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An accumulating body of research indicates that long-noncoding RNAs (lncRNAs) regulate
the target genes and act as competitive endogenous RNAs (ceRNAs) playing an
indispensable role in lung adenocarcinoma (LUAD). LUAD is frequently accompanied
by the feature of chromosomal instability (CIN); however, CIN-related ceRNAs have not
been investigated yet. We systematically analyzed and integrated CIN-related
dysregulated ceRNAs characteristics in LUAD samples for the first time. In TCGA
LUAD cohort, CIN in tumor samples was significantly higher than that in those of
adjacent, and patients with high CIN risk tended to have worse clinical outcomes. We
constructed a double-weighted CIN-related dysregulated ceRNA network, in which edge
weight and node weight represented the disorder extent of ceRNA and the correlation of
RNA expression level and prognosis, respectively. After module mining and analysis, a
potential prognostic biomarker composed of 12 RNAs (8 mRNAs and 4 lncRNAs) named
CIN-related dysregulated ceRNAs (CRDC) was obtained. The CRDC risk score had a
positive relation with clinical stage and CIN, and patients with high CRDC risk scores
exhibited poor prognosis. Moreover, CRDC tended to be an independent risk factor with
high robustness to overcome the effect of multicollinearity among other explanatory
variables for disease-specific survival (DSS) in TCGA and two GEO cohorts. The result
of functional analysis indicated that CRDC was involved in multiple cancer progresses,
especially immune-related pathways. The patients with lower CRDC risk had higher B cell,
T cell CD4+, T cell CD8+, neutrophil, macrophage, andmyeloid dendritic cell infiltration than
the patients with higher CRDC risk. Meanwhile, patients with lower CRDC risk could get
more benefits from immunological therapy. The results suggested that the CRDC could be
a potential prognostic biomarker and an immunotherapy predictor for lung
adenocarcinoma.
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INTRODUCTION

Lung cancer is one of the leading causes of cancer-related deaths
in both men and women worldwide, with LUAD, a kind of non-
small-cell lung cancer (NSCLC), accounting for a large
proportion (Reck and Rabe, 2017). CIN, the major type of
genomic instability including gain/loss of whole chromosomes
or large segments (aneuploidy), structural rearrangements, and
focal aberrations (Geigl et al., 2008), confers tumorigenesis,
metastasis, drug resistance, and poor prognosis (Lee et al.,
2011; Duijf and Benezra, 2013; Bakhoum and Cantley, 2018;
Bakhoum et al., 2018). CIN can be effectively detected and tended
to be a risk factor for poor prognosis in LUAD (Choi et al., 2009),
which mediates intratumor heterogeneity, therefore increasing
the risk of recurrence or death (Jamal-Hanjani et al., 2017). CIN
may counteract the therapeutic effectiveness of oncogene
withdrawal treatment and be responsible for tumor relapse in
lung cancer (Sotillo et al., 2010).

LncRNAs indirectly regulate target mRNAs by sharing
common microRNA response elements (MREs) formatting a
posttranscriptional mechanism: competing endogenous RNA
(ceRNA) (Salmena et al., 2011). CeRNAs play an
indispensable role in the development of carcinogenesis and
could be detected based on multiple computational methods
(Le et al., 2017; Zhang et al., 2019) An oncogenic lncRNA
HOTAIR and a protein-coding gene HER2 associated with
gastric carcinogenesis regulated each other owing to inhibition
from miR-331-3p, which provides a potential anticancer
treatment scheme (Liu et al., 2014). LncRNA WDFY3-AS2
and mRNA RORA are both involved in suppression of
ovarian cancer by the WDFY3-AS2/miR-18a/RORA axis, in
which miR-18a is reported to be an oncogene (Li W. et al.,
2020). Given the ceRNA crosstalk exhibits reciprocal and
complexity features, researchers focused on the complicated
ceRNA regulation network to exploit cancer-associated key
molecules (Sumazin et al., 2011; Karreth and Pandolfi, 2013;
Song et al., 2017). Perturbation of ceRNA interaction wildly exists
in disease versus normal status. LncRNAs with ceRNA activity
could be candidate epigenetic diagnostic biomarkers for early
detection of osteoporosis by constructing an osteoporosis-related
dysregulated ceRNA network (Zhang et al., 2020). Also,
epigenetically related lncRNAs involved in dysregulated
ceRNA–ceRNA networks offered novel potential molecular
therapeutic targets across pan-cancer (Xu et al., 2021).
However, the molecular function of dysregulated ceRNA in
LUAD remains further elucidated.

Based on the molecular pattern, immunotherapy has become a
new treatment option for NSCLC in recent years (Reck and Rabe,
2017). The blockade of immune checkpoints targeting cytotoxic T
lymphocyte—associated antigen 4 (CTLA4) and the programmed
cell death protein 1 pathway (PD-1/PD-L1) have demonstrated
promise in stimulating antitumor immunity (Pardoll, 2012).
Existing research studies have shown that clinical outcome

and treatment response to immune checkpoint blockers are
affected by the composition and proportion of various
immune cells (Brahmer, 2013; Schalper et al., 2015; Kadara
et al., 2017). A vital element in precision diagnosis and
personalized treatment of LUAD is exploring novel molecular
signatures, especially those associated with the tumor immune
microenvironment. Moreover, the ceRNA regulation mechanism
could affect immune cell infiltration in multiple cancers. For
instance, LINC00301 could serve as a competing endogenous
RNA (ceRNA) against miR-1276 to expedite the HIF1α pathway
in the cytoplasm of NSCLC cells facilitating tumor progression
and triggering an immune-suppressing microenvironment (Sun
et al., 2020). SNHG16 serves as a ceRNA by sponging miR-16-5p,
which led to the derepression of its target gene SMAD5 and
resulted in potentiation of the TGF-β1/SMAD5 pathway to
induce immunosuppressive CD73+γδ1 Treg cells (Ni et al.,
2020). So far, no studies have systematically excavated the role
of CIN-related ceRNAs in immune regulation for LUAD patients.

