-bilirubin (PEG-BR) (Lee et al., 2018)

(Copyright 2018, reproduced with permission from Elsevier). (A,B) Scheme for the synthesis of bt-PEG-BR starting from free bilirubin and biotin-PEG (A) and the

formation of bt-BRNPs by self-assembly from PEG-BRs and bt-PEG-BR in PBS (B). (C) Transmission electron microscopy (TEM) images of bt-BRNPs. Scale bar:

500 nm.

BRNPs after incubation with a peroxy radical precursor,

2,2
′

-azobis (2-amidinopropane) dihydrochloride, exhibiting
the ROS-responsive releasing activities. Dox@bt-BRNPs
has superior anticancer efficacy in biotin transporter–
overexpressing HeLa cells than the free Dox. Similar results

have been reported in xenograft mice. More BRNPs are
preferentially accumulated and distributed in tumor areas
than in other organs, as reported via in vivo fluorescence
imaging assays (Lee et al., 2018). The biodegradability
and biocompatibility of the bt-BRNPs made BRNPs as
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novel ROS-responsive nanocarriers for treating various
tumors effectively.

ROS/GSH-Responsive Nanocarriers for
Cancer Therapy
Compared with healthy cells, malignant cells have a strong
reduction environment because of the excessive production
of intracellular GSH. However, some cancer cells produce
excessive ROS simultaneously, resulting in increased oxidative
stress (Fang et al., 2009). Besides, regarding the redox potential
difference, cancer cells are characteristically heterogeneous.
The levels of GSH/ROS vary across different stages of tumor
growth and reproduction, and excessive production of ROS
and GSH is present in various cancers or different areas of
the same malignancy at the same time (Marusyk and Polyak,
2010). Nanocarriers capable of a dual response to ROS/GSH
have attracted broad interests because of their application
prospects in controllable packaging and drug delivery in
physiological environments.

Luo et al. (2016) reported a new redox dual-reaction prodrug
nanosystem self-assembled from paclitaxel (PTX), oleic acid
(OA), and thioether bonds. This novel prodrug nanosystem
provides a solution to issues associated with the low drug
loading and low-efficiency drug release of PTX hydrophobic
drugs and has been used for additional drug development. PTX
is released via thiolysis by GSH or oxidation by ROS and exhibits
potent in vivo antitumor efficacy in KB-3-1 tumor mice, without
non-specific toxicity to major organs and tissues (Luo et al.,
2016). This redox dual-sensitive polymers or complexes offer
effective anticancer drug delivery possibilities. In the work of

Chen et al. (2018), a type of thioketal NPs (TKNs) with double
reactivity to H2O2 and GSH was designed for PTX delivery. This
dual-responsive nanocarrier is sensitive to biologically relevant
levels of GSH, and H2O2, releases drugs on demand and is
biodegraded into biocompatible by-products after completing
drug delivery tasks, compared with other stimuli-responsive
nanocarriers (Figure 5). Given the variability in redox potential
gradients across different microenvironments in vivo, the TKNs
loaded with PTX (PTX-TKN) respond first to extracellular ROS,
followed by the intracellular GSH, to achieve the controlled
release of PTX into tumor sites. Both in vitro and in vivo findings
showed that PTX-TKN is selective for cancer cells with high ROS
and GSH levels.

Applications of ROS-Responsive
Nanocarriers in Combination Other
Therapy Strategies
Chemotherapy, combined with hyperthermia, has attracted
considerable research attention in disease treatment, such
as cancer. Photothermal therapy (PTT) has represented an
extraordinary non-invasive approach for cancer treatment, and
photothermal agents are able to covert near-infrared (NIR) light
into thermal energy under light irradiation. The NIR lasers
most commonly used in PTT are 808 and 980 nm, and the safe
power density limits are∼0.33 and∼0.726W cm−2, respectively.
Precise delivery of drugs to complicated and specific pathological
sites while controlling the quantitative release of drugs remains
challenging. Therefore, to ensure the simultaneous delivery of
chemotherapeutic drugs and photothermal agents to the tumor
area and achieve their synergistic effect, Xiao et al. (2015)

FIGURE 5 | Schematic illustration of the ROS and GSH dual-responsive nano-DDS, the structure of nano-DDSs, containing both ROS-responsive (purple) and

GSH-responsive (green) motifs (Chen et al., 2018) (Copyright 2018, reproduced with permission from American Chemical Society).
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developed a thermal and ROS dual-responsive polymer with
an alternating structure of hydrophilic and hydrophobic links
in its backbone. The triblock copolymer is easily synthesized
via thiophene polymerization of the poly(ethylene glycol) (PEG)
diacrylate and 1,2-ethanedithiol (EDT) monomer. Nile red is
effectively encapsulated into the core of the nanocarriers at
physiological temperatures and is released upon the destruction
of the NP triggered by oxidation. This adjustable thermal
response behavior combined with oxidizable thioether groups
renders these PEG-EDT copolymers as promising ROS-reactive
drug delivery system. Moreover, Wang and coworkers fabricated
a NIR light and ROS dual-responsive Se-inserted copolymer
(I/D-Se-NPs) for synergistic thermo-chemotherapy (Wang et al.,
2017). The photothermal agent (ICG) and the chemotherapeutic
drug (Dox) are loaded. A 785-nm irradiation at 1.0W cm−2 is
used to evaluate the photothermal conversion of I/D-Se-NPs. The
1Tm value of I/D-Se-NPs was 7.8◦C when the ICG was used
at a dose of 2.0 µg mL−1, exhibiting promising photothermal
conversion efficiency.

The combination of 1O2-responsive nanocarriers with other
treatment, such as photodynamic therapy (PDT), has remarkable
synergistic therapeutic effects (Wang et al., 2016; Yang et al.,
2016; Yu et al., 2016; Li et al., 2017b; Liu et al., 2017a). In
PDT, non-toxic photosensitizers are activated by exogenous light
of a specific wavelength to transfer their excited energy to
the surrounding oxygen to produce ROS. Ce6 is extensively
used in photodynamic treatment of cancer as a photosensitizer
and effectively generates 1O2 under light irradiation. Yang and
coworkers developed a smart mesoporous silica nanorod drug
delivery system with a photosensitizer chlorin e6 (Ce6) doped
in a bis-(alkylthio) alkene (BATA) as the nanocarrier, named
CMSNRs. The BATA linker is cleaved by 1O2 produced by
Ce6 after illumination with 660 nm light irradiation, Dox is
released from this 1O2-responsive CMSNRs both in vitro and
in vivo (Yang et al., 2016). Furthermore, Liu et al. (2017a)
developed light-controlled, 1O2-responsive polymers, NCP-Ce6-
DOX-PEG, through a solvothermal method with a size of about
70 nm (Liu et al., 2017a). UV-vis-NIR absorption spectrum
showed that the Ce6 and Dox were loaded in this nanocarrier
with the loading ratio of 80% of Ce6 (Figure 6). As low as 5
mW cm−2 light irradiates the release of 1O2, breaking the BATA
link. This accelerated 1O2-responsive nanoscale coordination
polymers in tumors are observed through computed tomography
imaging, and this combination of chemophotodynamic therapy
has excellent antitumor efficacy in vitro and in vivo (Liu et al.,
2017a).

Sun et al. (2019) designed photoactivatable photodynamic
PEG-coated drug nanoplatforms for core-shell cooperative
chemotherapy and PDT. A new type of photodynamic polymer
was rationally developed and synthesized through conjugation
of pyropheophorbide-a (PPa) with PEG 2000 (PEG2k). In this
system, PTX is encapsulated as the therapeutic drug, and PPa
is utilized as the hydrophobic and photodynamic part of the
amphiphilic PPa-PEG2k polymer. PPa-PEG2k is used in PDT
treatment; under laser irradiation, PPa-PEG2k produces ROS
and synergistically promotes endogenous ROS generation in
cancer cells to promote PTX release. Nanomicelles have also been