Here, we analyzed the CIN features in LUAD samples and
systematically integrated CIN-related ceRNA characteristics for
the first time by constructing a double-weighted CIN-related
dysregulated ceRNA network, aiming to identify a potential
biomarker for LUAD prognosis. The marker we found was
assessed combined with multiple clinical factors. Furthermore,
it was associated with immune infiltration which may help
predict whether patients will benefit from immunotherapy
(Figure 1). This research provided a perspective for
identifying prognostic markers and exploring the immune
microenvironment characteristics of LUAD patients.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
LUAD HTSeq transcriptome profiles were acquired from TCGA
data portal (http://cancergenome.nih.gov/, Data Release 9.0)
(Tomczak et al., 2015). The GENCODE V22 (GRCh38)
(Frankish et al., 2019) human genome annotation file was
used to annotate mRNA and lncRNA transcripts. The gene
types of “processed_transcript,” “lincRNA,” “3prime_
overlapping_ncrna,” “antisense,” “non_coding,” “sense_
intronic,” and “sense_overlapping” with length greater than
200 nt were defined as lncRNAs. The transcripts per kilobase
million (TPM) value was converted from fragments per kilobase
million (FPKM) according to the formula: TPM �

FPKM∑all genes
FPKM

p106 (Li and Dewey, 2011). TPM transcriptome

profiles were further normalized by log2(x+1) transformed,
and the genes covering >30% missing values were filtered. We
adopted clinic information from the work of Liu et al., which
provided the usage recommendations for corresponding TCGA
LUAD cohort in the meanwhile (Liu et al., 2018). Gene
expression profiles and clinical information from two GEO
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datasets were collected as the external validation datasets
(Supplementary Table S1).

MiRNA–Target Regulation Relationships
Experimentally validated miRNA–mRNA interaction
information was collected from miRTarBase 7.0 (Chou et al.,
2018), miRecords 2013 (Xiao et al., 2009), and TarBase 6.0
(Vergoulis et al., 2012). A total of 388,895 unique interactions
that contained 2,846 miRNAs and 18,936 mRNAs were obtained.
We integrated starBase 2.0 (Li J.-H. et al., 2014), DIANA-LncBase
V2 (Paraskevopoulou et al., 2016), and lncRNASNP2 (Miao et al.,
2018) databases and obtained 10,318 experimentally validated
nonredundant miRNA–lncRNA interactions involving 290
miRNAs and 1,162 lncRNAs.

Estimation of the Chromosomal Instability
Risk Score of Samples
Chromosomal instability (CIN) risk scores of samples were
calculated by summing of the CIN70 genes’ TPM value, whose
expression level was consistently correlated with total functional
aneuploidy in several cancer types (Carter et al., 2006). A high
CIN score indicates a high extent of chromosomal instability.

Construction of a Chromosomal
Instability-Related Dysregulated CeRNA
Network
1) CeRNA Identification in LUAD CIN-Low and CIN-High

Patients

Differentially expressed genes between tumor and normal
adjacent samples were reserved for identifying ceRNA pairs in
LUAD CIN-Low and CIN-High patients (Zhou et al., 2014; Xu
et al., 2015). First, we screened mRNA–lncRNA pairs which
shared significantly common upstream miRNA regulation
according to the hypergeometric test FDR-adjusted p value
<0.05. The p value was calculated as

1 −∑r−1
i�0

(K
i
)(N − K

M − i
)

(N
M

) , where N was the number of

background human miRNAs, M and K represented the
number of miRNAs regulating the current mRNA and
lncRNA, respectively, and r was the common miRNA number
between the two RNAs. Also, Pearson correlation coefficients
(PCC) > 0.1 as well as correlation FDR-adjusted p value <0.05
were considered significantly co-expressed pairs for having a
similar expression trend. For CIN-Low and CIN-High LUAD
patients’ groups separately, mRNA–lncRNA pairs that met the
aforementioned conditions of co-regulated and co-expressed
RNAs were recognized as ceRNAs which served as nodes in
the dysregulated network.

2) CIN-Related Dysregulated CeRNA Network

In the dysregulated ceRNA network, alteration of ceRNA PCC
between the CIN-High group and CIN-Low group in the LUAD
cohort was assigned to measure the weight of edges and the node
weight quantifying the prognostic role of the gene for LUAD DSS
(Li et al., 2012; Wang et al., 2015). Given a ceRNA pair, rCIN High

FIGURE 1 | Flowchart of this research. Exploration of CIN feature in expression level, clinical outcome relevance, and functional analysis; construction of a CIN-
related double-weighted dysregulated ceRNA network; acquisition of a potential biomarker CRDC after dense module searching, filtering, and integration; analyzation
and evaluation of CRDC in the prognostic value; inference for immune cell infiltration and benefit from immunotherapy.
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and rCIN Low represented the PCC in two groups, and nCIN High

and nCIN Low represented the sample size. If the ceRNA
identification conditions were not satisfied in one of the CIN-
Low and CIN-High groups, the PCCwas set to 0. The edge weight

(E) was calculated as φ−1[1 − 2p(1 − φ(|F(rCIN High)−F(rCIN Low)��������������
1

nCIN High+3+
1

nCIN Low+3
√ |))],

where F(x) � 1
2 ln

1+x
1−x, and φ denoted the standard normal

distribution function. Meanwhile, the node weight (N) of the
network was defined as φ−1(1 − p), where p was the univariate
Cox proportional hazards analysis significant p value, adopting
the samples without postoperative treatment for purpose of
eliminating its effect on clinical outcome.