employed in the construction of a photoactivatable system. A
recent study on new nanomicelles constructed long-circulating
photoactivated nanocarriers via self-assembly of thioketal and
a PEG-stearyl amine conjugate (PTS) (Uthaman et al., 2020).
Dox and photosensitive pheophorbide A (PhA) are coloaded into
the formed nanocarriers to enhance local chemical and PDT
(Figure 7). The resulting Dox- and PhA-loaded nanocarriers
exhibit ROS stimulus responsiveness after accumulating in
the tumor area to release the internally loaded DOX and
PhA. Moreover, after laser irradiation of the tumor area, PhA
initially released into the tumor produces enhanced 1O2, thereby
promoting the rapid dissociation of nanocarriers and accelerating
the release of DOX. ROS triggers the photoactivated PhA to
release Dox, which increases local ROS levels gradually to
inhibit cancer cell growth and enhance antitumor immunity
synergistically. Therefore, the combination of ROS-sensitive PTS
nanocarriers with local chemical PDT is a promising method for
treating tumors.

Application of ROS-Responsive NPs for
Inflammation Treatment
In recent years, preclinical and clinical research has demonstrated
that excessive ROS at the inflammatory site accelerates disease
progress. Numerous studies utilize ROS as triggers in developing
ROS-responsive NPs carrying anti-inflammatory drugs (Pu et al.,
2014; Feng et al., 2016; Zhang et al., 2017, 2020; Chen et al.,
2019; Li et al., 2019, 2020; Ni et al., 2020). The release of loaded
drugs in the inflammatory joints improves patient symptoms.
Boronic esters are excellent and selective H2O2-responsive
units and are degraded under physiologically relevant H2O2

levels. Furthermore, these types of boronic ester–functionalized
nanomaterials possess good safety profiles. They are a promising
approach for the development of ROS-responsive nanocarriers
with significant potential for clinical translation. Zhang et al.
(2017) designed and synthesized a series of ROS-responsive
core-shell OxbCD NPs via conjugation of PBAP groups onto
a β-CD with H2O2-eliminating profiles (Figure 8A). These
OxbCD NPs have excellent antioxidant and anti-inflammatory
activities. The anti-inflammatory mechanisms of OxbCDNPs are
shown in Figure 8B. OxbCD NPs reverse the oxidative stress
and repress cell death triggered by H2O2 in RAW264.7 cells.
OxbCD NPs efficaciously decrease the secretion of the classic
inflammatory chemokines, such as MCP-1, MIP-2, and IL-8,
as well as the proinflammatory cytokines consisting of tumor
necrosis factor α (TNF-α), IL-1β, and IL-6, the expression levels
of which are high in H2O2 treatment macrophages. Additionally,
neutrophil infiltration andmacrophage recruitment are inhibited
with the treatment of OxbCD NPs. Moreover, OxbCD NPs
suppress the expression of the activation marker, MPO, and
other oxidative mediators. Finally, OxbCD NPs loaded with
anti-inflammatory drugs have superior efficacy as seen in an
acute inflammation model of peritonitis in mice. RA is an
immune-mediated inflammatory disease with higher levels of
ROS. ROS in arthritis tissues leads to the overproduction
of the cytokines consisting of TNF-α, IL-1β, and IL-6. The
interactions between these inflammatory factors and ROSmainly
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FIGURE 6 | The synthesis and characterization of NCP-Ce6-DOX-PEG nanoparticles (Liu et al., 2017a) (Copyright 2017a, reproduced with permission from Elsevier).

(A) The schematic illustration for the synthesis of NCP-Ce6-DOX-PEG nanoparticles. (B) A TEM image of NCP nanoparticles. The insert is an image with higher

resolution. (C) UV-vis-NIR spectra of NCP, NCP-Ce6, and NCP-Ce6-DOX. (D) Quantification of Ce6 and DOX loadings at different feeding concentrations of Ce6 and

DOX in ethanol. NCP solutions with the same concentration (0.05 mg/mL) were used in this experiment.

contribute to the acceleration of RA progression. Ni et al. (2020)
developed ROS-responsive dexamethasone (Dex)-loaded NPs
named Dex/folic acid (FA)-Oxi-αCD using α-cyclodextrin (α-
CD) as nanocarriers and FA as targeting group for the treatment
of RA (Figure 9). Dex/FA-Oxi-αCD is sensitive to H2O2, and
elevated levels of H2O2 promote the degradation of Oxi-αCD,
releasing Dex. An anti-inflammatory mechanism study revealed
that Dex/FA-Oxi-αCD inhibits the expression of iRhom2, TNF-α,
and BAFF in vitro and in vivo. FA modification accumulates the
biodistribution of Dex/FA-Oxi-αCD in the inflamed joints of RA,
and the therapeutic efficacy is significantly improved compared
to free Dex (Ni et al., 2020).

Chung et al. (2015) fabricated an inflammatory
microenvironment ultrasensitive ROS-responsive gas-generating
carrier for the treatment of osteoarthritis. In this work, the
PLGA hollow microsphere (HM) carrier is functionalized with
an anti-inflammatory drug, dexamethasone sodium phosphate
(DEX-P); an acid precursor (composed of ethanol and FeCl2);
and a bubble-generating agent, sodium bicarbonate (SBC).
As shown in Figure 10, in the inflammatory environment,
the encapsulated ethanol is oxidized by H2O2 in the presence
of Fe2+ by the Fenton reaction, producing an acidic milieu.
The decomposition of SBC in acidic conditions generates
CO2 bubbles to disrupt the shell wall of HM, and the payload
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FIGURE 7 | Schematic illustration of ROS cascade–responsive drug release of PTS-DP for enhanced locoregional chemophotodynamic therapy (Uthaman et al.,

2020) (Copyright 2020, reproduced with permission from Elsevier).

FIGURE 8 | (A) Design and synthetic routes of different H2O2-scavenging materials derived from β-CD, as well as engineering of anti-inflammatory nanoparticles. (B)

Schematic illustration of anti-inflammatory mechanisms of H2O2-eliminating OxbCD NPs (Zhang et al., 2017) (Copyright 2017, reproduced with permission from

American Chemical Society).
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FIGURE 9 | Schematic illustration of Dex-loaded ROS-responsive NPs for targeted RA therapy. The proposed mechanisms showing a cascade of events in

macrophages via the iRhom2–TNF-α-BAFF signaling pathway (Ni et al., 2020) (Copyright 2020, reproduced with permission from Elsevier).

anti-inflammatory drug DEX-P is released in high dosage
with potential efficacy against joint destruction (Chung et al.,
2015).

ROS/pH Response Nanocarrier for
Inflammation Treatment
Where ROS is excessively produced, the pH changes. For
example, compared to normal tissue/blood flow (pH ∼7.4),
the tumor/inflammation area is slightly acidic (pH 5.4–
7.1). Much drug development work has aimed at designing
nanoplatforms that respond to multiple stimuli to enhance
the performance of nanoagents through improved delivery
of drugs to the target site. Physiological pH gradients and
ROS levels have been extensively utilized in the design of
stimuli-responsive nanosystems to deliver drugs to target sites.
These delivery systems are usually based on an NP that
undergoes swelling, charge conversion, membrane fusion, or
bond-breaking after receiving pH and ROS signals. Actively
targeted NPs that can simultaneously respond to low pH
and high concentrations of ROS are potential nanocarriers
for the precise delivery of therapeutic drugs to the target
site. pH/ROS dual-responsive nanocarriers are constructed
by combining pH-sensitive materials and oxidation-responsive
materials. Through adjusting the weight ratio of the pH-
sensitive materials and oxidation-responsive materials, it is
possible to adjust the pH/ROS response capability, thereby

providing nanocarriers with different hydrolysis characteristics
in an inflammatory microenvironment. Studies have shown
that pH/ROS double-reactive NPs can be used as an effective
and safe nanocarrier for the precise treatment of vascular
inflammatory diseases.