Dense Modules Identification and Filtration
1) Searching for Dense Modules in Dysregulated CeRNA

Network

The objective of building a dysregulated network was to
identify dense modules with relatively high weight of node
and edge. We utilized the algorithm from the dmGWAS_3.0 R
package (Wang et al., 2015) to define the module score and
conduct module mining. The module score was
λ
∑E��
nE

√ + (1 − λ)∑N��
nN

√ , where nE and nN were the number of
edges and nodes in the network, and λ was between 0 and 1.
The method of module search are summarized into the following
three parts: 1) For each gene in the network, it was assigned as a
seed module at the beginning; 2) add a neighbor node whose
shortest path to any node in the module was shorter or equal to d
into the module once at a time only when the increment of the
current module score was greater than r multiply by the score of
the previous module; 3) repeat these steps till no more neighbors
could be added. The parameter d was decided as 1, r = 0.1, and λ
was set to 0.44.

2) Screening and Integrating Dense Modules

In order to seek valuable messages from a large number of
dense modules, we prioritized network modules by following
three qualification rules. First, the top 10% modules with the
highest scores were selected for further analysis. Second, a
random perturbation strategy was used to screen out the non-
randomized prognostic modules by multivariate Cox regression
analysis for DSS. For each given module, random multivariate
Cox regression p values were calculated after random acquisition
of the same number of genes in the background 10,000 times.
Then, sorting the 10,000 p values in ascending order and only the
modules ranked in top 1% (random p value <0.01) were left.
Furthermore, we merged the modules via genes in common and
acquired the subnetwork named CIN-related dysregulated
ceRNAs (CRDC).

Calculation of the CIN-Related
Dysregulated CeRNAs Risk Score
The CRDC risk score of each LUAD patient was constructed by a
linear combination of gene expression values and log-transformed

hazard ratios (HR) from the univariate Cox regression model, in
which the univariate Cox regression analysis was conducted using
the DSS without undergoing postoperative treatment. The CRDC
risk score was calculated as∑N

i�1Expression i*log(HR i), where N
was the number of the CRDC genes.

Immune Infiltration Analysis in LUAD
Patients
The LUAD patients’ immune score, stromal score, and estimate
score were calculated by the ESTIMATE R package (version
1.0.13); meanwhile, tumor purity was obtained by
cos(0.6049872018 + 0.0001467884 × ESTIMATE score)
(Yoshihara et al., 2013). Tumor mutation load (TMB) was
performed as non-synonymous mutation counts in coding
sequences (CDSs) divided by total number of CDSs then
multiplied by 106. The geometric mean of GZMA and PRF1
TPM expression values estimated were defined as cytolytic
activity (CYT), which reflected the local immune cytolytic
T-cell activity (Rooney et al., 2015). TIMER2.0 (Li T. et al.,
2020) was applied to estimate immune cell infiltration levels in
the tumor immune microenvironment for LUAD patients. The
tumor immune dysfunction and exclusion (TIDE) score, a
signature consistent with tumor immune evasion, which could
predict immune checkpoint blockade (ICB) response, was
performed by TIDE command-line interface with tumor TPM
expression normalized by adjacent normal samples (Jiang et al.,
2018; Fu et al., 2020). The immunophenoscore (IPS), a superior
predictor of response to anti-CTLA4 and anti-PD-1 antibodies,
was used to evaluate tumor immunogenicity (Charoentong et al.,
2017). Also, we predicted the possible response to
immunotherapy by the SubMap method from GenePattern
(https://cloud.genepattern.org/gp/pages/index.jsf).

Statistical Analysis
Differentially expressed genes (DEGs) were identified by the
DESeq2 R package (Love et al., 2014) with the threshold of |
log2FC| > 1 and FDR <0.01. CIN-High and CIN-Low as well as
CRDC-High and CRDC-Low patients were divided by the
StepMiner method, which could find an appropriate threshold
for the dichotomizing numeric vector (Sahoo et al., 2007; Liu
et al., 2013). For example, the CIN scores were sorted in
ascending order and were used for finding an optimal location
t which maximized the signal-to-noise ratio (SNR). SNR �∑n

i�1 (μ1I(i≤ t)+μ2I(i> t)−μ)2∑n

i�1 (μ1I(i≤ t)+μ2I(i > t)−CINi)2, where I is the indicator function and

is set to 0 when the condition in brackets is not satisfied, μ is the
mean CIN score for all patients, and μ1 and μ2 represent the mean
CIN score of two groups separated by the location t. Then, the
CIN score of position t was regarded as the classification
threshold. The conventional ROC curve and time-dependent
ROC curve estimation was performed using the pROC
(version 1.18.0) (Robin et al., 2011) and survivalROC (version
1.0.3) (Heagerty and Zheng, 2005) R package separately. The
Kaplan–Meier survival curves between different groups divided
by the CIN score or CRDC score was tested by the log-rank test
using the R package survminer (version 0.4.9). The multivariable
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Cox proportional hazard model, stepwise regression method, and
nomogram were constructed by the rms R package (version
6.2–0). The decision curve was built to evaluate benefit of
CRDC at different prognostic time points with the DCA R
package (version 2.0). Biological progress (BP) enrichment
analysis and visualization were implemented by Metascape
(Zhou Y. et al., 2019), clusterProfiler R package (version 4.0.5)
(Wu et al., 2021), and fgsea R package (version 1.20.0). The

hallmark, KEGG pathway, and immunologic gene sets
enrichment analysis were performed by the clusterProfiler R
package. BP, hallmark, and immunologic gene sets were
obtained from MSigDB v7.4 (Subramanian et al., 2005;
Liberzon et al., 2015). The R version adopted in this article
was 4.0.3. Representation of significance of p value in figures
were described as follows: *: p < 0.05, **: p < 0.01, ***: p < 0.001,
and ns for nonsignificant.