The inflammatory bowel disease (IBD) is characterized by
high levels of ROS in the diseased sites, and oxidative stress is
involved in and contributes to the pathogenesis and progression
of IBD (Tian et al., 2017). Bertoni et al. (2018) synthesized
phenylboronic ester–modified dextran (OxiDEX) NPs loaded
with rifaximin (RIF) for targeted therapy of IBD, with a
sequential responsive behavior to both pH and ROS. The
permeability of OxiDEX NPs is remarkably lower compared
with the traditional enteric formulation in an in vivo intestinal
membrane mimicking the C2bbe1/HT29-MTX cell monolayer
model. High amount of the drug is transported to the diseased
sites, and the therapeutics efficacy is significantly improved,
reducing unspecific absorption and systemic side effects. Lin et al.
(2020) developed a polyadenylic acid micelle (PD-MC) based on
the ROS and pH dual-sensitive block polymer PEG-P (PBEM-
co-DPA). The micelles have excellent potential for improving the
biocompatibility of resveratrol glycosides and effective targeted
drug delivery into the liver fibrosis microenvironment. In vitro
and in vivo studies show that PD-MCs inhibit inflammation and
oxidative stress and reduce apoptosis of liver cells Notably, the
empty micelle promotes liver ROS depletion at the pathological
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FIGURE 10 | Composition/structure of the ultrasensitive ROS-responsive gas-generating HM developed herein and its mechanism in the treatment of OA (Chung

et al., 2015) (Copyright 2015, reproduced with permission from American Chemical Society).

site; hence, it has an anti-inflammatory effect. Therefore, PD-
MCs have great potential for clinical use in anti–liver fibrosis
drug treatment methods. More recently, Zhang et al. (2020)
designed a pH-sensitive β-CD material (ACD) and a ROS-
responsive β-CD material (OCD) NPs with loaded rapamycin
(RAP) for targeted treatment of vascular inflammatory diseases.
TheseNPs were constructed by the combination of a pH-sensitive
unit (ACD) and an oxidation-responsive unit (OCD) facilely
synthesized via acetylation of β-CD (Figure 11). The loaded
RAP molecule is released from the RAP/AOCD NP in high
levels of H2O2 or low pH inflammatory microenvironment.
IV collagen (Col-IV) is highly expressed in the inflammation
sites, by a surface decoration of AOCD NP with a Col-IV–
targeting peptide (KLWVLPKGGGC); the resulting peptide-
modified targeted RAP/AOCD NP efficiently accumulates in
the rat vascular smooth muscle cells (VSMCs) in vitro, as
well as in the balloon-injured arteries of rats in vivo, and
inhibits the migration and proliferation of VSMCs and the
formation of neointimal. This shows potential antirestenosis
effects (Zhang et al., 2020). Finally, this constructed cascade
pH/ROS dual-responsive drug targeted delivery system (AOCD
NP and RAP/AOCD) is safe in vitro and in vivo in long-term
treatment experiments. AOCD NP is a potential novel tool for
delivering drugs to the inflammatory diseased sites utilizing the
ROS microenvironment.

Application of ROS-Responsive NPs for
Neurodegenerative Diseases
Most neurodegenerative diseases, including AD, PD, and
ischemic stroke, are characterized by increased inflammation
and ROS with cognitive decline and memory loss. Elevated ROS
triggers inflammation, promoting the deterioration of diseases.
Numerous studies have developed ROS-responsive drug delivery
systems for treating neurodegenerative diseases by reducing the
elevated levels of ROS (Li et al., 2018; Lv et al., 2018; Ballance
et al., 2019; Jiang et al., 2019).