FIGURE 2 | Characteristics of chromosomal instability in lung adenocarcinoma. (A) Boxplot for CIN scores in LUAD and adjacent paired samples. The green
column indicated adjacent normal samples, and the red column indicated LUAD tissues. (B) ROC curve of the CIN score in discriminating LUAD patients from adjacent
normal samples. The green color indicated AUC. (C) Boxplots of patients’ CIN scores in different TNM stages and clinical stages. (D) Volcano plots for identifying
significantly differentially expressed genes in (left) lung adenocarcinoma samples versus adjacent samples and (right) CIN-High compared to CIN-Low group. (E)
Venn diagram and (F) BP function and KEGG pathway enrichment results for differentially expressed genes in comparative groups of LUAD vs. Adjacent and CIN-High
vs. CIN-Low.
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RESULTS

Characteristics of Chromosomal Instability
in Lung Adenocarcinoma
For quantifying chromosomal instability of samples, we
calculated CIN scores of all samples by summing up genes’
expression in CIN70 signature. With a paired-sample
comparison analysis in 57 LUAD patients, CIN scores of lung
adenocarcinoma samples (350.44 ± 60.00) were significantly
higher than those of paired adjacent normal samples
(214.1201 ± 22.98) (Figure 2A, Wilcoxon signed-rank test, p =
5.3e-11) as well as all samples in TCGA LUAD data cohort
(Supplementary Figures S1A,B). In 513 LUAD and 59 adjacent
normal samples, receiver-operating characteristic (ROC) analysis
showed that the CIN score had a high performance in
discriminating LUAD patients from adjacent normal samples
with the area under the curve (AUC) reached up to 0.989
(Figure 2B). Meanwhile, we found that high CIN scores were
related with the worse clinical stage and TNM stage generally
(Figure 2C). Also, patients with high CIN scores had worse
overall survival (OS), DSS, disease-free interval (DFI), and
progression-free interval (PFI) (Supplementary Figures
S1C–J). This indicated that LUAD samples possessed higher
CIN than adjacent normal samples, which is consistent with
the general characteristics of genomic instability in carcinoma
(Grady and Carethers, 2008; Martin et al., 2010).

We identified significantly DEGs in LUAD samples by the
DESeq2 R package. Within 3,400 upregulated and 1,975
downregulated mRNAs, 52 genes of the CIN70 signature were
upregulated, and none of them were downregulated. Similarly, 42
of CIN70 genes showed upregulation in 289 CIN-High patients
compared to the CIN-Low group that contained 224 patients. It
was observed that these highly altered expressed CIN70 genes in
two comparison groups possessed greater extent differential
expression than other genes (Figure 2D). Functional
enrichment analysis indicated that the DEGs of these two
comparable groups shared common biological processes and
pathways. For instance, both downregulated gene sets
participated in microtubule-based movement and microtubule
bundle formation biological progress as well as neuroactive
ligand–receptor interaction and cAMP signaling pathways. On
the contrary, the upregulated genes enriched nuclear division,
organelle fission, chromosomal segregation, mitotic nuclear
division, and meiotic cell cycle process, in addition to cell
cycle and nicotine addiction pathways (Figures 2E,F).

Construction of the CIN-Related
Dysregulated CeRNA Network
Due to the complex indirect regulation of lncRNAs for target
mRNAs, we constructed a CIN-related dysregulated ceRNA
network. The mRNAs and lncRNAs markedly changed on the
expression level between LUAD versus adjacent normal samples
were considered LUAD-associated genes and used to identify
ceRNA pairs in CIN-Low and CIN-High samples, respectively.
The ceRNA network contained 2,195 edges and 908 nodes
composed of 787 mRNAs and 121 lncRNAs. We further

constructed the double-weighted CIN-related dysregulated
ceRNA network, in which the edge weight and node weight
indicated the extent of dysregulation of ceRNA in CIN-High
samples contrast with CIN-Low and the quantized value for
RNA’s prognostic role in DSS, respectively (Figure 3A,
Supplementary Table S2, details were prescribed in Materials
and Methods). The network had a typical biological network
property, a scale-free characteristic, and followed power-law
distribution with R2 being 0.80 (Figure 3B). Network
topological analysis suggested that lncRNAs may play an
important role in regulating mRNA expression indirectly by
the ceRNA crosstalk mechanism to exert biological functions
in spite of low coding potential (Figure 3C and Supplementary
Figures S2A–C).

In this work, the dysregulation type of ceRNA was defined as
gain (PCC in the CIN-High group were higher than that in CIN-
Low) or loss (PCC in CIN-High patients was smaller than that in
CIN-Low). Among 2,195 ceRNAs, 828 of them were type of gain;
however, the majority were loss (accounted for 62.3%), which
suggested that most of ceRNAs no longer maintained previous
correlation in the CIN-High group. PCC of gain pairs raised from
0.071 ± 0.115 to 0.224 ± 0.078 and in loss pairs reduced from
0.262 ± 0.097 to 0.090 ± 0.124. The extent of alteration in loss
pairs had a greater alteration extent than that in the gain pairs
(Supplementary Figures S2D,E and Figure 3D). BP functions
were enriched by Metascape, in which gain and loss ceRNAs
showed relevance to mitotic cell cycle, tube morphogenesis,
regulation of cell cycle process, negative regulation of cell
differentiation, epithelial cell differentiation, regulation of
kinase activity, and cell adhesion, especially immune system
development (Supplementary Figure S2F). It is implied that
CIN-related dysregulated ceRNAs were involved with functions
related to tumorigenesis and immunological functions.