AD is among the most common neurodegenerative disorders
in which high levels of ROS cause oxidative stress seen in
patients with AD. ROS is an excellent therapeutic target in AD
as demonstrated by experimental and clinical research findings
(Behl et al., 1994; Butterfield and Lauderback, 2002; Geng
et al., 2012; Li et al., 2013; Hu et al., 2015). ROS-responsive
antioxidant nanotherapies with ROS-eliminating abilities have
shown good clinical outcome in AD patients. Li et al.
(2018) developed a self-assembled ROS-responsive positively
charged polyprodrug amphiphiles by connecting poly(carboxy
betaine) and simvastatin using a ROS-responsive diselenide bond
(Figure 12). Simvastatin improves functional recovery of the
spinal cord injury as seen in a rat model. It achieves this effect
by upregulating the expression of brain-derived neurotrophic
factors (BDNFs) leading to enhanced spatial memory recovery
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FIGURE 11 | Design and engineering of pH/ROS dual-responsive nanotherapies for targeted treatment of restenosis (Zhang et al., 2020) (Copyright 2020,

reproduced with permission from Elsevier). (A) Schematic illustration of different NPs examined in this study. (B) Engineering of a dual-responsive, targeting rapamycin

nanotherapy based on a pH-sensitive β-CD material (ACD) and a ROS-responsive β-CD material (OCD), as well as targeted treatment of a vascular inflammatory

disease of restenosis.

(Han et al., 2011). BDNF is an important neurotrophic factor
that modulates nerve cell migration and neurogenesis, as well as
stabilizes the intercellular environment (Zuccato and Cattaneo,
2009; Jiang et al., 2010). A NSC differentiation–promoting
negative drug molecule, a lethal-7b antisense oligonucleotide
(let-7b) (Zhao et al., 2010), and hydrophobic superparamagnetic
iron oxide nanocubes (SPIONs), which is used for tracking
mesenchymal stem cells (Park et al., 2017), are encapsulated
in this polyprodrug amphiphiles to synthesize PCB-Se–Se-
Sim/SPIONs/let-7b antisense oligonucleotide NPs (CSeM/let-
7b NPs). Neural stem cells treated with CSeM/let-7b NPs
show a remarkable improvement in memory function as
seen in 2xTg-AD mice. This NP enhances the secretion
of BDNF, yielding remarkably therapeutic effects in vivo
(Li et al., 2018). Besides, CSeM/let-7b NP helps to trace
the transplantation site and the migration of exogenous
NSCs because of its high r2 value of SPIONs in magnetic
resonance imaging.

Elsewhere, a spherical-like Congo red/rutin-MNPs
nanotheranostic comprising a central Fe3O4 NP, the surface of
which is coated with Congo red and rutin, was used to design
a biocompatible H2O2-responsive magnetic nanocarrier for
AD therapy (Hu et al., 2015). As illustrated in Figure 13, the
biocompatibility of the Congo red/rutin-MNPs is improved
by coating the DSPE-PEG-Congo red and DSPE-PEG-
phenylboronic acid on the surface of Fe3O4 NPs. This carrier
delivers high amount of the drug into the central nervous
system using the PEGlyated modification, reducing its uptake
by the reticuloendothelial system. The boronate ester bond
between the vicinal diols and phenylboronic acid is cleaved using
H2O2, and rutin is released from the Congo red/rutin-MNPs
in an H2O2-responsive and concentration-dependent manner,
thereby curtailing the effects of Aβ-induced cytotoxicity in
SH-SY5Y cells and oxidative stress. Furthermore, the ultrasmall
size of the Congo red/rutin-MNPs enables the detection of
distribution of amyloid plaques and makes particles easier to
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FIGURE 12 | Illustration of strategy for construction and functionalization of the traceable CSeM/let-7b NPs (Li et al., 2018) (Copyright 2018, reproduced with

permission from American Chemical Society). (A) Preparation of the traceable CSeM/let-7b NPs. Polyprodrug amphiphiles were self-assembled to load SPIONs and

absorb let-7b antisense oligonucleotide. (B) Schematic illustration of the mechanism of the traceable CSeM/let-7b NPs controlling exogenous NSCs as BDNF source

for AD therapy.

cross the blood–brain barrier (BBB), rescuing memory deficits
and neuronal loss in APPs we/PS1dE9 transgenic mice (Hu et al.,
2015). The targeted delivery and controlled release properties
of these Congo red/rutin-MNPs open up a new direction for
application of theranostics in AD.