Filtration for Double-Weighted Dense
Modules
We wish to seek a collection of ceRNAs possessing a high
prognostic value and a great level of variation in samples with
high and low CIN; therefore, we adopted the method of
dmGWAS_3.0. The method balanced the weight of nodes and
edges for scoring the modules and implemented a greedy
algorithm to search for dense modules. The parameters were
set as follows: λ for balancing weight of nodes and edges was set to
“default” calculated as 0.44; the new nodes search range shortest
path d = 1; r was decided as 0.1 which decides the magnitude of
increment. A total of 651 modules were obtained by this method.
These modules covered 776 nodes in the network, which
demonstrated that these modules had the characteristic of high
repeat coverage. Therefore, we screened and integrated these
modules. First, 65 modules contained 83 non-repetitive RNAs
with the top 10% highest module scores were selected, which
displayed significant overlap with CIN70 genes on account of
having four common mRNAs (HDGF, OIP5, CDK1 and CEP55,
hypergeometric enrichment test p = 1.86e-05). Second, a random
perturbation strategy was used to screen out the non-randomized
prognostic modules, and only four modules with random p < 0.01
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FIGURE 3 | Construction of a CIN-related dysregulated ceRNA network. (A) CIN-related dysregulated double-weighted ceRNA network, in which mRNAs and
lncRNAswere colored green and red, respectively. Node degree was indicated by the node size, and node weight and edgeweight were indicated by node transparency
and edge width, respectively. (B) Degree distribution of the network. Boxplots of (C)mRNA and lncRNA degree and (D) alteration of ceRNA dysregulation extent in CIN-
High compared with CIN-Low samples. (E) Subnetwork CRDC connected by dense modules after screening and integration.
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were left. It has been observed that they shared common RNAs,
indicating that these modules can be linked to be a subnet in the
dysregulated network. Therewith, the subnet consisting of these
modules was extracted containing eight mRNAs (AMOTL1,
EFNB2, FGF2, FURIN, CCND2, IFNG, ITGB4, and RHOV)
and 4 lncRNAs (LINC00473, LINC00707, MIR497HG, and
RP11-16E12.2) (Figure 3E). We further named the subnet as
CRDC (CIN-related dysregulated ceRNAs).

Formulation and Evaluation of the CRDC
Risk Score and Prognostic Analysis
The CRDC risk score for each sample was calculated as
cumulative sum of expression values of 12 RNAs multiplied
by log-transformed hazard ratios from univariate Cox
regression analysis in non-postoperative treatment patients
(the univariate Cox regression results of RNAs are shown in
Figure 4A and Supplementary Table S3). Most of the CRDC
genes tended to be risk factors of LUAD prognosis, except for
MIR497HG, CCND2, RP11-16E12.2, and IFNG. Studies have

shown that CRDC genes were certified related with tumor
suppression or progression which is consistent with our
research (Supplementary Table S4). In addition, the protein
expression levels of partial CRDC genes were further explored by
representative immunohistochemistry (IHC) images from the
Human Protein Atlas (HPA) database (Sjostedt et al., 2020).
In total, five CRDC proteins, FURIN, ITGB4, RHOV, EFNB2,
and AMOTL1, were not detected in normal lung tissues, however,
expressed in lung cancer samples. Also, IFNG had a reverse
situation (Supplementary Figure S3).

The CRDC risk scores in LUAD were significantly higher than
adjacent normal in all (Wilcoxon signed-rank test, p = 1.1e-15,
Supplementary Figure S4A) and paired samples (Wilcoxon
signed-rank test, p = 8e-9, Figure 4B), and it can distinguish
the two types of samples clearly (AUC = 0.835, Figure 4C). The
higher CRDC score related to the worse clinical stage
(Kruskal–Wallis test, p = 0.0012, Supplementary Figure S4B).
Spearman rank correlation analysis was performed on the CRDC
risk score, CIN score, clinical stage, and smoking exposure in
pack-years. There was no significant correlation between

FIGURE 4 | Formulation of the CRDC risk score and prognostic analysis. (A)Barplot depicted the log-transformed hazard ratio of CRDC genes in the univariate Cox
regression model. (B) Boxplot for CRDC of LUAD and adjacent paired samples. The green column indicated adjacent samples, and the red column indicated LUAD
tissues. (C) ROC curve of CRDC in discriminating LUAD patients from adjacent control samples. The green color indicated AUC. (D) Spearman correlation analysis of
smoking, clinical stage, CIN, and CRDC risk score. Kaplan–Meier survival curves of the CRDC risk score in (E–H) all LUAD patients (TCGA_ALL, for short) and (I–L)
patients without postoperative treatment (TCGA_Notreat, for short).
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smoking and CRDC risk score or clinical stage (p > 0.05), but a
margin significant positive correlation with CIN risk scores,
which was consistent with the findings that smoking was
probably associated with chromosomal instability (Saletta
et al., 2007; Li E. et al., 2014). What was noteworthy is that
the CIN score, clinical stage, and CRDC risk score were

significantly positively correlated, which indicated that the
higher the CRDC risk score, the higher the chromosomal
instability and the worse clinical stage (Figure 4D). Also, the
high CRDC score was associated with poor OS, DSS, and PFI in
all LUAD patients (Figures 4E–H). Because postoperative
treatment may have some effect on clinical outcomes which

FIGURE 5 | Prognostic independence evaluation and external validation. (A) Forest plot for the multiple Cox proportional hazards model in TCGA patients. (B)
Forest plot for the multiple Cox proportional hazards model contained the clinical stage and CRDC risk score in TCGA patients (C)Nomogram constructed by the clinical
stage and CRDC risk score for predicting 1, 3, and 5 years DSS. (D) Decision curve of the nomogram for 1, 3, and 5 years DSS. (E) Time-dependent ROC of the CRDC
risk score for predicting 1, 3, and 5 years DSS outcome. Kaplan–Meier survival curves of CRDC-High and CRDC-Low patients and forest plots for the multiple Cox
proportional hazards model in (F,G) GSE31210 and (H,I) GSE72094 datasets.
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was taken into account in the assessment of the impact of CRDC
on prognosis. Among samples without postoperative treatment,
the OS, DSS, DFI, and PFI of the CRDC high risk group were
significantly worse than those of the low risk group (Figures
4I–L). These results have shown that LUAD maintained higher
CRDC scores than adjacent normal tissues, such as CIN. Also, the
higher CRDC score was concordance with higher CIN and worse
clinical stage. The impact of CRDC on prognosis was rarely
affected by the postoperative treatment in the TCGA LUAD
cohort.

Prognostic Independence Evaluation and
External Prognosis Validation of CRDC
In this part, prognostic independence and robustness of the
CRDC score will be tested. In the TCGA LUAD cohort,
multivariate Cox proportional hazard analysis indicated that
CRDC was an independent risk factor of DSS considered with
factors of age, gender, smoking, clinical stage, and CIN score (p <
0.001, HR = 1.27, 95%CI: 1.12–1.4, Figure 5A). On account of the
multicollinearity between variables (Figure 4D), we utilized
stepwise multivariate Cox hazard regression to overcome this
issue. The result showed that age, gender, smoking, and CIN had
no significant effect on DSS. Only the clinical stage (p = 0.017, HR
= 1.3, 95%CI: 1.1–1.7) and CRDC risk score (p < 0.001, HR = 1.3,
95%CI: 1.1–1.5) tended to be the independent risk factors for
DSS, with the CRDC being the most significant factor
(Figure 5B). A 1, 3, and 5 years DSS nomogram was
constructed by the clinical stage and CRDC risk score showed
that CRDC remained certain reference and prediction value for
clinicians (corrected C-index = 0.661, Figure 5C). The CRDC
score had a great benefit for predicting DSS outcome, which was
observed from the decision curve analysis (DCA) of the
nomogram (Figure 5D). Time-dependent AUCs of the CRDC
score in predicting 1, 3, and 5 years DSS were, respectively, 0.585,
0.654, and 0.678 (Figure 5E). Moreover, in two external GEO
LUAD datasets (GSE31210 and GSE72094), the CRDC score still
performed a stable and robust prognostic value in predicting
patients’ overall survival and acted as an independent risk factor
for prognosis (Figures 5F–I). In short, we demonstrated the
robust performance of CRDC for LUAD outcome prediction in
TCGA and two GEO cohorts.

Exploration of CRDC-Related Biological
Functions Indicating the Immunology
Correlation
For investigating CRDC-related functions, differential gene
analysis between CRDC-High and CRDC-Low patients was
performed by DESeq2 at first. We identified that the CRDC
had positive connections with multiple hallmarks such as G2M
checkpoint, E2F targets, and MYC targets. Targeting WEE1,
which was crucial in the G2M cell-cycle checkpoint arrest for
DNA repair before mitotic entry, for inhibition and
compromising the G2M checkpoint presents an opportunity to
potentiate therapy (Matheson et al., 2016). Alterations in one or
more key components of the core transcriptional machinery

formed by the cyclin-dependent kinase (CDK)-RB-E2F axis
result in heightened oncogenic E2F activity, leading to
uncontrolled proliferation in cancer (Kent and Leone, 2019).
Genetic deregulation of MYC expression and loss of checkpoint
components, such as TP53, permit MYC to drive malignant
transformation in cancer (Stine et al., 2015). On the contrary,
Interferon gamma is a member of the type II interferon class,
secreted by cells of both the innate and adaptive immune systems,
and is crucial in antitumor response (Shankaran et al., 2001). The
downregulation of interferon gamma response activity indicated
that there was some connection between CRDC and immunity
(Figure 6A). Also, we found high activity in the cell cycle and
chemical carcinogenesis pathways, conversely, low activity in the
cAMP signaling pathway, cell adhesion molecules, intestinal
immune network for IgA production, B cell receptor signaling
pathway, and T cell receptor signaling KEGG items (Figures
6B–D). CAMP signaling increases histone deacetylase 8
(HDAC8s) expression through the Epac–Rap1–Akt pathway
leading to augmenting cisplatin-induced apoptosis (Park and
Juhnn, 2017) and inhibits radiation-induced ATM
phosphorylation promoting apoptosis in lung cancer (Cho
et al., 2014). Some cell adhesion molecules are now considered
clinical biomarkers in multiple tumor types, contributing to
carcinoma progression and metastasis (Beauchemin and
Arabzadeh, 2013; Smart et al., 2021). Researchers have found
that the intestinal immune network for IgA production was
significantly dysregulated in lung metastases from colorectal
cancer (Shen et al., 2021). Decreasing activity of B cell and
T cell receptor signaling implied that high CRDC risk may be
related to reduced humoral immunity and cell-mediated
immunity. We observed that CRDC displayed relevance to
plenty of immunologic signatures (Supplementary Figures
S4D,E); likewise, the suppression of immunity function
appeared in the BP GSEA results (Figure 6E), which provided
further evidence that CRDC was related to immunologic
function. These function enrichment analyses showed that
genes divided by the CRDC risk score enriched a number of
known carcinoma-associated biological functions and reminded
us of the immunological correlation with CRDC at the same time.