Ischemic stroke is another neurodegenerative disease that
causes long-term disability and death worldwide due to
overproduction of ROS. High levels of ROS cause detrimental
effects on neurons and tissue injury at ischemic sites (Benjamin
et al., 2017). Therefore, reducing oxidative stress is a prospective
therapeutic approach for ischemic stroke (Panagiotou and
Saha, 2015; Amani et al., 2017; Liu et al., 2017b; Lv
et al., 2018; He et al., 2020; Tapeinos et al., 2020). Indeed,
many ROS-responsive nanocarriers have been developed for
the treatment of ischemic stroke (Lu et al., 2016, 2019;
Jiang et al., 2019). Recently, we developed bifunctional
nanomaterials zeolitic imidazolate framework-8-capped ceria
NPs (CeO2@ZIF-8 NPs) based on in situ synthesis strategy
with ROS response and clearance capabilities (He et al.,
2020). In this nanosystem, CeO2 NPs was first created as

the core structure of the NPs through a facile hydrothermal
method, which is coated with a ZIF-8 shell, regulating
the size, shape, and surface charge of CeO2 inner core
through the addition of polyvinylpyrrolidone. CeO2@ZIF-8
NPs is decomposed by H2O2, releasing CeO2 slowly, which
exhibits effective ROS-scavenging activities in vitro and protects
against tert-butyl hydroperoxide (t-BOOH)–induced PC-12
cytotoxicity (Figure 14). A pharmacokinetic study demonstrated
that CeO2@ZIF-8 NPs were able to across BBB and have
prolonged circular behavior in the blood, which enhances its
accumulation in brain tissue with better therapeutic efficacy.
Furthermore, CeO2@ZIF-8 NPs can effectively inhibit the
activation of astrocytes and microglia and reduce the expression
levels of inflammatory factors and lipid peroxidation in a
middle cerebral artery occlusion (MCAO) injury ischemic
rat model. Particularly, CeO2@ZIF-8 reduces brain damage
in ischemic stroke rats with good in vivo biocompatibility
and biosafety.

Endogenous NSCs are ischemia-homing elements that induce
the production of extracellular matrix molecules, such as
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FIGURE 13 | (A) The preparation of Congo red and Rutin–loaded magnetic nanoparticles (Congo red/Rutin-MNPs): (1) DSPE-PEG-Congo red and

DSPE-PEG-phenylboronic acid were used to improve the biocompatibility of magnetic nanoparticles through a micelle formation procedure. (2) Rutin was grafted onto

the surface of the nanoparticles through the formation of a boronate ester bond between vicinal diols and phenylboronic acid. (B) Schematic interpretation of Congo

red/Rutin-MNPs in vivo: (1) Congo red/Rutin-MNPs coinjected with mannitol penetrated the BBB. (2) Congo red/Rutin-MNPs detected amyloid plaques specifically,

realized targeted delivery, and controlled release of Rutin by H2O2 (Hu et al., 2015) (Copyright 2015, reproduced with permission from John Wiley and Sons).

BDNFs to support neural cell growth (Aizman et al., 2009).
Recently, Jiang et al. (2019) fabricated the first charge-reversal
polymeric vector-transfected NSC with ROS responsiveness
that homes the ischemia regions for synergistic ischemic
stroke treatment (Figure 15). In this study, cationic poly [(2-
acryloyl) ethyl (p-boronic acid benzyl) diethyl ammonium
bromide] (B-PDEA) was first used to absorb plasmid DNA

to form spherical polyplexes with excellent stability in a gel
electrophoresis experiment. The newly constructed polyplexes
effectively transfect NSCs via clathrin-mediated endocytosis
with high gene transfection efficiency and less toxicity. After
internalization into the cytosol, B-PDEA is first conversed
to negatively charged polyacrylic acid by intracellular ROS.
The released BDNF plasmids induce the NSCs to secret a
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FIGURE 14 | Schematic illustration for in situ synthetic approach of CeO2@ZIF-8 nanotherapeutics and its neuroprotective application mechanisms against

reperfusion-induced injury in ischemic stroke (He et al., 2020) (Copyright 2020, reproduced with permission from American Association for the Advancement of

Science).

high amount of BDNF into the injured ischemic cerebrum
area in MCAO mice. Moreover, BDNF-NSCs eliminate the
excessive ROS, resulting in the significant improvement of
neurological and motor functions in MCAO mice (Jiang et al.,
2019).

CONCLUSIONS AND FUTURE
PERSPECTIVES

Herein, we reviewed the role of ROS in various human diseases.
Although ROS is important for normal functioning of the human
body, excessive levels of ROS cause oxidative stress leading to
the pathogenesis of diseases. The ROS-responsive nanocarriers
used in scientific research and their biomedical applications in
the treatment of diseases related to oxidative stress were discussed
in this review. In the past decade, the rapid development
in nanotechnology has expanded the types and preparation
methods of ROS-responsive nanomaterials and nanocarriers,
which have been applied inmultiple biological systems. However,
despite the considerable achievements made in the designing of
ROS-responsive nanocarriers, the delivery efficiency of current
drug carriers, controlled drug release profile, and in vivo
therapeutic effects of these drug platforms remain unsatisfactory.
Our current understanding of their therapeutic function and the
underlying chemical/biological relationship remains preliminary,
and our research on these nanocarriers is insufficient to guarantee
commercialization. We have not seen the commercialized

clinical application of ROS-responsive nanocarriers due to
the complexity of majority of ROS-responsive nanocarriers;
the manufacturing process, reproducibility, and quality are
difficult to control. Several limitations hinder further clinical
translation of these nanocarriers including endosome safety
and effectiveness of long-term systemic use of ROS-responsive
nanocarriers because of absence of degradability or insufficient
biocompatibility. It seems that we need to pay more attention to
develop clinically acceptable ROS-responsive nanocarriers with
simpler and easier structure if we want to put these nanocarriers
forward to commercialization as soon as possible. The safety and
efficacy of ROS-responsive nanocarriers will be evaluated more
precisely in biosystems. Moreover, the risks of ROS-responsive
nanocarriers need to be considered for therapy application.
The biological mechanisms underlying the interaction between
active oxygen-based nanomedicines and the human body is
not well-understood. The tissue structures and physiological
behaviors of experimental animals, in which the drug carriers
are often tested, are very different from humans. Moreover,
different patients may react differently to these ROS-responsive
nanomedicines because of the variations and complexities
of the biological system. The specificity of ROS-responsive
nanomedicines needs to improve to the specific patients with
different tumors, inflammations, or neurodegenerative diseases
in order to reduce security risk to normal tissues and organs.
Hence, additional rigorous safety and effectiveness assessments
of these nanocarriers should be carried out before they can
be administered to patients. In conclusion, ROS-responsive
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FIGURE 15 | Schematic illustration of B-PDEA–mediated BDNF transfection of NSCs for ischemic stroke treatment (Jiang et al., 2019) (Copyright 2019, reproduced

with permission from John Wiley and Sons). (i) B-PDEA complexes BDNF plasmids to form polyplexes used for transfection of NSCs. (ii) The transfected NSCs i.v.

transplanted to MCAO mice migrate to the injured area in the brain, whose high level of ROS efficiently triggers B-PDEA’s conversion to negatively charged

polyacrylate and the release of BDNF plasmids for NSCs to express and excrete BDNF. The released BDNF stimulates nerve regeneration and functional

reconstruction, giving rise to a significant therapeutic effect in ischemic stroke.

nanocarriers have shown remarkable progress in preclinical
studies over the past decade, and more clinical trials are needed
to test their clinical utility.
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