Immune Infiltration Microenvironment
Characteristics Related With CRDC
The functional analysis mentioned previously indicated that
CRDC may correlate with immunological function changes;
therefore, we implemented further exploration of immune
characteristics in LUAD samples. CRDC correlated with
tumor purity positively and had negative correlation with
CYT, ESTIMATEScore, ImmuneScore, and StromalScore
(Spearman correlation test, p < 0.05, Figure 7A). LUAD
patients with lower CRDC scores exhibited higher PD-L1, PD-
1, and CTLA4 expression levels than CRDC-High patients
(Wilcoxon signed-rank test, p < 0.05, Figures 7B–D). The
correlation heatmap showed that multiple CRDC genes have a
significant correlation with immune cell proportion in the
microenvironment (Figure 7E). Also, patients with lower
CRDC scores had more B cell, T cell CD4+, T cell CD8+,

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 84364010

Guo et al. CIN-Related Dysregulated CeRNAs in LUAD

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


FIGURE 6 |CRDC relevant functional analysis. Ridgeline plots for log2FC (CRDC-High versus CRDC-Low) distribution of core-enriched genes in (A) hallmarks and
(B) KEGG pathways based on the GSEA method. GSEA plots for (C) positive and (D) negative KEGG pathways associated with CRDC. (E) Table of the CRDC-related
negative GO (BP) enrichment graph.
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neutrophil, macrophage, and myeloid dendritic cell infiltration
than patients with higher CRDC scores (Figures 7F,G). The
TIDE and IPS scores exhibited differences in patients
distinguished by the CRDC score, which displayed that LUAD
patients with decreased CRDC risk scores had lower immune
dysfunction and exclusion score as well as more possibility to
benefit from immune checkpoint therapy (Figures 7H,I). In
addition, based on the common subtype comparison analysis
between two CRDC groups and melanoma samples with the
information of immunotherapy reaction (Roh et al., 2017; Chen
et al., 2021), we could infer that patients with low CRDC risk were
more likely to respond to anti-PD1 therapy (Bonferroni-

corrected p = 0.044), yet high CRDC group may be resistant
to this form of treatment (Nominal p = 0.042, Figure 7J). In brief,
we revealed that CRDC had relevance to immune characteristics,
and patients with low CRDC risk exhibited greater
immunocompetence than those with high risk.

DISCUSSION

Previous studies have shown that CIN was closely related to
tumorigenesis. Gain of chromosomes showed increased DNA
damage and sensitivity to replication stress, thereby promoting

FIGURE 7 | CRDC-related immune infiltration characteristics. (A) Spearman correlation analysis plot of the correlativity of the CRDC score, StromalScore,
ImmuneScore, ESTIMATEScore, TumorPurity, TMB, and CYT. Boxplots described the expression difference of (B) PD-L1, (C) PD-1, and (D) CTLA4 between CRDC-
High and CRDC-Low samples. (E) Spearman correlation heatmap of CRDC genes and immune microenvironment cell infiltration, StromalScore, ImmuneScore,
ESTIMATEScore, TumorPurity, TMB, CIN, CYT, PD-L1, PD-1, and CTLA4. (F,G) Immune microenvironment cell infiltration level in CRDC-High and CRDC-Low
samples. The violin plots displayed the TIDE (H) and IPS (I) scores between CRDC-High and -Low groups. (J) Heatmap of comparison and identification of common
subtypes between groups divided by CRDC risk and response for ICB therapy. NR and R represented not respond and respond to immunotherapy, respectively.
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genomic instability and possibly contributing to tumorigenesis
(Passerini et al., 2016). Based on discussion of mathematical
models of situations in which inactivation of one or two tumor
suppressor genes is required for tumorigenesis; CIN will arise
before inactivation of the first suppressor genes, therefore
initiating the mutational sequence that leads to cancer
(Michor et al., 2005). In restricted genetic and cellular
contexts, the mitotic checkpoint protein insufficiency can
cause whole chromosome instability and drive tumor
formation through tumor suppressor gene loss of
heterozygosity (Baker et al., 2009). In this work, we
investigated the CIN characteristics in 513 TCGA LUAD
patients and found that the extent of CIN in LUAD was
significantly higher than that in adjacent normal samples, and
it can be used to strictly separate the tumor from adjacent normal
samples (Figures 2A,B). CIN 70 marker genes expressed a high
level in LUAD (Figure 2D). Also, CIN was related to high clinical
stage as well as poor survival in LUAD patients (Figure 2C and
Supplementary Figure S1). Functional analysis results indicated
that CINmay have an effect on tumor progression by promoting
nuclear division, organelle fission, chromosomal segregation,
mitotic nuclear division, and meiotic cell cycle process, in
addition to cell cycle and nicotine addiction pathways
(Figures 2E,F). These results were identical with the previous
theory that tumors are generally characterized by genomic
instability.

For the past few years, the molecular regulatory mechanism of
ceRNA has been proved to play a crucial role in development of
diseases, especially cancers and their dysregulation may conduce
to tumor pathogenesis. In our previous work, we have
constructed a clear cell kidney carcinoma dysregulated
ceRNA–ceRNA network and identified two dysregulated
patterns of ceRNAs interaction (gain and loss), which were
demonstrated to be able to distinguish normal samples from
cancer samples (Wang et al., 2018). The ceRNA dysregulation
mechanism in LUAD needed expansion, and no research has
explored characteristics of ceRNA alteration in the CIN level yet.
In the present work, we explored CIN-related dysregulated
ceRNAs in LUAD aiming for acquiring a prognosis indicator
for the first time. Based on differential expression genes (mRNAs
and lncRNAs) in LUAD compared to adjacent samples, we
constructed a double-weighted CIN-related dysregulated
ceRNA network. The edge weight in the network was the
alteration of ceRNA PCC in CIN-High compared with CIN-
Low patients representing the extent of ceRNA dysregulation.
Also, the node weight represented the potency of the gene in
predicting LUAD patient’s outcome. At this step, we adopted the
samples without postoperative treatment eliminating the possible
impact of treatment on prognosis. Also, we used DSS as a measure
of prognosis in consideration of its definition, death from the
diagnosed cancer type, has much greater relevance with cancer-
associated clinical outcome than OS in which the endpoint may
record non-cancer causing death (Liu et al., 2018). Based on the
dysregulated network we built, 62.3% of the ceRNAs maintained
a weaker co-expression relationship in the CIN-High than CIN-
Low group (Figure 3D and Supplementary Figures S2D,E).
Also, the greedy search algorithm was applied to detect modules

with high double weight, whereafter we obtained a subnetwork
CRDC formed by 12 genes after module screening and
integrating (Figure 3E).

The CRDC risk score was higher in LUAD samples than that
in adjacent normal samples and could separate the two types of
samples, which was resembled with CIN (Figure 4B,C).
Subsequently, we laid special stress on testing and evaluating
the prognostic prediction efficiency of CRDC. The results implied
that the high CRDC score can serve as an indicator for poor OSS,
DSS, and PFI in patients with or without postoperative treatment
and a key independent risk factor in TCGA and two GEO datasets
(Figure 4E–L, Figure 5). In the multivariate Cox proportional
hazard model, CIN did not show as an independent indicator for
predicting DSS. It demonstrated that prognostic efficacy of CIN
was not as stable as that of CRDC. We suspected that there was
probably a connection with the dual natures and complicacy of
CIN in cancer progressing. Extreme CIN was related to long-term
survival in primary breast cancer (Roylance et al., 2011). In
addition, the paradoxical and nonmonotonic relationship
between CIN and prognosis was observed in ovarian, gastric,
and non-small-cell lung tumors (Birkbak et al., 2011). CIN plays a
multifaceted role in cancer, and its microenvironment, for
instance, by introducing double-stranded DNA into the
cytosol, CIN could engage the cGAS–STING antiviral pathway
to facilitate inflammatory signaling (Bakhoum and Cantley,
2018).

The functional analysis results indicated that CRDC was
probably relevant with biological function terms associated
with tumor progression. For instance, high activity in G2M
checkpoint, E2F targets, MYC targets, cell cycle, and chemical
carcinogenesis, and low activity in the cAMP signaling pathway
and cell adhesion molecules in opposite. At the same time, a
number of immune-associated terms, such as interferon gamma
response and B cell and T cell receptor signaling, exhibited a
negative changing trend. These results suggested that the poor
prognosis caused by CRDC may be achieved by promoting cell
proliferation and migration as well as reducing antitumor
immune response.

Based on the possibility of the connection between CRDC and
immunity from the functional analysis, we consulted literatures
and found that several CRDC genes have been proven to be
associated with immunologic function. LINC00473 silencing
enhanced miR-195-5p-targeted downregulation of PD-L1 in
pancreatic cancer may block the cancer progression (Zhou W.
Y. et al., 2019). The proprotein convertase furin was negatively
correlated with immune cell infiltration in triple negative breast
cancer fitting with our correlation analysis about the CRDC genes
and immune features (Figure 7E). Also, furin deficiency in T cells
decreased Tregs resulting in CD8+ T cell activation and IFN-γ
upregulation (He et al., 2020). IFN-γ can augment immune
function, however, induce expression of PD-L1 by which IFN-
γ impairs antitumor immunity (Mandai et al., 2016). Also, tumor
IFNG signaling blocking improves ICB response by CD8+ T cell
and NK/ILC1-mediated killing (Benci et al., 2019). We found a
higher expression level of IFNG and immune checkpoint genes in
the CIN-Low group versus CIN-High group (Supplementary
Figure S4C and Figures 7B–D), which suggested that CIN-Low
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patients had possibility to benefit from ICB. Also, Patients with
low CRDC risk had lower immune dysfunction and exclusion
score as well as higher CYT, immunophenoscore, and immune
cell infiltration, which illustrated that these patients represented
characteristics of “immune-hot” (Figures 7A,F–I).
Immunotherapy response prediction offered evidence of the
anti-PD1 therapy potential applicability for CIN-Low patients
(Figure 7J).

There are two limitations in our work. We adopted the
patients in TCGA cohort without postoperative treatment to
evaluate prognosis for excluding the impact of treatment as
much as possible. However, these untreated samples may be
derived from information records missing, and we could not
acquire the unambiguous treatment information from the
external GEO verification datasets. In addition, the CRDC-
related biological functions and immunological characteristics
needed in-depth experimental verification.

CONCLUSION

In conclusion, we analyzed the CIN feature and constructed a
double-weighted CIN-related dysregulated ceRNA network.
Based on this network, a potential marker CRDC composed of
12 RNAs was acquired which could distinguish LUAD samples
from adjacent normal tissues and correlated with multiple
tumorigenic hallmarks and pathways. Also, CRDC probably
serves as an indicator for evaluating prognosis and
recommending immune checkpoint inhibitor therapy. This
study will offer a novel perspective for understanding the
molecular action in LUAD tumorigenesis and progression.
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